
ICIC Express Letters ICIC International c©2023 ISSN 1881-803X
Volume 17, Number 1, January 2023 pp. 13–24

COLLISION AVOIDANCE AND PATH PLANNING
IN CROWD SIMULATION

Panich Sudkhot1,∗, Kok Wai Wong2 and Chattrakul Sombattheera1,∗

1Faculty of Informatics
Mahasarakham University

Khamriang, Kantharawichai, Mahasarakham 44150, Thailand
∗Corresponding authors: panich.sud@zyntelligent.com; chattrakul.s@msu.ac.th

2College of Science, Health, Engineering and Education
Murdoch University

Murdoch, Western Australia 6150, Australia
K.Wong@murdoch.edu.au

Received May 2022; accepted July 2022

Abstract. Modern crowd simulation needs two important characteristics: i) capability
to simulate how human beings plan their paths, and ii) capability to cope with a large
number of agents, particularly, in congested areas. Most research in this area does not
focus on both issues at the same time because it can be computationally expensive. This
research proposes a framework for crowd simulation that embraces these two capabilities
and offers low computational cost. We combine BDI (Belief-Desire-Intention) model for
planning and making decision, and RVO (Reciprocal Velocity Obstacle) for coping with
congested areas. We achieve satisfactory results as a large number of agents can be sim-
ulated smoothly. We found that by combining BDI with RVO, the simulation time, i.e.,
how fast agents can move, is at least 20% faster in all scenarios. The execution time is
also reduced dramatically, 35% on average. We can simulate up to 40,000 agents in a
large scale area in a typical computer. The framework allows for visualized simulation
of 600 agents at 24 frames per second and can go up to 6,400 agents at 1.5 frames per
second.
Keywords: Path planning, BDI agent, Agent-based crowd simulation

1. Introduction. Crowd simulation, offering a vast diversity in real world applications,
can be divided into two streams: i) macroscopic, models the behavior of the crowd based
on mathematical models, and ii) microscopic, models the decision making of individual
agents that collectively becomes the behavior of the crowd. The former offers low compu-
tation cost and is suitable for large scale simulation. The latter offers details about how
individual agents make decision but its computational cost is relatively high. Because
of these reasons, most research in crowd simulation tends to focus on either way. In re-
cent years, microscopic has received more attention because the computer processors are
cheaper and it offers more details and accuracy in decision making of agents.

In microscopic model, there are two important aspects: i) how we can simulate the deci-
sion making as similar as possible to human beings, and ii) how we can handle congested
situation efficiently. To answer the first question, it has long been studied how human
beings make decision and act, accordingly. In reality, we live in dynamic environments,
which keep changing all the time. This means that we have to always plan, act, re-plan,
act, repeatedly, in order to achieve our goal, reaching our destinations, etc. We refer to
this as path planning of agents. The second question arises because agents make decision
independently to achieve their goals. The worst case scenarios take place when a lot of
agents are moving pass, or towards, a relatively small area, with respect to the number of

DOI: 10.24507/icicel.17.01.13

13



14 P. SUDKHOT, K. W. WONG AND C. SOMBATTHEERA

agents, in different directions. The area becomes it congested. From simulation perspec-
tive, agents must be properly navigated out of this. We do not allow agents to collide to
each other. This is known as collision avoidance in crowd simulation. Handling these two
requirements within one system is a challenge because both demand a lot of computation
power.
In order to respond to both demands, a lot of simulation systems have been built up

on existing techniques, causing more computational cost as an expense of these advances.
This prevents these techniques from simulating a large number of agents. In our opinion,
the most challenging and interesting research is the autonomous crowd simulation by
handling both a large number of agents while capable of emulating high level decision
making. We propose a crowd simulation framework based on BDI, a popular psychological
principle for decision making at high level, and RVO, an underlying navigation mechanism
for agents. The framework performs reasonably well with considerably large number of
agents.
The paper is structured as the following: We review related works and research back-

ground in Section 2, introduce system overview in Section 3 and show how to implement
agent movement in Section 4. We present three experiments in Section 5 and conclusion
in Section 6.

2. Background. Over the years, crowd simulation has been growing on various dimen-
sions. In this section, we briefly review advances in crowd simulation and two principles
that are basis of our work below.

2.1. Crowd simulation advances. Crowd simulation offers rich applications in various
domains, including movies and games [4], urban and architecture planning [5], disaster and
crisis handling [6]. Due to variety of its applications, crowd simulation requires different
techniques to focus on important aspects of those applications. The first and foremost
aspect is visualization. During the early years, visual media or virtual cinematography are
desperate for reality and efficiency of rendering of a crowd. This demands reduction of the
complexity of the 3D scene and images [7-9]. The techniques on visualizing at algorithm
levels have been developed over the years. In recent years, more computation power is
provided by GPU [26].
However, the overall performance of crowd simulation also depends heavily on the

decision making part. Several techniques used for this purpose are based on a famous
psychological model, BDI. BDI was extended to help model other agent platform [17].
BDI framework is extended to be used for planning and making decision in evacuation,
based on general machine learning [16], reinforcement learning [14], deep reinforcement
learning [18], integrate personality model and emotional model [10, 11]. With regards
to low level navigation, many approaches have been proposed. Social force can be used
to help simulate in high-density crowd [12, 13]. In addition to decision making, naviga-
tion at low level is also important. In agent-based crowd simulations, each agent merges
many navigation algorithms for path-planning, oscillation prevention, collision avoidance,
etc. Toll and Pettré [15] present topology-driven method for enhancing the navigation
behavior. The method allows agents to synchronize their partial information to build
global information for their individual plans. Gödel et al. [19] use variance-based sensi-
tivity analysis using Sobol indices and then crosscheck the results by a derivative-based
measure, the activity scores. Xing et al. [27] propose a method to improve the collision
avoidance performance based on the existing crowd simulation and the example-based
method chosen relies heavily on the data captured from the real world. Fraichard and
Levesy [20] investigate for the extent the results obtained in the crowd simulation domain
could be used to control a mobile robot navigating among people.



ICIC EXPRESS LETTERS, VOL.17, NO.1, 2023 15

2.2. Reciprocal Velocity Obstacle (RVO). Navigation of agents has always been the
first and foremost issue in crowd simulation. An outstanding requirement of simulating
crowd is to avoid collision among agents. It is important that each agent remains occupy-
ing its own space that other agents must not eclipse into that particular space. Since we
are interested in simulating moving agents simultaneously, taking account of moving in-
formation, i.e., the position, direction and speed of at least nearby agents, can be helpful.
Berg et al. [1] propose RVO that considers other moving agents, or objects, as dynamic
obstacles, and non-moving objects as static obstacles. Let A = {a1, . . . , an} be a set of
agents, residing in plane. An agent ai is said to be at a reference position pi, moving
with a velocity vi, preferred speed vprefi , towards the located goal gi. Let O = {o1, . . . , op}
be a set of obstacles, each of which is stationed at position p. In order to move agents
simultaneously, a simulation time step ∆t must be decided. During each cycle of the simu-
lation, the algorithm chooses the most appropriate values for each agent as its new status,
i.e., speed, direction, position. The whole simulation process is repeated until each agent
reaches its goal. Based on this foundation, more advanced simulation techniques [22-25]
have been further developed. However, they are not considered of really high level decision
making simulation.

2.3. Belief-Desire-Intention (BDI). Getting to know how our brain works, e.g., think,
and decide, has long been an inspiring, important, mysterious, yet to be clarified, research
issue. Among many models, BDI is a relatively new but influential principle. BDI was
adopted to explain how intelligent agent, as a software governing body of robots, computer
systems, etc., would work in forms of an agent language, AgentSpeak [2], e.g., Figure
1(a). Agents collect information about surrounding world in their belief, which could be
a collection of data in forms of file, database, etc. Agents are given tasks to complete
and are considered to be given goals for them to achieve. To achieve their goals, agents
use data in their belief to generate plan accordingly. The dynamic and important parts
of BDI agents are the ability to dynamically collect data and update belief, then update
their plans accordingly. It is also very common that an overall plan can always be broken
down recursively to sub-plan as long as it is needed.

1 initialize− state();

2 while until exit do

3 choices←
choice− generator(event− stack);

4 chosen− choices← deliberate(choices);

5 update− intentions(chosen− choices);

6 execute();

7 get− new − external − events();

8 drop − successful− attitudes();

9 drop − impossible− attitudes();

10 end

(a) BDI interpreter (b) Init-process

Figure 1. BDI interpreter and initialize process

3. System Overview. Figure 1(b) presents scene setting process before executing fur-
ther simulation processes. Agents and initial plans are generated accordingly. During
simulation, new plans and sub-plans will be generated.



16 P. SUDKHOT, K. W. WONG AND C. SOMBATTHEERA

3.1. Process explanation. Figure 1(b) presents six processes as follows. Polygon gen-
erator is the process to create static obstacles such as buildings, roads, fences, and walls,
which are two-dimensional. We use our tools developed for drawing polygons. It provides
a user interface to create obstacles by simply clicking a point on a satellite map image.
In this step, the polygon data will be saved in JSON file for easy use in the simulator.
Generate graph from real world map is the process to create a graph from the ob-
stacle data in the previous process. Our graph algorithm repatedly considers each pair
of obstacles, and creates a one-to-one connecting line from a corner of one obstacle, to
a corner of the other obstacle. We check that these lines must not intersect other lines
within the scene. Once corners are properly connected, we will achieve a new graph, that
will be saved to a JSON file for an easy implementation in the next process. Random-
ly spawn agents and goals is the process to randomly spawn agents, and designated
goals, into the scene. We use seed randomization to help create realistic scenes in the
simulation. Initialize obstacles into the scene is the process to initialize settings
for obstacles in the scene. We read the JSON polygon values in the first process. We
transform the polygons in the previous process into two-dimensional coordination system.
After we have done the transformation, obstacles are added to the simulator. Gener-
ate plans (shortest paths) for agents is an important process for assigning an initial
path for each agent. We choose the path from the graph generated in the second process.
Agents execute plans is a process of simulating agents movement. This process contains
loops and recursive functions for computing agent plans, decision, collision and obstacle
avoidance.

3.2. Graph generation. In this process, we connect appropriate points of polygons to
create, within the scene, a large graph, on which agents can decide for their paths and
route. In general, each polygon represents a static obstacle, e.g., a building, and a garden.
The gap between these obstacles forms streets. Agents are not supposed to cross these
obstacles but can only walk along their sides, on the footpaths or streets, if necessary.
More importantly, we (human beings) typically cross streets at a corner or an assigned
point, where we can get to the other side as quickly as possible. We hardly cross diagonally
where the time it takes to get to the other side will be much longer and it will be very
dangerous. Therefore, the algorithm, for each point of every polygon, will choose the
nearest point of each of its neighboring polygons as the connecting path. This path must
not cross any part of any polygon in the scene, e.g., Figure 2(a). Basically, it checks if
any line segment intersects with others.

(a) Connect obstacle (b) Circular arc

Figure 2. Connect obstacle (a) and circular arc sector (b)

4. Agent Movement. We bring about BDI model into our simulation to help increase
decision making of our agents to be more similar to human beings because original RVO,
although very efficient at guiding agents while avoiding collision, makes agents behaving
like robots. In addition, BDI allows for agents to repeat their decision making according



ICIC EXPRESS LETTERS, VOL.17, NO.1, 2023 17

to changing environment. Therefore, agents can nest their plans, having sub-plans when
appropriate, in hierarchical manner, closer to how human beings behave.

4.1. Minimizing scanning area with circular arcs. As human beings, we plan our
paths from our knowledge about available data. While we move on, the data we perceive
from our eyes may trigger changes in our plans. We see the surrounding environment
in limited area where our eyes are looking at. Typically, this area is a circular arc. In
this research, we also take account of this manner, which also helps improve simulation
efficiency by reducing scanning surrounding area, compared to RVO which scans all sur-
rounding agents. As shown in Figure 2(b), given a circle, the area of a sector, bounded

by an arc of length L and a pair of radii r separated by angle θ, is A = r2θ
2
. Since the arc

is on the angle θ, it is derived that the proportion of area A to the area of the circle and
angle θ to the angle of the circle is A

πr2
= θ

2π
. Once canceling π on both sides, we have

A
r2

= θ
2
. We multiply both sides by r2, and we have the final result A = 1

2
πr2. To make

it work with 360 degree circle, we convert the proportion of the angle half θ with regards
to 360 and we have A = α

360
πr2. This area can help determine surrounding agents for

making decision whether to change route or not.

4.2. Agent planning. Our agents make decision by integrating the scope sensor of ag-
ents with minimizing scanning area method. After the initialize process in (Section 3:
System Overview), the agent begins execution plan process. The agent moves along a
sub-path defined by the Dijkstra algorithm to reach a planned goal. In every simulation
step, each agent has sensors to detect static obstacles and moving obstacles. We use
the collision avoidance function based on the existing RVO with static obstacles. In this
algorithm, our approach adds the agent’s ability to move along a planned sub-path for
the agent, allowing the agent to move quickly and similarly to real world movement. With
regards to mobile obstacles, like other agents in the same scene, this process takes place
when the agent’s sensor detects other agents as shown in Figure 3(a). Therefore, when
the agent can verify that from the original plan that the agent has to move through the
density area, our agents use decision-making algorithms to avoid agent congestion, like
Algorithm 1.

(a) Agent X (b) Agent class (c) Goal class

Figure 3. Simple scenario and agent, goal class data structure definition

Function getAgentCondense is used to detect the density ahead of the agent. Func-
tion 4.1 verifies if the area in the planned direction exceeds the specified threshold. If a
point to avoid is achieved, the agent sub-plan is added to the stack. In the extreme case,
on the condition that the agent cannot avoid the density area, e.g., Figure 3(a), we have
a process of change path. When the speed of the agent per simulation step decreases
as a result of calling the getAgentVelocity method, if the obtained value is less than



18 P. SUDKHOT, K. W. WONG AND C. SOMBATTHEERA

1 Function Decide(agentNo):
2 Vector2D agentPos ← getAgentPosition(agentNo)
3 Vector2D goalVector ← null

4 if get(agentNo).getSubGoalSize() > 0 then
5 goalVector ← getSubGoal(agentNo).get(0).subtract(agentPos)
6 else
7 goalVector ← getGlobalGoal(agentNo).subtract(agentPos)
8 end

9 double lengthSq ← goalVector .getNormSq()
10 if lengthSq > 1.0 then
11 goalVector ← goalVector .scalarMultiply(1/sqrt(lengthSq))
12 end

13 setAgentPreferredVelocity(agentNo, goalVector)
14 condenseAgent← getAgentCondense(agentNo)

15 if condenseAgent > CONDENSE THRESHOLD then
16 if get(agentNo).getSubGoalSize() 6 0 then
17 angle← getAngle(agentPos, getRandom(condenseAgent))

18 distance← getRandom(condenseAgent)
19 goalX ← agentPos.getX() + distance ∗ cos(angle ∗ PI/180)

20 goalY ← agentPos.getY () + distance ∗ sin(angle ∗ PI/180)
21 Vector2D subGoal ← Vector2D(goalX , goalY )

22 get(agentNo).add(subGoal)
23 velocityAgent← getAgentVelocity(agentNo)

24 if velocityAgent < V ELOCITY THRESHOLD then
25 status← generatePlan(agentNo)

26 end
27 end

28 end
29 End Function

Algorithm 1. Agent decides to avoid obstacle

Table 1. Threshold variable of each agent

Threshold variable Description

CONDENSE THRESHOLD
The number of other agents that are dense at the
area detected by the agent scope.

VELOCITY THRESHOLD The speed of the agent at the simulation step.

velocity threshold, it immediately changes path to the goal. It calls the generatePlan
method to create a new route for the agent. The agent decides to go to the left or to the
right following argument: Ai argmin =

∑detect

n=1
; left , right .

4.3. Planning strategy with sub-goal. To understand our BDI agents better, consider
the simple scenario shown in Figure 3(a) where agent X wants to walk-through from
position A to B with crowded path. To illustrate how planning with sub-goal may work,
Figure 3(a) provides an intuitive explanation. AgentX has a goal to move from positionA,
through a crowd of other agents, to position B. The original plan for X is to walk straight
toward B. While moving closer to the crowded area, perceived information provides a
couple of alternatives. The first one, while reaching a1, is to divert slightly to the right
early on, avoiding the crowd completely, move towards a3′′. Then X turns slightly to



ICIC EXPRESS LETTERS, VOL.17, NO.1, 2023 19

the left and moves toward B. Another alternative, X keeps moving until it reaches a2,
turns slightly to the left, and moves towards a3′, while going through parts of the crowd.
The last choice is to keep moving straight as originally planned. The classes representing
agent and goal are presented in Figures 3(b) and 3(c).

Figure 3(b) depicts the UML diagram for our agent class, modified from original RVO.
It has typical agent setting properties, including id, position, maxNeighbors, maxSpeed,
neighborDistance, radius, etc., and working functions for computing relative informa-
tion for navigating agents. We add goal object variables for enhancing navigation ability.
This helps navigate agents by containing more useful information including global plan,
sub-plans, and other attributes. Figures 3(c) illustrates the goal class. It has a complex
structure containing goal, sub-goals, data related to Dijkstra’s shortest path algorithm.
In each simulation round, the algorithm will update the plan in this class. When the agent
detects that an obstacle has occurred and is affecting the originally planned movement,
the agent decision-making and path planning process is activated. Once the route is ob-
tained from the above process, the agent will update the plan and change its path.

5. Experiment and Results. We have implemented our agent based on both BDI and
RVO, in order to improve multi-agent navigation. Our benchmark is an implementation
of the traditional RVO, namely RVO2. We experiment our approach in three scenarios:
Simple scenario: Figure 4 for simulating path of agent to see trajectory and dense
position on Section 5.1. Block scenario: Figure 5 for blocks simulating result, in this
experiment, we have four groups of 25 agents in each angle of the environment moving
to the negate angle. In the middle, there are four static obstacles that form narrow
passages. The groups with negate goal directions meet in the narrow passage on Section
5.2. Large space scenario: in Section 5.3, we simulate on 2D and 3D scenarios. In the
2D simulation, we have used satellite image to create graphs with our tools for simulating
a large number of agents to get a good overview of the simulation. In the 3D simulations,
we simulate our agents in Unity3D and build a virtual Bangkok city for simulating a large
number of agents, which are very challenging to simulate.

S1: (a) S2: (a) S3: (a) S4: (a) S5: (a) S6: (a)

S1: (b) S2: (b) S3: (b) S4: (b) S5: (b) S6: (b)

Figure 4. Settings: S1, S2, S3, S4, S5 and S6 scenarios to exchange
negate position and resulting paths in the scenario using our approach (a)
and RVO2 approach (b)

5.1. Simple scenario. For the first set of experiments, we use mini-scenes to evaluate
moving paths and avoid high-density areas of agents. We set simulation step at 0.25
seconds in the simulator. We set each agent’s properties, such as maximum speed, and
radius, to the same values for all experiments. In this simple scenario, the agent is
targeting the opposite position to create a density at the center of the scene. We have
six mini scenes. Scenes S1, S2, S3, S4, S5 and S6 contain 3, 4, 5, 6, 50 and 100 agents.



20 P. SUDKHOT, K. W. WONG AND C. SOMBATTHEERA

The results are shown in Figure 4. In each scene, we compare the result of our approach,
appearing on the above figure, with that of traditional RVO2, appearing on the bottom
figure. Since we enhance agent ability by adding BDI principles so that agents can be
aware of their surroundings, as well as enhancing their route planning capabilities, the
agent performance and overall performance of the simulation improve. In each scenario,
our agents can avoid tight congested area (left figures), while traditional RVO tends to
leading agents into tight congested area. Note that our approach allows for agents to
plan with flexibility how early or far away the agent wants to avoid the congested area.
In Figure 4, we show the trajectory of agents paths. Our method allows agents to avoid
congestion before reaching it. We choose to show scenarios where the decision is to “just”
avoid to tight congested area. For execution time, our approach was able to reach goal
with less time to complete the scene than traditional approach. In the first scene, the
agents were able to reach similar targets, while the second, third, fourth, fifth and sixth
scenes clearly distinguished themselves. As the number of agents grows, the traditional
approach is momentarily deadlocked as the agent moves towards the center of density. It
is clear from the sixth scene that the agent group of our approach has a walking path in
which the density avoidance occurs. Whereas the traditional approach agents are pushed,
as shown in the simulation time in Table 2.

Table 2. Simple scenario: Execution time (sec) and simulation time (step)

Method

Setting Execution time Simulation time

S1 S2 S3 S4 S5 S6 S1 S2 S3 S4 S5 S6

RVO2 452 1923 4482 516 1894 6443 362.5 14654.25 37176.5 441.75 816.25 1205.0
Our approach 457 474 486 507 1590 3983 362.5 371.0 377.25 376.0 655.0 710.25

Table 2 shows execution time of simple scenario. Our approach can navigate agents
towards their goals with much less time than the traditional approach. In the first scene,
the agents were able to reach similar targets, while the second, third, fourth, fifth and sixth
scenes clearly distinguished themselves. As the number of agents grows, the traditional
approach is momentarily deadlocked as the agent moves towards the center of density.
It is clear from the sixth scene that the agent group of our approach has a walking
path in which the density avoidance occurs. Whereas the traditional approach agents are
pushed, as shown in the simulation time in Table 2. Based on Table 2 simulation time,
our approach was able to reach goal with less time to complete the scene than traditional
approach, and these results are similar to the results of the execution time.

5.2. Block scenario. For the second benchmark of this scene, we conduct our experiment
by splitting agents into four groups, each of which is stationed at a corner of a simulation
square. The agents then move diagonally towards the opposite corner as their located
goals. As the agents move closer to the center, it becomes a tight congested area. We
call this block scene. We begin our experiment with a set of 100 agents, i.e., 25 agents
for each group. Figure 5(a) shows the trajectory paths of agents following our approach
(a) and that of agents following traditional approach (b). As clearly shown, our approach
can lead agents to avoid congestion area in the middle much better, i.e., the trajectory
paths of our approach are spread out more evenly, while those of traditional approach are
packed tightly in the middle. Figure 5(a)(1) shows that the majority of the agents avoid
expected density points with noticeable deviation. Figure 5(a)(2), on the other hand,
shows that there is a density of agents around the center because agents move towards it.
The execution time in Table 3 shows that it takes 59.11 percent less time to run simulation
results than the traditional approach. The simulation time of both scenes shows that our
approach takes less time to simulate than the traditional approach. The difference was
633.25 in simulation step.



ICIC EXPRESS LETTERS, VOL.17, NO.1, 2023 21

(a) Clear (b) With obstacles

Figure 5. The resulting paths in the block scenario using our approach
(1) and the RVO2 approach (2)

Table 3. Block scenario: Execution time (sec) and simulation time (step)

Method

Setting Block Block with obstacles
Execution Simulation Execution Simulation

time time time time
RVO2 7410 1449.5 11542 23122.25

Our approach 4380 816.25 9329 1677.75

To challenge our approach even further, we added some obstacles within the simulation
scenes, while the number of agents, their origins and destinations are similar to the settings
of previous scene. As shown in Figure 5(b), the scene consists of four obstacles. As done
in previous experiment, we decrease the deviation points until the difference between our
approach and the traditional one has minimal difference. As shown in Figure 5(b)(1)
and 5(b)(2), we can see that the paths of the agents are not very different from each
other. With respect to the execution time, Table 3 shows that our approach takes 80.83
percent less time to execute than the traditional approach. With respect to the simulation
time, it shows that there was a significant difference between both approaches. When the
simulations ended, our approach takes 23122.25 − 1677.75 = 21444.5 seconds. Note that
each simulation step takes 0.25 second. From this simulation in the obstacle-free scenes
and the scenes with obstacles, we found that our approach performed much better in
terms of execution time than traditional approach and in terms of simulation time as
well.

5.3. Large space scenario. Next, we carry out experiments of large space urban in 2D
space. As shown in Figure 6(b), we take a satellite image of the Democracy Monument,
Bangkok, Thailand, as our scene. In recent history of Thailand, the area has been a
remarkable scene for crowd simulation because there were so many real incidents took
place there. We then use our tool and algorithm to create polygons of hundreds of building
blocks. The algorithm for connecting points, using existing blocks, each of which consists
of vertices and edges, to create graphs, from which agents can generate path for navigating
themselves from origins to destinations, is applied. The created scenes can be saved to a file
in JSON form, be reloaded, be modified and be saved back to (another) file again. Here,
we randomly choose different positions as origins, from where agents will be spawned,
and goals, to which agents will be destined. Figure 6(b) bottom shows a snapshot of a
simulation results. In addition to 2D scene, we also carry out experiments on 3D scene.
Instead of focusing on a particular area, we create a 3D world, covering almost three
quarters of Bangkok area. Thousands of 3D buildings were originally created as polygon
objected and 2D textures, looking very similar to real buildings, were then applied. The



22 P. SUDKHOT, K. W. WONG AND C. SOMBATTHEERA

(a) 3D visualization of different scenes (b) 2D graph and result

Figure 6. Large space scenario with real-world map

simulation is carried out under Unity3D environment. Extra work was needed to convert
Java source codes to C#. The creation of virtual 3D Bangkok is still going and improving.
We manage to conduct our experiments on another historic area, namely, World Trade
Center. As shown in Figure 6(a), ten thousands of agents are simulated in this scene.

5.4. Performance and limit of algorithm. We carried out our experiments on a typ-
ical desktop computer, featuring a 3.60 GHz Intel Core i7-4790 processor 4 core 8 thread
of CPU, 16 GB 1600 MHz DD3 of RAM and AMD REDEON RX VEGA 64 of GPU, and
the operating system is Windows 10 x64. We measure capabilities and limits of our frame-
work in terms of average simulation speed (execution time) and visualization (Frames per
Second: FPS). It is very important that visualization is realistic. As it is widely adopt-
ed in movies industry, the minimal acceptable rate is 24 FPS. The results are shown in
Figure 7 (Table). Since the specification of our test box is relatively low and we also
visualize the simulation in real time, the results are not very impressive. With thousands
of agents being simulated, the visualization becomes very slow. The GPU manages to
skip some parts of the simulation and visualize only some other parts of the simulation.
Given this limit, we find that the bearable case, where the skipped part of simulation and
the visualization are not disconnected, is with 40000 agents.

Figure 7. Memory used: Block scenario without obstacle



ICIC EXPRESS LETTERS, VOL.17, NO.1, 2023 23

Given above limits, there are two cases for considering limits of our framework, namely
interactive and non-interactive. For the former, the execution time must be less than the
simulation time so that the visualization can be done in timely fashion. For the latter,
the execution time can be greater than the simulation time as long as it is acceptable.
Acceptability for this problem varies depending on urgency of result needs. Since we do
not demand immediate results but we cannot wait for too long, we accept delays within
matters of hours. In many cases, the limit of algorithm is the hardware, i.e., the memory.
In our experiments, we also check the limits on both visualization and execution. For
visualization, the algorithm is 24 FPS for 600 agents. The number of frames per second
drops rapidly when the number of agents rises from 19600 to 102400 agents. The rendering
is very low, 0.4 to 0.04 FPS, when the number of agents is larger than or equal to 19600.
In terms of memory usage, our algorithm consumes slightly more memory than RVO2.
Both algorithms consume more memory when the number of agents is increased almost
linearly. In our experiment, we have 1 GB of RAM and can carry out simulation up to
720000 agents.

6. Conclusion. We have developed a framework for crowd simulation based on BDI
concept. Our framework allows for carrying out up to 40000 agents on a typical desktop
computer. We embrace BDI, as a high-level decision-making mechanism, with RVO, as
a low-level navigation mechanism, providing an efficient, from system performance point
of view, and realistic, from simulation point of view, system. On one extreme end, we
experiment our framework for collision avoidance in multiple extremely tight scenarios.
The results show that the framework can simulate the crowds successfully. Simulation
time is short enough, providing more time for realistic visualization. On the other end,
we deploy our framework with a large scene allowing for tens of thousands of agents to be
successfully simulated. In the future, our framework can be improved on more aspects.
The first one is to handle more agents in the scene. The second one is to improve the
visualization. Lastly, the internal algorithm for planning can also be improved.

REFERENCES

[1] J. V. D. Berg, L. Ming and D. Manocha, Reciprocal velocity obstacles for real-time multi-agent
navigation, 2008 IEEE International Conference on Robotics and Automation, pp.1928-1935, 2008.

[2] A. Rao and M. Georgeff, BDI agents: From theory to practice, ICMAS, 1995.
[3] D. Thalmann, Crowd simulation, Encyclopedia of Computer Graphics and Games, pp.1-8, 2016.
[4] J. Comptdaer, E. Chiva, S. Delorme, H. Morlaye, J. Volpoët and O. Balet, Multi-scale behavioral

models for urban crisis training simulation, The 16th Conference on Behavior Representation in
Modeling and Simulation (BRIMS), Norfolk, Virginia, 2007.

[5] G. Drettakis, M. Roussou, A. Reche and N. Tsingos, Design and evaluation of a real-world virtual
environment for architecture and urban planning, Presence: Teleoperators and Virtual Environments,
vol.16, no.3, pp.318-332, 2007.

[6] S. Gwynne, E. Galea, M. Owen, P. Lawrence and L. Filippidis, A review of the methodologies used
in the computer simulation of evacuation from the built environment, Building and Environment,
vol.34, no.6, pp.741-749, 1999.

[7] F. Tecchia, C. Loscos and Y. Chrysanthou, Visualizing crowds in real-time, Computer Graphics
Forum, vol.21, no.4, pp.753-765, 2002.

[8] D. Thalmann, H. Grillon, J. Maim and B. Yersin, Challenges in crowd simulation, 2009 International
Conference on CyberWorlds, pp.1-12, 2009.

[9] J. Mäım, B. Yersin and D. Thalmann, Unique character instances for crowds, IEEE Computer
Graphics and Applications, vol.29, no.6, pp.82-90, 2009.

[10] C. Li, P. Lv, D. Manocha, H. Wang, Y. Li, B. Zhou and M. Xu, ACSEE: Antagonistic crowd
simulation model with emotional contagion and evolutionary game theory, IEEE Trans. Affective
Computing, 2019.

[11] Y. Mao, Z. Li, Y. Li and W. He, Emotion-based diversity crowd behavior simulation in public
emergency, The Visual Computer, vol.35, no.12, pp.1725-1739, 2019.



24 P. SUDKHOT, K. W. WONG AND C. SOMBATTHEERA

[12] D. Helbing and P. Molnar, Social force model for pedestrian dynamics, Physical Review E, vol.51,
no.5, 4282, 1995.

[13] H. Kolivand, M. Rahim, M. Sunar, A. Fata and C. Wren, An integration of enhanced social force
and crowd control models for high-density crowd simulation, Neural Computing and Applications,
vol.33, no.11, pp.6095-6117, 2021.

[14] Q. Wang, H. Liu, K. Gao and L. Zhang, Improved multi-agent reinforcement learning for path
planning-based crowd simulation, IEEE Access, vol.7, pp.73841-73855, 2019.

[15] W. Toll and J. Pettré, Synchronizing navigation algorithms for crowd simulation via topological
strategies, Computers & Graphics, vol.89, pp.24-37, 2020.

[16] S. Lee, Y. Son and J. Jin, An integrated human decision making model for evacuation scenarios
under a BDI framework, ACM Trans. Modeling and Computer Simulation (TOMACS), vol.20, no.4,
2010.

[17] D. Singh, L. Padgham and B. Logan, Integrating BDI agents with agent-based simulation platforms,
Autonomous Agents and Multi-Agent Systems, vol.30, no.6, pp.1050-1071, 2016.

[18] S. Zheng and H. Liu, Improved multi-agent deep deterministic policy gradient for path planning-
based crowd simulation, IEEE Access, vol.7, pp.147755-147770, 2019.

[19] M. Gödel, R. Fischer and G. Köster, Sensitivity analysis for microscopic crowd simulation, Algo-
rithms, vol.13, no.7, p.162, 2020.

[20] T. Fraichard and V. Levesy, From crowd simulation to robot navigation in crowds, IEEE Robotics
and Automation Letters, vol.5, no.2, pp.729-735, 2020.

[21] Z. Yao, G. Zhang, D. Lu and H. Liu, Learning crowd behavior from real data: A residual network
method for crowd simulation, Neurocomputing, vol.404, pp.173-185, 2020.

[22] J. V. D. Berg, S. Patil, J. Sewall, D. Manocha and M. Lin, Interactive navigation of multiple agents
in crowded environments, Interactive 3D Graphics and Games (I3D), pp.139-147, 2008.

[23] J. Snape and D. Manocha, Navigating multiple simple-airplanes in 3D workspace, 2010 IEEE Inter-
national Conference on Robotics and Automation, pp.3974-3980, 2010.

[24] J. Snape, S. Guy, J. Van Den Berg and D. Manocha, Smooth coordination and navigation for multiple
differential-drive robots, Experimental Robotics, pp.601-613, 2014.

[25] S. Kim, S. Guy, D. Manocha and M. Lin, Interactive simulation of dynamic crowd behaviors using
general adaptation syndrome theory, Proc. of the ACM SIGGRAPH Symposium on Interactive 3D
Graphics and Games, pp.55-62, 2012.

[26] L. Diaz, I. Rivas, K. Rodriguez and I. Rudomin, Crowd data visualization and simulation, Procedia
Computer Science, vol.139, pp.622-629, 2018.

[27] W. Xing, L. Zhu, X. Wei and P. Bao, Collision avoidance approach for example-based crowd simula-
tion, International Journal of Innovative Computing, Information and Control, vol.14, no.1, pp.127-
145, 2018.


