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Abstract. One examination method to support thalassemia diagnosis is a blood mor-
phological examination of the patient’s peripheral blood smear. However, manual analysis
of peripheral blood smears requires time, unique expertise, and expert eye fatigue. This
paper proposes a computer vision method using deep learning to assist experts in examin-
ing peripheral blood smears. The dataset consists of nine erythrocyte types that appear in
thalassemia patients. The image size normalization was conducted before the deep learn-
ing model used the image. Data augmentation was used to increase the number of data
in the datasets. The transfer learning approach is used to improve classification results.
The erythrocyte classification result using Alexnet and simple CNN has been compared.
The best performance of the Alexnet model reached 95.92% accuracy, 91.46% sensitivity,
and 99.48% specificity.
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1. Introduction. Several abnormal erythrocytes that appear on peripheral blood smears
can indicate certain diseases. One of them is thalassemia, a type of anemia that can be ge-
netically inherited. One examination method to support thalassemia diagnosis is a blood
morphological examination of the patient’s peripheral blood smears. Manual inspection
of peripheral blood smears requires a lot of time and special skills. Besides, manual ery-
throcyte examination is also affected by eyestrain from the observer. Therefore, we need
a way to help medical personnel examine erythrocytes in peripheral blood smears.

The computer vision technology method can help the process of examining erythro-
cytes. In this case, the computer will allow the observer to process and analyze the
patient’s peripheral blood cells to obtain clinically significant abnormal cells. Image of
peripheral blood cells were obtained from the microscope using a camera. The existing
processes include improving image quality, object segmentation, and object feature ex-
traction. Then proceed with the learning process with artificial intelligence.

Some examples of research related to computer vision in the medical field that has
reported are

• Automatic segmentation of overlapping cervical smear cells [1].
• Automated detection of retinal nerve fiber layer for glaucoma evaluation [2].
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• Analysis of shape, texture, and color characteristics for erythrocyte classification [3].
• Toolkits for cardiovascular research (CemrgApp) [4].
• Acute lymphoblastic Leukemia detection [5,6].
• Enhancement of Digital Imaging and Communications in Medicine (DICOM) brain
images [7].

• Retinopathy disease classification [8].
• Amniotic fluid segmentation [9].
• Dysarthria speech classification [10].

Deep learning is a learning method that is popularly used today. The advantage of
using deep learning is that there is no need to do a manual feature selection process. This
method will generate features automatically from the existing convolution layer. In the
medical field, the implementation of deep learning has been used in various medical cases,
for example, the white blood cell classification [11,12], red blood cell classification in cases
of sickle cell anemia [13,14], and lung pattern classification for interstitial lung diseases
[15]. Multi deep learning with the majority vote technique has been applied to diagnosing
COVID-19 on X-Ray images of the lungs by Fibriani et al. [16]. The combination of CNN
and hand-crafted features has been done by Zhou et al.; however, the results were not
significant [17].
Tyas et al. classified nine types of erythrocytes in thalassemia based on hand-crafted

features [3]. The features used are morphological, texture, and color features. The clas-
sifier used is MLP with one hidden layer. The experimental results show that combining
these three features provides the best performance at 98.11% for accuracy, 86.67% for
sensitivity, and 99.75% for specificity. However, the highest sensitivity is achieved when
shape features only are employed. In this case, the accuracy is 95.23%, the sensitivity is
92.69%, and the specificity is 99.40%. Deep CNN has been used by Xu et al. to classify
eight types of erythrocytes. The study conducted automatic erythrocyte segmentation
and separated overlap erythrocytes. The CNN architecture consists of 10 layers, includ-
ing three convolutional layers, three pooling layers, two dropout layers, a fully connected
layer, and an output layer. The mean accuracy of the classification results for eight types
of erythrocytes was 87.50% [13].
Alzubaidi et al. classified erythrocytes into three categories: circular or normal, elon-

gated or sickle cells, and other blood content classes. Their research used three types
of datasets and three architectural models. The dataset consists of single cell cropped
images. The first model has 40 layers with nine layers of convolution (3 series, six paral-
lel) followed by batch normalization and Rectified Linear Unit (ReLU) in each layer. The
second model has eight convolution layers (2 series, six parallel) and two fully connected
layers, while the third model has six convolution layers (2 series, four parallel) and two
fully connected layers. The accuracy obtained based on the proposed method is 99.54%
on the erythrocytesIDB dataset. The accuracy of the proposed model combined with the
multiclass SVM classifier is 99.98% on the erythrocytesIDB dataset, whereas the accuracy
obtained on the collected dataset is 98.87% [14].
The Alexnet with transfer learning model was used by Aliyu et al. to classify erythro-

cytes in sickle cell anemia [18]. There are 15 types of erythrocytes used in the study.
The performance obtained is 95.92% accuracy, 77% sensitivity, 98.82% specificity, and
90% precision. Quan et al. [19] proposed an Attentive Dense Circular Net (ADCN) for
classifying erythrocytes in malaria diseases. The comparison result of ADCN performance
and the CNN model’s performance has shown ADCN as superior to other CNN models.
It is necessary to recognize certain types of erythrocytes in certain medical cases. In

several previous studies, excellent performance has been obtained, but erythrocytes have
not been classified based on the actual type. On the other hand, studies that have classified
erythrocytes based on actual type can still be improved. This study classifies nine types of
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erythrocytes based on actual types from thalassemia cases using Alexnet and simple CNN.
This study’s contribution is to get the evaluation results according to the convolution
features for erythrocyte classification and obtain the best architecture for simple CNN and
Alexnet for erythrocyte classification. The advantage of this study is the improvement in
the accuracy and specificity of the classifier. The rest of this paper is organized as follows.
Section 2 describes the dataset and deep learning model used in this paper. Section 3
describes the experiment and result of the proposed method. Finally, Section 4 presents
the conclusion of this paper.

2. Proposed Methodology. This study compares the results of erythrocyte classifica-
tion using the Alexnet architecture and the simple CNN architecture. Some of the steps
carried out are preprocessing, data augmentation, and classification.

2.1. Dataset and preprocessing. The dataset used in this study is a dataset from Tyas
et al. [3]. The dataset consisted of 7108 single erythrocyte images from thalassemia, iron
deficiency anemia, and normal individuals. Images in the dataset [3] have diverse sizes.
Therefore, it is necessary to normalize the image size to 227 × 227. The process carried
out is shown in Figure 1. Based on the input image size (M × N), the first step is to add
zero paddings to the row or column to obtain the largest image size (M × M or N × N).
Then the image is converted into a size of 227× 227.

Figure 1. Preprocessing: Size normalization in the dataset

2.2. Data augmentation. Training a deep learning model on a more significant amount
of data can improve the model’s capabilities. In this study, we apply data augmentation
techniques. Data augmentation techniques modify the existing dataset’s image. Some
ways to be done in data augmentation are rotation, translation, reflection, scaling, and
brightness. In this study, data augmentation with translation and reflection techniques
was used.

2.3. Transfer learning using Alexnet. Alexnet has been trained using more than 1
million images. This model can classify images into 1000 object categories. By applying
the transfer learning method, we use Alexnet and then change the final layer as needed.
After that, retraining must be conducted using the new image dataset. The transfer
learning process is shown in Figure 2. The first step is to load a pretrain network, which
is a network that has been trained for classifying 1000 object classes. The network input
is an image, and the output is a label of the object in the image. The early layers of this
network learned the lower-level features of the image, while the final layers studied more
specific features. The next stage is replacing the final or last three layers as needed. The
last layers consist of a fully connected layer, a SoftMax layer, and a classification output
layer. In this study, the fully connected layer is adjusted to have the same size as the
number of new data classes (nine classes). The next step is to train the network using
the erythrocyte image train dataset and then classify the validation images and evaluate
their performance. Then we retrain the network using the training and the validation
data combined to improve the network and get maximum performance.
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Figure 2. Transfer learning using Alexnet

The Alexnet architecture used in this study is shown in Figure 3. The Alexnet input
is a grayscale image of 227 × 227 size. The model consists of four layers of convolution
(Conv) followed by the Rectified Linear Unit (ReLU) and batch normalization (Norm).
Then, the max-pooling layer is followed by the second convolutional layer, the max-pooling
layer again, and the third to the fifth layers of the convolution layer. After that, the fifth
convolutional layer’s output is forwarded to the max-pooling layer and becomes the input
for the Fully Connected (FC) layer. There are 3 FC layers and two dropout layers between
the FC layers to avoid overfitting. Detailed information regarding the filter size and stride
used for each layer is shown in Table 1.

Figure 3. Alexnet architecture

Table 1. Filter size and stride in Alexnet architecture

Name of layers Filter Size (FS) and Stride (S)
Input layer −

Conv1, ReLU1, Norm1 FS = 11 × 11, S = 4
Max Pooling FS = 3 × 3, S = 2

Conv2, ReLU2, Norm2 FS = 5 × 5, S = 1
Max Pooling FS = 3 × 3, S = 2
Conv3, ReLU3 FS = 3 × 3, S = 1
Conv4, ReLU4 FS = 3 × 3, S = 1
Conv5, ReLU5 FS = 3 × 3, S = 1
Max Pooling FS = 3 × 3, S = 2
FC6, ReLU6 4096

Drop6 Learning rate: 0.5
FC7, ReLU7 4096

Drop7 Learning rate: 0.5
FC8 9

Softmax and classoutput 9 classes
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2.4. Classification using simple CNN. The second architecture is simple CNN archi-
tecture, which is simpler than Alexnet, shown in Figure 4. The architecture consists of
three convolutional layers, followed by two pooling layers and one fully connected layer.
Detailed information regarding the filter size and stride used for each layer is shown in
Table 2.

Figure 4. Simple CNN architecture

Table 2. Filter size and stride in simple CNN architecture

Name of layers Filter Size (FS) and Stride (S)
Input layer −

Conv1, Norm1, ReLU1 FS = 3 × 3, S = 1
Max Pooling FS = 2 × 2, S = 2

Conv2, Norm2, ReLU2 FS = 3 × 3, S = 1
Max Pooling FS = 2 × 2, S = 2

Conv3, Norm3, ReLU3 FS = 3 × 3, S = 1
FC8 9

Softmax and classoutput 9 classes

3. Result and Discussion. This section describes the evaluation and analysis of ery-
throcyte classification performance.

3.1. Parameter evaluation. This study evaluated the classification result based on
accuracy, sensitivity, and specificity. The classification results are shown in the confusion
matrix, and the accuracy (a), sensitivity (b), and specificity (c) values can be calculated
based on Equations (1)-(3), where TP is a true positive, TN is a true negative, FP is a
false positive, and FN is a false negative.

a =
TP + TN

TP + FP + FN + TN
(1)

b =
TP

TP + FN
(2)

c =
TN

TN + FP
(3)

3.2. Performance analysis. This study split the data into 70% for the training process
and 30% for the testing process. The results of the erythrocyte classification based on
AlexNet architecture are shown in Table 3. The maximum accuracy is 96.16%, and the
maximum specificity is 99.50% obtained from Alexnet (No. 4) with a learning rate of 1e-4
and epoch of 100. The maximum sensitivity is 91.46%, obtained from Alexnet (No. 2) with
a learning rate of 1e-3 and epoch of 100. The accuracy of Alexnet No. 2 is 0.24% lower
than No. 4, the specificity of Alexnet No. 2 is 0.02% lower than No. 4. In comparison,
the difference in sensitivity values for model No. 2 is 4.09% higher than model No. 4.

Table 4 shows the classification results using simple CNN. The best performance is
obtained when the learning rate and epoch are 1e-3 and 100, respectively. The mod-
el achieves 88.66% accuracy, 75.87% sensitivity, and 98.52% specificity. The results for
simple CNN show that a lower learning rate gives lower classification performance. The
experiments showed that a lower learning rate did not improve classification performance.
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Table 3. Classification performance based on Alexnet transfer learning

No Learning rate Epoch Accuracy (%) Sensitivity (%) Specificity (%)
1 1e-3 80 94.98 88.50 99.36
2 1e-3 100 95.92 91.46 99.48
3 1e-4 80 95.50 88.81 99.41
4 1e-4 100 96.16 87.37 99.50
5 1e-5 80 92.78 82.67 99.07
6 1e-5 100 94.19 84.99 99.25
7 1e-6 80 86.26 66.11 98.15
8 1e-6 100 89.50 76.14 98.59

Table 4. Classification performance based on simple CNN

No Learning rate Epoch Accuracy (%) Sensitivity (%) Specificity (%)
1 1e-3 80 87.90 75.07 98.37
2 1e-3 100 88.66 75.87 98.52
3 1e-4 80 85.70 73.89 98.14
4 1e-4 100 85.84 74.30 98.16
5 1e-5 80 85.00 69.44 98.02
6 1e-5 100 83.45 65.17 97.84
7 1e-6 80 77.82 56.29 97.08
8 1e-6 100 78.80 58.96 97.20

A too-small learning rate affects a longer training time. However, in some instances, it can
cause training to stop in solutions that are not optimal, so that the model’s performance
is also not optimal [20].
The experimental result shows that the transfer learning approach gives better results

than building a model from scratch. Additional layers of the architectures improve the
classification results. Alexnet with more layers provides better performance when com-
pared to the simpler architecture in the second experiment. Based on Table 4, model
No. 2 and model No. 4 provide good performance. Table 5 and Table 6 show the confu-
sion matrix with sensitivity and specificity values for each class. Table 5 uses the Alexnet
architecture model No. 2, while Table 6 uses the Alexnet architecture model No. 4. The

Table 5. Confusion matrix of classification result using Alexnet model No. 2

Class/ Output class
Total

Sensitivity Specificity
Erythrocyte class O TD P N ST T H A SP (%) (%)

Target
class

1 O 332 1 1 10 3 5 7 3 1 363 91.46 99.66
2 TD 1 622 0 0 0 0 0 0 0 623 99.84 99.93
3 P 2 0 5 0 0 0 0 0 0 7 71.43 99.95
4 N 0 0 0 414 1 1 10 1 1 428 96.73 98.48
5 ST 2 0 0 10 98 5 0 0 0 115 85.22 99.70
6 T 0 0 0 0 1 251 1 0 2 255 98.43 98.99
7 H 1 0 0 4 1 4 57 0 0 67 85.07 99.03
8 A 0 0 0 0 0 0 1 105 0 106 99.06 99.80
9 SP 0 0 0 2 0 4 1 0 162 169 95.86 99.80

Total 2133
Mean 91.46 99.48

Accuracy (%) 95.92
Note: oval cell (O); teardrop cell (TD); pencil cell (P); normal cell (N); stomatocyte (ST); target cell
(T); hypochromic (H); acanthocyte (A); spherocyte (SP).
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Table 6. Confusion matrix of classification result using Alexnet model No. 4

Class/ Output class
Total

Sensitivity Specificity
Erythrocyte class O TD P N ST T H A SP (%) (%)

Target
class

1 O 354 1 1 3 0 2 2 0 0 363 97.52 99.21
2 TD 1 622 0 0 0 0 0 0 0 623 99.84 99.74
3 P 2 2 3 0 0 0 0 0 0 7 42.86 99.95
4 N 3 0 0 411 0 2 10 1 1 428 96.03 99.00
5 ST 7 1 0 11 77 17 0 1 1 115 66.96 100.00
6 T 0 0 0 0 0 254 1 0 0 255 99.61 98.56
7 H 1 0 0 3 0 5 57 1 0 67 85.07 99.32
8 A 0 0 0 0 0 0 1 105 0 106 99.06 99.85
9 SP 0 0 0 0 0 1 0 0 168 169 99.41 99.90

Total 2133
Mean 87.37 99.50

Accuracy (%) 96.16
Note: oval cell (O); teardrop cell (TD); pencil cell (P); normal cell (N); stomatocyte (ST); target cell
(T); hypochromic (H); acanthocyte (A); spherocyte (SP).

sensitivity of the classification of oval cells, teardrop cells, normal cells, target cells, acan-
tocyte cells, and spherocytes cells in Table 5 and Table 6 are above 90%. The sensitivity
of models No. 2 and No. 4 in classifying hypochromic cells is 85.07%.

Furthermore, the sensitivity of model No. 2 in recognizing pencil cells was 71.43%, while
model 4 was 42.86%. The sensitivity of model No. 2 in identifying stomatocyte cells is
also 18.26% higher than model No. 4. The recognition of pencil cells and stomatocyte
cells in model No. 2 is superior to model No. 4. The differences in total accuracy, average
specificity, and average sensitivity of models No. 2 and No. 4 are 0.24%, 0.02%, and
4.09%. Therefore, Alexnet model No. 2 can be chosen as the best solution for erythrocyte
classification.

An example of erythrocyte classification based on the Alexnet model No. 2 is shown
in Figure 5. The numbers above the cell represent the class code and the prediction

Figure 5. Example of classification result based on Alexnet (model No. 2)
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probability. Consider only the cells in the first column. The first row says that the cell is
predicted as the target cell (6) with a probability of 77.4%. The second row says the cell
is predicted as an oval cell (1) with 100% probability. The third and fourth rows show
that the cells are predicted as the hypochromic cell (7) and spherocytes cell (9) with the
likelihood of 64.9% and 100%, respectively. Although the probability is not 100%, the
cells are predicted correctly.
Classification using hand-crafted features has been carried out in previous study [3].

Table 7 compares the performance results from the previous study with this study based
on the same dataset’s highest sensitivity performance. The proposed method’s accuracy
and specificity (Alexnet No. 2) are slightly superior to performance of [3]. However, the
sensitivity of [3] was 1.23% higher than the proposed method. That condition shows
that there is a chance that the erythrocyte classification using the deep learning method
produces better performance than [3]. Therefore, it is necessary to increase the number
of data and obtain balanced data for each class.

Table 7. Comparative analysis of erythrocyte classification in the same dataset

Method Accuracy (%) Sensitivity (%) Specificity (%)

MLP [3] 95.23 92.69 99.40

Alexnet (No. 2) 95.92 91.46 99.48

Simple CNN (No. 2) 88.66 75.87 98.52

4. Conclusions. This study aims to classify erythrocytes based on the characteristics
resulting from the convolutional layer. Based on the research results, we can conclude
that the Alexnet architecture with the transfer learning method produces better perfor-
mance than the simpler CNN architecture. The best performance obtained from Alexnet
is 95.92% for accuracy, 91.46% for sensitivity, and 99.48% for specificity. The proposed
method shows improved performance, although not significantly. This research indicates
that the deep learning method may improve erythrocyte classification results considerably
by providing a balanced dataset.
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