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Abstract. This paper proposes a design method for adaptive disturbance observers.
Adaptive disturbance observers are observers that can estimate and control unknown pa-
rameters and disturbances. They enable the attainment of smooth robotic motion control
even if there exist exogenous disturbances and robotic parameter uncertainties. In this
paper, we newly derive a design method for adaptive disturbance observers based on the
fundamental design equation called the Friedland-Tacker equation. Furthermore, we con-
sider an estimation problem of a single-link robotic arm and demonstrate the advantage
of the proposed observer in comparison with the conventional adaptive observer.
Keywords: Adaptive observer, Disturbance estimation, Friedland-Tacker equation, Si-
nusoids, Pendulum robot, Auxiliary observer gain

1. Introduction. When parameters such as the position of the center of gravity or the
moment of inertia are unknown, the control of a mechanical system such as a robot arm
requires control to estimate these parameters. This control is called adaptive control,
and the control of mechanical systems is practical when adaptive observers are used. An
adaptive observer is an observer that can estimate the values of unknown parameters,
even if the system contains them. When controlling mechanical systems, it is often diffi-
cult to accurately calculate mechanical parameters such as the center of gravity and
moments of inertia. In addition, the differentiation of the position data from encoders or
resolvers may be prohibitive because it amplifies the measurement noise. In dealing with
those situations, it is promising to employ the adaptive observers, which can estimate the
unknown parameters and velocity.

Among the mechanical systems, multi-joint robots are often subject to unknown dis-
turbances such as mutual interference forces between the links and frictional forces at
the joints, making it difficult to achieve high-precision movements. The control perfor-
mance of a robot also depends on its model. Inverse dynamics-based methods are unable
to obtain sufficient control performance because it is difficult to accurately calculate all
parameters. Therefore, it is essential to establish mechanisms for estimating the unknown
disturbances and mechanical parameters simultaneously to achieve better control perfor-
mance. It is also significant to consider that the motion of the mechanical systems is
described by nonlinear differential equations.

Adaptive observers for multi-input-multi-output (MIMO) linear time-varying systems
have been developed in [6, 7]. Some results on nonlinear systems have also been reported in
[6, 12, 13]. A powerful way of designing nonlinear observers is to linearize a given nonlinear
system exactly and then construct a linear observer for the resulting linear system [4, 5].
In previous research [3], a systematic design method of adaptive observers for the linear
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time-varying systems is derived after extending the approach in [7, 9, 11]. The systematic
design method of adaptive observers also serves as the basis for the study of nonlinear
systems, such as those reported in [12, 13]. This design method has the possibility of
being applied to the broad classes of nonlinear systems if combined with various exact
linearization methods, but it could not cope with time-dependent disturbances such as
sinusoids. In [14], the nonlinear disturbance observer was used to accurately estimate the
size of the uncertainty disturbance, further improving the accuracy of the manipulator
control system. However, the nonlinear disturbance has not been properly considered
using the unknown parameters. In [1, 8], the fundamental design equations developed
by Friedland and Tacker are proposed and enable estimation of the unknown constant
parameters and the time-variant disturbances for a linear system, but not in a nonlinear
system.
Inspired by the aforementioned articles, this paper’s designs focus on the previous stud-

ies [3, 9] to clarify a design method for adaptive observers having disturbance estimation
capability. Specifically, we newly employ a fundamental design equation along [2]. This
design equation is named the Friedland-Tacker equation after [1, 8], and enables simulta-
neous estimation of the unknown constant parameters and time-variant disturbances.
For verification, we apply the proposed design method to an adaptive disturbance

estimation problem for the pendulum robot in [9]. We illustrate that the proposed design
method is more advantageous than the previous design method [3, 9]. This paper is
organized as follows. Section 2 shows how to design the adaptive disturbance observer
based on the Friedland-Tacker equation [2]. The relationship with the previous design
method [3, 9] is also noted. In Section 3, the proposed design method is applied to the
adaptive disturbance estimation for the pendulum robot. The advantage of the proposed
adaptive disturbance observer is verified by the numerical simulations. In Section 4, we
give concluding remarks.

2. Adaptive Disturbance Observer.

2.1. Problem formulation. The state-space equations to be estimated by the adaptive
observer are expressed as follows:

ẋ(t) = A(t)x(t) + B0(t)r(t) +B2(t)u(t), (1)

y(t) = C2(t)x(t) +D20(t)r(t), (2)

where x(t), u(t), and y(t) denote the state, input, and output of the controlled object,
respectively. The exogenous input r(t) is introduced to be the vector consisting of constant
unknown parameters and time-dependent disturbance. The system matrices A(t), B0(t),
B2(t), C2(t), and D20(t) are assumed to be piecewise continuous and bounded in time.
Specifically, r(t) is assumed to be generated by the linear time-invariant exosystem

ẋm(t) = Amxm(t), (3)

r(t) = Cmxm(t). (4)

The adaptive observer problem is formulated as estimating x(t) and xm(t) simultaneously
based on the information on u(t) and y(t).
In the previous research [3, 9], r(t) represents only the unknown constant parameter θ.

This means that the system matrices Am and Cm are restricted to be Am = 0 and Cm = I,
and therefore, the state-space equations of the controlled object have the following form

ẋ(t) = A(t)x(t) +B0(t)θ +B2(t)u(t),

y(t) = C2(t)x(t) +D20(t)θ.

2.2. Proposed design method. Combining Equations (1)-(2) and (3)-(4), we obtain
the augmented system
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ẋ(t)
ẋm(t)

]
= A[m](t)

[
x(t)
xm(t)

]
+B

[m]
2 u(t), (5)

y(t) = C
[m]
2 (t)

[
x(t)
xm(t)

]
, (6)

where the system matrices are constructed by

A[m] :=

[
A(t) B0(t)Cm

0 Am

]
, B

[m]
2 :=

[
B2(t)
0

]
, C

[m]
2 (t) :=

[
C2(t) D20(t)Cm

]
.

The proposed adaptive disturbance observer is derived as the observer for the augmented
system presented previously[

ẋ(t)
ẋm(t)

]
= A[m](t)

[
x(t)
xm(t)

]
+ L[m](t)

(
C

[m]
2 (t)

[
x(t)
xm(t)

]
− y(t)

)
. (7)

To determine the observer gain L[m] for the augmented system, we employ the following
Friedland-Tacker equation [2]:

Ṫ (t) = (A(t) + L(t)C2(t))T (t)− T (t)Am + (B0(t) + L(t)D20(t))Cm, (8)

where L(t) is an arbitrary observer gain stabilizing for the matrix pair (A(t), C2(t)). By
using solution T (t) of (8), we define the auxiliary observer gain

Lm(t) := −eAmtΓeA
T
mt (C2(t)T (t) +D20(t)Cm)

TΣ, (9)

where Γ and Σ are positive definite matrices. Finally, the observer gain L[m](t) for the
augmented system (5)-(6) is constructed as follows:

L[m](t) =

[
L(t) + T (t)Lm(t)

Lm(t)

]
.

When the exogenous input r(t) represents the unknown constant parameter (i.e., Am =
0 and Cm = I), the Friedland-Tacker equation (8) reduces to equation

Υ̇(t) = (A(t) + L(t)C2(t))Υ(t) + (B0(t) + L(t)D20(t))

for the variable Υ(t), which is employed in the previous research [3, 9]. It is confirmed
formally that the solutions T (t) and Υ(t) are related by

Υ(t) = T (t)eAmt.

3. Design Example.

3.1. Simulation configuration. The pendulum robot considered in [4, 9] is depicted in
Figure 1. We illustrate the features of the proposed design method through the adaptive
disturbance estimation for the pendulum robot.

The equation of motion of the pendulum robot is given by

Iq̈(t) +
1

2
mgl sin q = d(t) + u(t), (10)

where q(t) is the angle of rotation of the arm, u(t) is the arm torque, m is the arm
mass, l is the arm length, I is the moment of inertia, and g is the acceleration of gravity.
In contrast with [4, 9], Equation (10) involves the disturbance torque d(t) affecting the
pendulum robot, which is assumed to be the sinusoid with the known angular frequency ω.
We also assume that the mechanical parameters are not known and denote the unknown
parameters by θ1 := mgl/(2I), θ2 := 1/I. By setting x1(t) := q(t), x2(t) = q̇(t), and
y(t) = q(t), the state-space equations are formulated as follows:

ẋ1(t) = x2(t) (11)

ẋ2(t) = −θ1 sin y(t) + θ2u(t) (12)
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y(t) = x1(t) (13)

By adding the disturbance torque d(t), we can rearrange the state-space equations as
follows: [

ẋ1(t)
ẋ2(t)

]
=

[
0 1
0 0

] [
x1(t)
x2(t)

]
+

[
0 0

− sin y(t) u(t)

] [
θ1
θ2

]
+

[
0
1

]
d(t), (14)

y(t) =
[
1 0

] [x1(t)
x2(t)

]
. (15)

We define the exogenous input r(t) as the vector r(t) :=

 θ1
θ2
d(t)

 of the unknown param-

eters and disturbance. This r(t) is generated by the exosystem (3)-(4) with the specific
system matrices

Am :=


0 0 0 0
0 0 0 0
0 0 0 −ω
0 0 ω 0

 , Cm :=

1 0 0 0
0 1 0 0
0 0 0 1

 .

With the presented definition of r(t), it is seen that the state-space equations (14)-(15)
are in the form of (1)-(2) with the specific system matrices

A(t) :=

[
0 1
0 0

]
, B0(t) :=

[
0 0 0

− sin y(t) u(t) 1

]
, B2(t) :=

[
0
0

]
, C2(t) :=

[
1 0

]
,

D20(t) :=
[
0 0 0

]
.

Figure 1. Model of pendulum robot

3.2. Design results. In this subsection, we tune the design parameters for the adaptive
disturbance observer and demonstrate the resulting adaptive disturbance estimation. The
mechanical parameters are set to the arm mass m := 1(kg), the arm length l := 1(m),
the moment of inertia I := 0.5(kg ·m2) and the acceleration of gravity g := 9.81(m/s2).
The disturbance d(t) is set to d(t) := sin 3t, and the control input u(t) is set to u(t) :=
5 (sin 2t+ cos 20t). The observer gain L(t) for the matrix pair (A(t), C2(t)) is set to L(t) :=
−
[
1 1

]
. The weight matrices Γ and Σ are set to Γ := diag

[
2 2 1 1

]
and Σ := 10,

respectively.
First, we compare the proposed design method with the previous design method [9]. The

state estimation error resulting from the conventional design method is depicted in Figure
2(a). The amplitudes of the state estimation errors continue to oscillate. This is expected
because the conventional design method does not consider the continual perturbation
caused by the sinusoidal disturbance d(t). In contrast, as depicted in Figure 2(b), the
state estimation error resulting from the proposed design method converges to zero quickly.
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(a) Previous design method [9] (b) Proposed design method

Figure 2. State estimation error of adaptive observers

(a) Σ = 10 (b) Σ = 1000

(c) Σ = 0.1

Figure 3. State estimation error of adaptive observers

This is because the proposed design method estimates the state variables by counteracting
the adverse effect of the disturbance.

Second, we examine how the estimation errors of the unknown parameters and dis-
turbance vary according to the weight parameter Σ. By changing the value of Σ as
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Σ = 10, 1000, 0.1, the corresponding estimation errors are depicted in Figures 3(a), 3(b),
and 3(c), respectively. By comparison with Figures 3(a) and 3(b), it is observed that the
convergence of the estimation errors is accelerated by increasing the value of Σ. On the
other hand, by comparison with Figures 3(a) and 3(c), it is observed that the conver-
gence of the estimation errors is slowed by decreasing the value of Σ. We note that the
magnitude of the auxiliary observer gain Lm(t) is proportional to Σ. Hence, from those
numerical simulations, it is concluded that the larger auxiliary observer gains result in
the faster convergence of estimation errors.

4. Conclusion. In this paper, we proposed a method for designing an adaptive observ-
er with disturbance estimation capability. In Section 2, it was shown how to design the
adaptive disturbance observer based on the Friedland-Tacker equation [2]. The relation-
ship with the previous design method [3, 9] was also noted. In Section 3, the proposed
design method was applied to the adaptive disturbance estimation for the pendulum ro-
bot. The advantage of the proposed adaptive disturbance observer was verified by the
numerical simulations. In addition, a system verification of the observer weight parame-
ter Σ was conducted, and its performance was discussed. The change in the value of the
observer weight parameter Σ showed that an increase in the auxiliary observer gain Lm(t)
also increases the quick-response characteristics of the system. In future research, we will
enhance the proposed design method toward adaptive disturbance estimation for mobile
vehicles such as wheelchairs.
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