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Abstract. This paper addresses a distributed target-encirclement control problem of
multiple quadrotors using a leader-follower framework. In the task of encirclement con-
trol, the leader and followers have different functions and roles. Only the leader can
obtain the information of the target, while followers cannot obtain directly. Two dis-
tributed fixed-time observers are proposed for each follower to estimate the information
of the target and leader. Based on observed states, sliding mode controllers are presented
for the leader and followers such that the target can be tracked and encircled by multi-
quadrotors. Simulation results show the effectiveness of the proposed encirclement control
strategy.
Keywords: Distributed control, Leader-follower framework, Fixed-time observers,
Target-encirclement

1. Introduction. In recent years, distributed cooperative control of multi-agent systems
has been a hot research topic due to its wide applications from multi-robots missions [1],
spacecraft formation [2], to an active traffic management [3]. Consensus control implies
that all agents reach an agreement with a specific state using neighbors’ information.
Consensus control consists of leaderless consensus [4] and leader-follower consensus track-
ing [5]. So far abundant results for leader-follower tracking problems have been reported
for first-order [6], second-order [7, 8] and high-order multi-agent systems [9].

Over the past decades, encirclement control problems have received widely concern
owing to various applications in military and civilian fields including cooperative hunting
for adversary, protection of important members such as unmanned ground vehicles. Model
Predictive Control (MPC) method was applied to research a single UAV encircling a
stationary target, a single Unmanned Aerial Vehicle (UAV) encircling a moving target,
and a group of UAVs encircling a stationary target, respectively [10]. The work in [11]
proposed an improved MPC algorithm based on reinforcement learning to solve a target
encirclement problem in obstacle rich environment. A cooperative encirclement hunting-
like guidance strategy was presented in [12] where the initial states or the interception
formation of multiple missiles were optimized by using a finite covering theorem. The
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work in [13] considered a moving target in 3D environment and presented an encirclement
control scheme with guaranteed collision avoidance for a multi-robot system.
However, for above-mentioned encirclement strategies, the centralized control approach-

es were applied to developing controllers. Centralized control is simple and easy to realize
in practical applications. However, it also increases the computation and communication
load of control center, especially for large-scale multi-agent systems. For a distributed
control strategy, each agent has its own control unit where only local neighbors’ infor-
mation is used. Hence, distributed control methods are more flexible and applicable for
large-scale multi-agent systems. Two distributed control schemes were developed in [14]
to realize encirclement of point target and disk target, where only local bearing measure-
ments are required. The work in [15] solved a collective multi-target rotating encirclement
formation problem of second-order multi-agent systems using fixed-time estimators and
Lyapunov theory.
In most of the existing encirclement control schemes, a group of agents have the same

role and function. Nevertheless, for many special tasks, for example, military confronta-
tion not only needs fighters but a reconnaissance plane. Hence, agents with different
functions are required in practical applications. A leader-follower framework [16] was ap-
plied in the target-encirclement control, where only a leader has detection ability and can
access to the information of the target, while followers cannot obtain directly. Observers
were used to estimate the states of the target and leader. The work in [17] further consid-
ered target-encirclement control problem of fractional-order multi-agent systems applying
leader-follower construction. However, the above research works did not consider any prac-
tical model, where the control objects are only with first-order or fractional-order systems.
In practical applications, many systems are characterized by higher order dynamics, such
as quadrotors and mobile robots. Moreover, compared with finite-time observers in [16]
and [17], fixed-time observers not only guarantee that the real values are estimated with
a finite time, but also the estimated time is global bounded for any initial state [18].
Hence, inspired by above discussions, this paper addresses a distributed target-encircle-

ment control problem of multiple quadrotors using a leader-follower framework. In this
work, the information of the target is only accessible to a leader which has detection
ability, while it is unnecessary for followers to detect the target. Fixed-time observers
are presented to estimate the information of the target and leader, and estimated time
is global bounded independent of initial conditions. Then, based on the observed states,
the distributed sliding mode encirclement control algorithm is designed for leader and
followers such that they can cooperate to enclose the target. The simulation results are
presented to show the effectiveness of the proposed encirclement control strategy.

2. Problem Statement and Preliminaries. In this section, we will introduce the
system model of a quadrotor and define the control objective of target-encirclement.

2.1. System model. The model of the quadrotor is adopted in [11]. The dynamics are
written as

ẋ(t) = Ax(t) +Bu(t) (1)

where x = {x, y, ẋ, ẏ, ẍ, ÿ}T , u = {ux, uy}T ,

A =


0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 0 −5.6956 0
0 0 0 0 0 −5.6956

 , B =


0 0
0 0
0 0
0 0

5.6956 0
0 5.6956
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Then, the dynamics of the target can be described as

ẋT (t) = AxT (t) (2)

The dynamics of a leader is

ẋ0(t) = Ax0(t) +Bu0(t) (3)

The dynamics of followers are

ẋi(t) = Axi(t) +Bui(t) (4)

To facilitate the expression, define p = (x, y), v = (ẋ, ẏ) = (vx, vy), a = (ẍ, ÿ) = (ax, ay)
as position, velocity and acceleration, respectively.

2.2. Control objective. In order to achieve the target-encirclement control of multiple
quadrotors, we define the following control objective.

Definition 2.1. The target-encirclement control problem of systems (3) and (4) can be
solved, if design controllers u0 and ui for the leader and followers such that

lim
t→∞

∥pi − pT∥ = l

lim
t→∞

(vi − vT ) = 0

lim
t→∞

(ai − aT ) = 0

lim
t→∞

(
θi − θj −

2π(i− j)

N

)
= 0 (5)

where l is the desired distance between the target and agents, θi represents the desired
angle between the target and agent i, and N is the total number of agents.

Lemma 2.1. [19] If the communication topology G is undirected and connected, then
matrix H = L+B is symmetric and positive definite.

Lemma 2.2. [5] For a finite dimensional linear space, the following inequality holds:

∥y∥m ≤ ∥y∥n ≤ N
1
n
− 1

m∥y∥m (6)

where m > n > 0, and the norms ∥y∥c =
(∑N

i=1 |yi|
c
) 1

c
, y = [y1, y2, . . . , yN ]

T ∈ Rn, c > 0.

Lemma 2.3. [20] Assume that there exists a continuously differentiable positive definite
and radially unbounded function V (z) : RN → R+ such that

V̇ (z) ≤ −aV p(z)− bV q(z), z ̸= 0 (7)

where a, b > 0, p = 1− 1/µ, q = 1+1/µ, µ ≥ 1. Then the origin of the system is globally
fixed-time stable with convergence time estimated by

T (z0) ≤ Tmax =
πµ

2
√
ab

(8)

Assumption 2.1. The communication graph G is connected and at least one follower
can access to the information of leader.

Assumption 2.2. The control input of leader u0 is bounded and satisfies |u0| ≤ ū0, where
ū0 is a known positive constant.

3. Main Results. In this section, a fixed-time observer method is applied for follow-
ers to estimating the information of the target and leader. Then, based on observers,
a distributed sliding mode control strategy is proposed to solve the target-encirclement
problem.
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3.1. Design of fixed-time observers. In this paper, a leader and followers have dif-
ferent roles and functions, where a leader can detect the target, while followers cannot
obtain the information of the target directly. Moreover, the information of a leader is only
accessible to a part of followers. Hence, fixed-time observers are designed for followers to
estimate the states of the target and leader.
The distributed fixed-time observer is designed as follows for each follower to estimate

the states of the target

φ̇pi = φvi − αpisig

(
N−1∑
i=1

aij (φpi − φpj) + ai0 (φpi − φp0)

)2

− βpisign

(
N−1∑
i=1

aij (φpi − φpj) + ai0 (φpi − φp0)

)

φ̇vi = φai − αvisig

(
N−1∑
i=1

aij (φvi − φvj) + ai0 (φvi − φv0)

)2

− βvisign

(
N−1∑
i=1

aij (φvi − φvj) + ai0 (φvi − φv0)

)

φ̇ai = −rφai − αaisig

(
N−1∑
i=1

aij (φai − φaj) + ai0 (φai − φa0)

)2

− βaisign

(
N−1∑
i=1

aij (φai − φaj) + ai0 (φai − φa0)

)
(9)

where αpi > 0, βpi > 0, αvi > 0, βvi > 0, αai > 0, βai > 0, r = 5.6956. Since the leader
could detect the states of the target, then we define

φp0(t) = pT (t)

φv0(t) = vT (t)

φa0(t) = aT (t) (10)

Theorem 3.1. Suppose Assumption 2.1 holds, and it uses the distributed observer (9)
for any initial states φpi(t0), φvi(t0), φai(t0). Then it has φpi(t) = pT (t), φvi(t) = vT (t),
φai(t) = aT (t) when t ≥ T1, and the convergence time T1 is bounded by

T1 ≤ Tmax
1 =

πN
1
4

2λmin(H)
√
αaminβamin

+
πN

1
4

2λmin(H)
√
αvminβvmin

+
πN

1
4

2λmin(H)
√

αpminβpmin

(11)

where αamin = min{αa1, αa2, . . . , αaN−1}, αvmin = min{αv1, αv2, . . . , αvN−1}, αpmin =
min{αp1, αp2, . . . , αpN−1}, βamin = min{βa1, βa2, . . . , βaN−1}, βvmin = min{βv1, βv2, . . . ,
βvN−1}, βpmin = min{βp1, βp2, . . . , βpN−1}, λmin(H) is the minimum eigenvalue of matrix
H.

Proof: Let φ̃pi = φpi − φp0, φ̃vi = φvi − φv0, φ̃ai = φai − φa0, then it has

˙̃φpi = φ̃vi − αpisig

(
N−1∑
i=1

aij (φpi − φpj) + ai0 (φpi − φp0)

)2

− βpisign

(
N−1∑
i=1

aij (φpi − φpj) + ai0 (φpi − φp0)

)
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˙̃φvi = φ̃ai − αvisig

(
N−1∑
i=1

aij (φvi − φvj) + ai0 (φvi − φv0)

)2

− βvisign

(
N−1∑
i=1

aij (φvi − φvj) + ai0 (φvi − φv0)

)

˙̃φai = −rφ̃ai − αaisig

(
N−1∑
i=1

aij (φai − φaj) + ai0 (φai − φa0)

)2

− βaisign

(
N−1∑
i=1

aij (φai − φaj) + ai0 (φai − φa0)

)
(12)

Define φ̃p = [φ̃p1, φ̃p2, . . . , φ̃pN−1]
T , φ̃v = [φ̃v1, φ̃v2, . . . , φ̃vN−1]

T , φ̃a = [φ̃a1, φ̃a2, . . . ,

φ̃aN−1]
T , αp = diag{αp1, αp2, . . . , αpN−1}, βp = diag{βp1, βp2, . . . , βpN−1}, αv = diag{αv1,

αv2, . . . , αvN−1}, βv = diag{βv1, βv2, . . . , βvN−1}, αa = diag{αa1, αa2, . . . , αaN−1}, βa =
diag{βa1, βa2, . . . , βaN−1}, then we have

˙̃φp = φ̃v − αpsig (Hφ̃p)
2 − βpsign (Hφ̃p)

˙̃φv = φ̃a − αvsig (Hφ̃v)
2 − βvsign (Hφ̃v)

˙̃φa = −rφ̃a − αasig (Hφ̃a)
2 − βasign (Hφ̃a) (13)

Choosing the Lyapunov function V1 =
1
2
φ̃T
aHφ̃a, then the derivative of V1 is

V̇1 = φ̃T
aH ˙̃φa

= φ̃T
aH

(
−rφ̃a − αasig (Hφ̃a)

2 − βasign (Hφ̃a)
)

≤ −αamin ∥Hφ̃a∥33 − βamin ∥Hφ̃a∥1
Applying Lemma 2.2, the following inequality is satisfied

V̇1 ≤ −αaminN
− 1

2 ∥Hφ̃a∥32 − βamin ∥Hφ̃a∥2
≤ −αaminN

− 1
2 (2λmin(H))

3
2 V

3
2
1 − βamin (2λmin(H))

1
2 V

1
2
1 (14)

According to Lemma 2.3, the observer error φ̃ai can converge to zero. After φ̃a converge
to zero, equality (13) is

˙̃φv = −αvsig (Hφ̃v)
2 − βvsign (Hφ̃v) (15)

Choose Lyapunov function V2 = 1
2
φ̃T
vHφ̃v and V3 = 1

2
φ̃T
pHφ̃p. Then following the same

process as above, we can obtain that φ̃v and φ̃p converge to zero and the convergence
time T1 is bounded by (11). The proof is completed.

Similarly, the distributed fixed-time observer is designed as follows for each follower to
estimate the states of the leader

˙̂pi = v̂i − γpisig

(
N−1∑
i=1

aij (p̂i − p̂j) + ai0 (p̂i − p̂0)

)2

−κpisign

(
N−1∑
i=1

aij (p̂i − p̂j) + ai0 (p̂i − p̂0)

)

˙̂vi = âi − γvisig

(
N−1∑
i=1

aij (v̂i − v̂j) + ai0 (v̂i − v̂0)

)2

−κvisign

(
N−1∑
i=1

aij (v̂i − v̂j) + ai0 (v̂i − v̂0)

)
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˙̂ai = râi − γaisig

(
N−1∑
i=1

aij (âi − âj) + ai0 (âi − â0)

)2

−κaisign

(
N−1∑
i=1

aij (âi − âj) + ai0 (âi − â0)

)
(16)

Theorem 3.2. Suppose Assumption 2.1 holds, and it uses the distributed observer (16) for
any initial states p̂i(t0), v̂i(t0), âi(t0). Then it has p̂i(t) = p0(t), v̂i(t) = v0(t), âi(t) = a0(t)
when t ≥ T2, and the convergence time T2 is bounded by

T2 ≤ Tmax
2 =

πN
1
4

2λmin(H)
√
γaminκamin

+
πN

1
4

2λmin(H)
√
γvminκvmin

+
πN

1
4

2λmin(H)
√
γpminκpmin

(17)

where γamin= min{γa1, γa2, . . . , γaN−1}, γvmin= min{γv1, γv2, . . . , γvN−1}, γpmin= min{γp1,
γp2, . . . , γpN−1}, κamin = min{κa1, κa2, . . . , κaN−1}, κvmin = min{κv1, κv2, . . . , κvN−1}, κpmin

= min{κp1, κp2, . . . , κpN−1}.

Proof: This proof is similar to one of Theorem 3.1. Hence, here it is omitted.

4. Design of Sliding Mode Encirclement Controllers. In this section, we present a
distributed sliding mode strategy for the leader and followers to realize the encirclement
of target. Firstly, the errors between the target and leader can be defined as

ep0 = p0 − pT − [l cos θ0 l sin θ0]
T

ev0 = ėp0 = v0 − vT

ea0 = ëp0 = a0 − aT (18)

where l and θ0 are desired distance and desired angle between the target and leader,
respectively. For followers, the information of the target and leader is not accessible to
them. Hence, the estimated values are used to define the errors for followers. The desired
position of followers is determined by the location of target and leader. Hence, the errors
for followers are defined as

epi = pi − φpi −

cos
2πi

N
− sin

2πi

N

sin
2πi

N
cos

2πi

N

 (p̂i − φpi)

evi = ėpi = vi − φvi −

cos
2πi

N
− sin

2πi

N

sin
2πi

N
cos

2πi

N

 (v̂i − φvi)

eai = ëpi = ai − φai −

cos
2πi

N
− sin

2πi

N

sin
2πi

N
cos

2πi

N

 (âi − φai) (19)

Based on the defined errors, an integral sliding mode surface is designed as

si = eai +

∫ t

0

(k3ieai(τ) + k2ievi(τ) + k1iepi(τ))d(τ), i = 0, 1, . . . , N − 1 (20)

where k1i, k2i, k3i are designed later.
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Based on sliding mode surface (20), the distributed controller for leader and followers
is proposed as

ui = eai −
1

r
(k3ieai + k2ievi + k1iepi)−

1

r
σisign(si) (21)

where σi > 0.

Theorem 4.1. Considering quadrotors systems (3)-(4) with the observers (9) and (16),
sliding mode surface (20) and control law (21), then the leader and followers can encircle
the target (2).

Proof: The proof consists of the reachability and existence of sliding mode surface.
Firstly, we give the reachability of sliding mode surface. The Laypunov function is chosen
as V4 =

∑N−1
i=0

1
2
sTi si, and then the derivative of V4 is

V̇4 =
N−1∑
i=0

siṡi

Applying sliding surface (20) and control law (21), it has

V̇4 =
N−1∑
i=0

si (ėai + (k3ieai + k2ievi + k1iepi))

=
N−1∑
i=0

si (−reai + rui + k3ieai + k2ievi + k1iepi)

=
N−1∑
i=0

si

(
−reai + r

(
eai −

1

r
(k3ieai + k2ievi + k1iepi)−

1

r
σisign(si)

)
+ k3ieai + k2ievi + k1iepi

)
=

N−1∑
i=0

−σi∥si∥2

Therefore, with the help of the controller (21), the error states can arrive at the integral
sliding mode surface.

Then, the existence of sliding mode surface is proved in the following. Once the error
states go into the integral sliding mode surface, it can be obtained that si = 0 and ṡi = 0.
Then the equality is satisfied

ėai = −k3ieai − k2ievi − k1iepi (22)

The above equality can be rewritten as

ėi = Cei

where ei = [epi, evi, eai]
T , and matrix C is

C =

 0 1 0
0 0 1

−k1i −k2i −k3i


Choose the values for control gains k1i, k2i, k3i such that the matrix C is Hurwitz. Then
error states can converge to zero along with the sliding surface (20).

To integrate the above process, the encirclement control of the target can be realized
by using the proposed distributed sliding mode control algorithm for leader-follower’s
systems. The proof is completed.
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5. Numerical Example. In this section, an example is presented to show the validity
of the proposed target-encirclement control strategy. Leader-follower multiple quadro-
tors include one leader and four followers. The communication network among them is
described in Figure 1.

Figure 1. Communication topology

Simulation parameters are chosen as follows, where l = 2, θ0 = π
5
, k1i = 2, k2i = 3,

k3i = 5. It can be proved that matrix C is Hurwitz. The observer parameters are
αpi = αvi = αai = i, βpi = βvi = βai = i, γpi = γvi = γai = 0.5i, κpi = κvi = κai = 0.5i.
Figure 2 describes the trajectories of the target, leader and followers, respectively. It

is noticed that the leader and followers can encircle the target successfully. The observer
errors of the target and leader are shown in Figures 3 and 4. With the help of the proposed
observers, the information of the target and leader can be estimated within fixed time.

-6 -4 -2 0 2 4 6 8
X

0

2

4

6

8

10

12

Y

f1

f2

f3

f4

leader

target

Figure 2. (color online) Encirclement trajectories of the multi-agent system

6. Conclusions. In this paper, a distributed target-encirclement control problem for
multiple quadrotors has been investigated via a leader-follower framework. Fixed-time
observers have been proposed for followers to estimate the information of the target and
leader, and it is proved that the real values can be estimated accurately within fixed time
for any initial states. The integral sliding mode surface and sliding mode control algorithm
have been designed for leader and followers such that the target can be surrounded by the
leader-follower system. Simulation results have shown the effectiveness of the presented
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Figure 3. (color online) Observer errors of the target

Figure 4. (color online) Observer errors of the leader

control strategy. In our future work, the obstacles avoidance problem of the target-
encirclement control will be considered such that multiple quadrotors have no collisions
during the tracking process.
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