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ABSTRACT. Stress is something common in our life nowadays. Because physiological
signals may identify stress, it is a great way to keep an eye on it. One of the most
common signals used in the medical field was Electrocardiogram (ECG). That means
ECG can be used to detect stress. ECG can be extracted to Heart Rate Variability (HRV)
and HRV is also proved that can detect stress effectively. ECG signal will be acquired from
the WESAD dataset which contains another physiological signal. This study proposes a
simpler Convolutional Neural Network (CNN) and Long Short-Term Memory (LSTM)
model to detect stress using HRV since HRV was extracted from an ECG signal. The
model was trained using the HRV time domain and frequency domain. The model also
will be compared to the CNN model and LSTM model while using other types of data such
as time domain, frequency domain, and raw ECG data. The model’s highest accuracy
achieved 97.07% with time domain and frequency domain data. The result demonstrated
that a simpler deep learning model with extracted data can achieve a higher result than
a more complex deep learning model.

Keywords: Stress, Electrocardiogram, Convolutional neural network, Long short-term
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1. Introduction. Stress is something common in our life nowadays. Most of the people
become under pressure from their job that makes them more stressed. As an example,
in 2020 when COVID-19 was spreading worldwide and became pandemic, many people
became more stressed than usual. In the USA, about 78% of adults became stressed
during the pandemic while 67% of adults said it was more stressful during the pandemic
[1]. Stress can cause someone’s productivity and other negative impacts on those around
him. The impact itself can make other people become stressed and give another negative
impact to others.

In Stress: Concept, Definition and History written by Fink, the most generic definition
of stress proposed by Hans Selye is the non-specific response of the body to any demand
[2]. The definition itself said that there is a response from our body to stress. In 2019,
there is a study that stress response can be detected by physiological signals [3]. Therefore,
stress will give a response such as a physiological signal and can be detected from those
responses. This study used an ECG signal as the physiological signal. ECG signal acquired
from the heart. Stress can trigger arrhythmia in the atrium and ventricle [4]; therefore,
it is possible to detect stress using ECG. While ECG itself can be processed into HRV.
HRV was acquired from a group of ECG signals over a period. HRV also can directly
affect stress in an individual [5].

Stress detection carried out several stages of research starting from experiments to ob-
tain ECG datasets that indicate mental stress, selecting features for several methods that
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do not use deep learning, and classifying data into stress and non-stress. Since most of
the studies used deep learning, they did not have to select any features or do feature ex-
traction [6-11]. Several studies use feature extraction to do stress detection using machine
learning techniques [12,13].

However, using the deep learning method without doing any feature extraction tends
to make a complex model for stress detection. Therefore, this study aims to create a
simpler deep learning model that can detect stress using HRV data without dropping an
accuracy from a previous study. The proposed model will use the combination of CNN
and LSTM model for stress detection. Finally, the proposed model performance will be
compared based on several experiments based on different ECG data (HRV and raw data)
and different deep learning models.

The remaining sections from this paper are organized as follows: Section 2 briefly
explains the list of works related to the study; Section 3 explains the proposed system
and methodology for this study; Section 4 discusses the evaluation result in this study;
Section 5 concludes the study and offers suggestions for future works.

2. Related Works. Several studies detect stress using deep learning with raw ECG data
[6-11], while some studies use HRV data and machine learning to detect stress [12,13]. One
of the deep learning studies proposed a model named Deep ECGNet [6]. Deep ECGNet
consists of 1D CNN and Recurrent Neural Network (RNN) which the input will be ac-
cepted by 1D convolution layer followed by activation layer, pooling layer, and dropout
layer that will be continued with two of RNN layer and batch normalization in a row.
Then Deep ECGNet used softmax as their classification activation. Deep ECGNet was
evaluated on two datasets and achieved 87.39% for the first dataset and 73.96% for the
second dataset.

Later, Deep ECGNet will be compared by other models such as the CNN model pro-
posed by Cho et al. [7]. Cho et al.’s model was a CNN model with 8 convolution blocks.
The convolution block consists of 2 convolution layers, 1 pooling layer, 1 concatenate
layer, 1 batch normalization layer, 1 relu activation layer, and 1 0.3 dropout layer. Each
convolution layer had a filter width of 16 and the number of filters was 8 x 2k where k
started from 0 and will increase each time he advances to the next step. The CNN model
got 90.19% accuracy with the ECG stress dataset.

Another 1D CNN model was proposed to detect stress with an ECG signal called
1-Dimensional Deep Wide Convolutional Neural Network (DWNetl1D) [8]. The model
consists of 3 modules with each of them followed by the pooling layer and batch nor-
malization layer. The dataset from the experimental results will be divided into 16 data
for training, 4 for validation, and 4 for testing. The model managed to get the highest
accuracy up to 99.1% with an average accuracy of 89.8%.

Another model that compared Deep ECGNet was DeepER Net which was proposed by
Seo et al. DeepER Net consists of CNN and LSTM model and receives ECG and RESP as
the input to classify stress [9]. The input will be received by the batch-normalization layer
to normalize each signal with the aim that the network can learn to normalize the signal
based on the data itself, followed by the 1D convolution layer and the max-pooling layer
and using the relu activation function. Then follow again with a 1D convolutional layer
and with several LSTM layers and combine ECG and RESP signals with a concatenate
layer. To avoid overfitting, Seo et al. added batch-normalization and dropout layers. At
the end of the model will be fully connected by using the sigmoid activation function to
detect stress or not. DeepER Net got an average accuracy of 83.9%, F1 0.81, and AUC
0.92.

Rastgoo et al. used CNN-LSTM model to classify stress for a driver using ECG signal
as their physiological signal and driver simulation data [10]. They compared the classi-
fication handcraft feature method with CNN-LSTM algorithm. The CNN-LSTM model
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they proposed uses a conventional layer, an ELU (Exponential Linear Unit) activation
function, a batch normalization layer, and dropout and max-pooling sequentially twice
then followed by two LSTM layers and a dense layer and closed with a softmax layer to
present the multimodal features. The results obtained from CNN-LSTM model have bet-
ter evaluation results than the handcraft feature method with the best average accuracy
in the 30s feature window, namely 81.4% on the ECG signal, 77.2% on dynamic vehicle
data, 58.2% on environmental data, and a combined total of 96.3%.

Another CNN-LSTM model was used to detect stress with ECG signal by image data
[11]. Kang et al. used 28 ECG signals from ST Change dataset and 30 ECG signals
from WESAD dataset to detect stress. They used FFT (Fast Fourier Transform) and
spectrogram to gather 58 time domain data and 58 frequency domain data. The CNN-
LSTM model began with 124 x 124 x 3 sequential image data entered into the sequential
input layer. Then it was put into a sequential fold layer to be converted into an array
and passed to a 2D convolutional layer with 6 filters measuring 5 x 5. The first 2D
convolutional layer produced an output of 124 x 124 x 6. Then it was continued with
the BatchNormalization layer and forwarded to the MaxPooling layer with 2 x 2 filter
and 2 steps so that it produces an output size of 62 x 62 x 12. The second convolutional
layer had 12 filters measuring 3 x 3 and finally produces an output size of 31 x 31 X
12. Then normalization was carried out with sequential opening layers and the feature
vector is obtained with a flatten layer. Then the data from the flatten layer will be
received by the LSTM which has a value of 800 x 11532. Then it was continued with a
fully connected layer measuring 2 and then classified with softmax to determine stress or
non-stress conditions. The model achieved 94.8% accuracy for time domain and 98.3%
accuracy for frequency domain.

However, the deep learning model has become more complex to achieve better accuracy
with ECG signals. Therefore, one of the ways to achieve a simpler model without dropping
accuracy is to extract ECG signal to HRV data and make a simpler deep learning model
with it. Chandrasekaran et al. achieved 93% accuracy with HRV data using reservoir
computing [12]. Their study results with HRV data achieve 3% higher accuracy than deep
learning models with raw ECG signals.

Another HRV study also compared five different models for stress detection such as
k-NN, General Linear Model (GLM), Naive Bayes, Linear Discriminant Analysis (LDA),
Support Vector Machine (SVM), and random forest classifier [13]. The highest accuracy
was obtained by the random forest classifier of 75.1% and the highest accuracy after
feature selection was obtained by the SVM classification of 84.4%. The study claimed that
the usage of one ECG channel made stress detection with HRV appropriate. Therefore,
stress detection with HRV will be made a simpler model and easier to collect data through
wearable devices.

This study focused more on building a simpler deep learning model. To achieve that,
this study does feature extraction while using a deep learning model. Previous deep learn-
ing studies did not do feature extraction and made a model more complex and the previous
HRYV studies used machine learning to detect stress with ECG signals [6-11]. While some
studies used HRV data and still achieve a good result [12,13]. Therefore, this study will
be focused on building a deep learning model using HRV as the trained data.

3. Research Methodology. This study proposed a deep learning model that used HRV
as the input to detect stress. The model combined two methods such as CNN and LSTM.
HRV data was achieved from two domains namely frequency domain and time domain
which are already mentioned in Table 1. HRV data duration for this study would be
5 minutes per data which means one data consists of 5 minutes long of ECG signal
processing. Later this study also will use raw ECG data as the input to compare model
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TABLE 1. HRV features explanation

Variable |Units Description
SDNN ms |The standard deviation of all NN intervals
RMSSD s The square root mean of the sum of the differences be-

tween adjacent NN intervals

Time The standard deviation of the differences between adja-
) SDSD ms )
domain cent NN intervals

Number of pairs adjacent NN intervals differing by more
pNN50 % [than 50 ms divided by the total number of all NN inter-
vals in the entire recording

2 |'The variance of all NN intervals (=< 0.4 Hz)
VLF ms? |Power in range less than 0.04 Hz

2

2

Total power| ms

E
fizqrﬁ(;i?y LF ms* |Power in a range between 0.04 Hz and 0.15 Hz
HF ms® |Power in a range between 0.15 Hz and 0.4 Hz
LF/HF The ratio of LF/HF

results that use HRV data. The data will be split into 80% for training and 20% for
testing. The evaluation will consist of precision, recall, f-measure, and accuracy.

3.1. Dataset. This study uses a dataset called Wearable Stress and Affect Detection
(WESAD) which was gathered from 15 subjects. Subjects are specifically 17 graduate
students that were not pregnant, heavy smokers, mental disorder, chronic and cardiovas-
cular disease. However, two of the subjects had to be discarded because of malfunction
so the data consist of 15 subjects. The remaining 15 subjects had a mean age of 27.5 +
2.4 years with twelve of them being male and the other was female.

WESAD dataset contains high resolution physiological (ECG, EDA, EMG, RESP, and
TEMP) and motion (ACC) data sampled at 700 Hz from a chest-worn device and low-
er resolution data from a wrist-worn device [14]. This study uses ECG signals only to
detect stress. WESAD consists of three classes namely amusement, baseline, and stress.
However, this study only uses baseline and stress signals since the baseline class has more
data than stress and amusement data combined. Later the baseline class will be called
non-stress and the stress class will be called stress.

ECG signals from WESAD data can be extracted into HRV data. HRV data from
WESAD was acquired from Kaggle with 5 minutes extraction [15]. Data from Kaggle
have EDA data and HRV data from the SWELL dataset and WESAD dataset. However,
this study only uses HRV from the WESAD dataset. HRV extracted according to the
standard proposed by the Task Force of the European Society of Cardiology [16]. The
HRV data contain many features, but this study did not use every feature from the HRV
dataset. HRV features that were used for this study can be seen in Table 1.

3.2. Proposed model. The proposed model referenced CNN and LSTM which both
models mostly used for recent stress detection studies. The model will consist of a con-
volution layer as the input layer followed by the LSTM layer and fully connected with
the sigmoid to classify the stress. The proposed model did not use any pooling layer to
make every feature from the convolution layer received by the LSTM layer. The proposed
model had simpler architecture than other deep learning models. For instance, the pro-
posed model had 7.216 parameters while Deep ECGNet had 39.772 parameters [6]. The
total parameter itself can conclude that the proposed model has simpler architecture than
Deep ECGNet.

Later the proposed model will be compared to the CNN model without pooling layer
and LSTM model. CNN model will consist of two convolution layers followed by fully
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FiGURE 1. Proposed model architecture

TABLE 2. Detail of the proposed model architecture

Layer Detail Parameter
Input shape
ConvlD | filter = 45, kernel size = 1, activation = "relu’ 90
LSTM filter = 25, activation = 'relu’ 7100
Flatten 0
Dense filter = 1, activation = 'sigmoid" 26
Total parameter 7216

connected with sigmoid to classify stress. Meanwhile, the LSTM model consists of one
LSTM layer followed by a normal neural network, and a fully connected layer with a
sigmoid to classify stress. Figure 1 shows the proposed model architecture and Table 2
shows the detail of the proposed model architecture.

Other than comparing every model, every model will use four types of input to achieve
the best results to detect stress. Four type inputs consist of raw data, time domain,
frequency domain, both time domain, and frequency domain. Every type of input will
be compared to see which input got the best result to detect stress. However, raw ECG
data will get a lower result if we compare it with HRV data with the same model. Since
HRYV is the extraction from ECG signal, there is a huge possibility that HRV got a lower
result. To overcome this issue, another model customized from Deep ECGNet [6] will be
used to detect stress with raw ECG signals.

4. Results and Discussion. The proposed model is trained by the WESAD dataset
while the dataset is pre-processed as described in Section 3.1. The proposed model will
receive input from the convolution layer and be forwarded to the LSTM layer. Lastly,
the model will be fully connected and classified as stress or non-stress with the sigmoid.
The proposed model will be compared with the CNN model and LSTM model with four
types of data, i.e., raw ECG data, time domain data, frequency domain data, and both
time domain and frequency domain data. The result will be displayed in Table 4. The
result shows that the proposed model with both time domain and frequency domain had
the best result with 97.07% accuracy. While the other type of model gets a good result
with the same type of data.

Despite being trained by a different type of data, the time domain and frequency domain
got a good result with the proposed model. While another type of model trained with
the time domain data and frequency domain data got an accuracy between 75% to 84%.
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TABLE 3. Hyperparameter values in the experiment

Hyperparameter Values
batch_size : |10, 10.000]
batch_size 10.000 only used for raw ECG data
activation_function [relu, sigmoid|
epochs 50
loss binary_crossentropy
optimizer Adam (learning_rate = 0.0001)
metrics accuracy

TABLE 4. Experiment result with WESAD ECG data

Feature Model Precision | Recall | F1-score | Accuracy
Time domain CNN + LSTM 96.68 |96.98 | 96.82 97.07
+ CNN 88.58 | 88.74 | 88.66 89.52
Frequency domain LSTM 94.25 | 95.87 | 95.05 95.42
CNN + LSTM 78.87 |81.44| 80.14 82.01
Time domain CNN 71.02 | 74.09 | 72.52 75.44
LSTM 78.56 | 81.06 | 79.79 81.70
CNN + LSTM 82.30 |83.38| 82.84 84.31
Frequency domain CNN 75.93 | 77.84 | 76.87 79.07
LSTM 81.08 | 82.08 | 81.57 83.15
CNN + LSTM 53.12 | 5997 | 56.34 64.54
CNN 52.05 | 59.67 | 55.60 64.29
LSTM 52.56 | 60.08 | 56.07 64.46
Raw data CNN + LSTM

& Batch normalization 52.62 |61.58 | 56.75 64.76

CNN & Pool + LSTM
& Batch normalization 52.62 | 61.37 | 56.65 64.72

Time Domain & Frequency Domain
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FIGURE 2. Graphic result for HRV time domain and frequency domain data

The result between the time domain and frequency domain did not have many differences.
However, the time and the frequency domain type of data had 14% differences between
frequency domain data which show a better result than the time domain data.

The proposed model got an increase in accuracy of about 4% from Chandrasekaran
et al.’s model [12]. They used reservoir computing with WESAD as the dataset. They
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FIGURE 4. Graphic result for HRV frequency domain data

Raw Data
64.54 54.29 64.46 64.76 64.72
59.97 59.67 60.08 o128 6137
56.34 55.60 56.07 36.75 56.65
53.12 52.05 52.56 I 52.62 I 52.62 I
CNN + LSTM CNN LSTM CNN + LSTM & Batch CNN & Pool + LSTM
Normalization & Batch

Normalization

W Precision mRecall m Fl-score Accuracy

FIGURE 5. Graphic result for ECG raw data

unskew training data to make 1020 3-minute overlapping segments with each segment
having 6.6 seconds overlap with the following segment. While this study uses 5-minute
HRYV data from the dataset without an overlapping. The comparison between this study
and other studies using WESAD dataset is displayed in Table 5.

Although the time domain and frequency domain had a good result, raw ECG data
did not get a close result for the comparison. WESAD dataset had a much different ratio
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TABLE 5. Comparison with other studies using WESAD dataset

Model Signal Model Accuracy
Chandrasekaran et al. [12] , S-minute HRV ReserV(?lr 93%
with 6.6-second overlap computing
Hwang et al. [6] ECG CNN + LSTM | 64.72%
Proposed model 5-minute HRV CNN + LSTM | 97.07%

between baseline and stress data. Since raw ECG data was unprocessed WESAD data, raw
ECG data will get the same amount of baseline class and stress class. The unbalanced data
made lower result than other types of data. The customized Deep ECGNet model only got
64.72% with the pooling layer and 64.76% without the pooling layer. Since the WESAD
dataset only had one ECG channel, most of the previous deep learning studies with ECG
signals [7,8,10,11] cannot be compared to detect stress with the WESAD dataset. The
other deep learning study, DeepER Net [9] used ECG and RESP signal so it will not be
compared since this study only focused on using ECG signal. In the HRV study from
Giannakakis et al. [13], they compared machine learning techniques and did not build their
optimal machine learning as Chandrasekaran et al. [12] did. From this result, this study
proved that feature extraction is one of the most important steps to detect stress with
machine learning. Although deep learning did not focus on feature extraction, feature
extraction can become one of the alternatives to detecting stress with ECG signals.

5. Conclusion and Future Works. This study proposed a simpler CNN + LSTM
model for stress detection using ECG signals. The proposed model was evaluated on
ECG data in the WESAD dataset. The proposed model achieved the best result with
97.07% accuracy using HRV data. The result with raw ECG signal achieved lower result
from HRV signal because WESAD dataset did not have balance data for baseline and
stress class. From that result, this study concludes that feature extraction is one of the
most important steps to detect stress with machine learning. The study also suggested
doing feature extraction when using a dataset with one ECG channel such as the WESAD
dataset.

Future work for this study would be detecting stress with other types of physiological
signal such as EMG or RESP to detect stress; stress detection with the multimodal class
such as amusement, baseline, and stress; and detecting stress with their level such as high
stress, normal stress, or barely stress.
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