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Abstract. Nonlinear optimization is an essential problem in engineering applications,
where the global optima are expected to be obtained through numerical optimization algo-
rithms, and the gradient-based methods are the common choices. However, many gradient-
based methods often converge to local minima, whereas the global optima cannot be guar-
anteed in some application problems. In this paper, a multi-point search scheme combin-
ing the global and local search techniques is investigated to improve the global convergence
performance of numerical optimization. In the proposed search scheme, the candidate
solutions of multiple individuals are updated parallelly, where a primary individual corre-
sponds to point search for global optima, while the auxiliary individuals are used to find
appropriate search regions and perturbations are added to make the candidate solutions
escape from local minima. Moreover, the search information is shared among all the indi-
viduals. The numerical simulation examples show that the proposed algorithm has better
global convergence performance than the conventional local search methods.
Keywords: Nonlinear optimization, Gradient-based algorithm, Multi-point search, Glo-
bal convergence

1. Introduction. Optimization is an essential issue in all engineering disciplines since
many engineering problems are treated as mathematical parameter or structure optimiza-
tion of loss functions. For example, in system identification [1, 2, 3, 4], signal processing
[5, 6, 7], control systems [8, 9, 10], and recently notable machine learning and data-driven
applications [11, 12], the system performance is often evaluated by quadratic criteria of
loss functions to evaluate error signal, mathematical model structure and parameters, and
then system design is executed through searching criteria’s minima.

Following categories of optimization techniques are usually applied in practical applica-
tions. a) Direct search algorithms, such as simplex search method [13], and Hooke-Jeeves
method [14], are the simplest choices and easily to be implemented for smooth loss func-
tions. However, the direct search algorithms usually have slow convergence, and are hard to
be applied for complicated problems. b) Gradient-based algorithms apply gradients given
by analytic derivatives of loss functions with respect to the parameter vector, or by ap-
proximation of finite difference techniques to determine the parameters’ changing direction
[15, 16]. The existing gradient-based algorithms include linear optimization methods such
as least squares (LS), nonlinear optimization methods distinguished by different choices
for scaling and rotation of the gradients. The well-known gradient-based algorithms are
steepest decent method (SD), Newton’s method, Gauss-Newton method, quasi-Newton
method, conjugate gradient method, and Levenberg-Marquardt method [1, 17]. They are
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the most common and important nonlinear optimization techniques; however, their solu-
tion may fall down into a local minimum close to the point where the optimization starts.
As a result, the gradient-based algorithms are local searching schemes, which cannot
guarantee global optima [1]. c) Nonlinear global optimization techniques try to find the
global optima from random starts in simulated annealing (SA), chaotic method [18], or
a population of individual candidates are parallelly searched in evolutionary algorithms
(EA), genetic algorithms (GA), particle swarm optimization (PSO) [3, 19, 20, 21, 22],
and ant colony optimization (ACO) [23]. d) Machine learning algorithms try to extract
information by combination of statistical techniques and optimization methods [11]. How-
ever, the main drawback in global optimization methods and machine learning is the huge
computational demand, hence some trade-off is required between the searching range for
global convergence and the computational complexity, while a potential trade-off is to
combine global search techniques with local approaches [1].
A multi-start local search approach has been considered as the combination of glob-

al and local search techniques, and then the number of start points and the associated
convergence probability are discussed [24]. Furthermore, a multi-start based Levenberg-
Marquardt method has been applied in system identification of a closed-loop system
operated in a feedback controller, where the numerical condition of data matrices is so
poor that it is fragile to the interference and noise terms [25]. With aid of multi-start,
the performance of global convergence has been largely improved, whereas sometimes
the conventional gradient-based methods still converge to local minima. On the other
hand, notice that in multi-start methods, the search process from each start is common-
ly conducted independently, and less information on search results is shared with the
searching procedure started from other points. Inspired by the idea of information shar-
ing with the other individuals in PSO, a parallel search scheme using multi-point rather
than multi-start is proposed in this paper to improve both the convergence performance
and efficiency of the local search process. The highlight of this work is that among the
individuals, an individual corresponds to point search while the others are used to find
appropriate search regions to make the candidate solutions escape from local minima, and
the region information is shared among all the individuals.
The rest of the paper is organized as follows. In the next section, the main prelimi-

naries for local and global optimization are reviewed. In Section 3, the multi-point based
optimization algorithm is proposed, and the search procedure is illustrated; furthermore,
the application in system identification is discussed in Section 4. The numerical examples
are illustrated, and some comparison with the other optimization algorithms to demon-
strate the effectiveness of the proposed algorithm are given in Section 5. Finally, Section
6 summarizes the conclusion and the future research work to deal with more complicated
problems.

2. Preliminaries. The common local and global optimization methods are reviewed in
this section.

2.1. Information criterion and loss function. A criterion defines what to be opti-
mized in mathematical description. For example, in system identification the criterion is
often a quadratic loss function of error signal

f(x) =
1

2(t2 − t1)

t2−1∑
t=t1

e2(t) (1)

to evaluate the quality of constructed system model, where e(t) is an error signal defined
as the difference between the system output and the model output determined by the
model parameter vector x, and t is the normalized instant, while in some control systems,
the error signal may be an error between the desired reference and the plant output,
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and the power of control input is often included in the criterion to reduce the energy
consumption. Moreover, some constraints may also be added to the criterion function,
where optimization becomes constrained problem. Without loss of generality, let the loss
function be denoted as f(x), where optimization searches a solution x∗ such that

x∗ = argmin
x

f(x). (2)

In the nonlinear optimization problems, besides the global optima, the nonlinear func-
tions, such as Matlab peaks function, and Goldstein-Price function shown in Figure 1,
often have several local minima, whereas in most of applications the global convergence
is highly desired.

*
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Figure 1. Illustration of local minima of Matlab peaks function (left) and
Goldstein-Price function (right). ∗: Global minima; ×: Local minima.

2.2. Gradient-based local optimization methods. In nonlinear optimization, no an-
alytic solution is available, and the numerical solutions are searched by iterative compu-
tation. Assume that in the kth iteration, the solution is updated from xk to xk+1, while

the gradient is obtained by gk = f ′(xk) = df(x)
dx

∣∣∣
x=xk

analytically, or approximated by

finite difference techniques [15, 16]. The gradients indicate the updating directions where
gk → 0 at the optima. Then the new solution is updated by

xk+1 = xk − µkqk, qk = Rkgk, (3)

where µk is a step size or a learning rate for the iteration computation, and Rk is a
rotating and scaling matrix with respect to the gradient gk. Rk has different choices in
the gradient-based local optimization methods. The simplest choice is Rk = I in SD
method, whereas it is defined as Rk = H−1

k , where Hk is Hessian matrix calculated by
the 2nd order derivative of Hk = f ′′(xk) in Newton’s method, or the approximation

Hk =
1

t2 − t1

t2−1∑
t=t1

de(t)

dx

(
de(t)

dx

)T

+ αI (4)

at x = xk corresponding to quadratic loss function of the mean square error e2(t) with-
out a regularization term, i.e., α = 0 in Gauss-Newton method, and with the positive
regularization term α ̸= 0 in Levenberg-Marquardt method.

On the other hand, in high-dimension problems, the computational complexity is re-
duced by an approximation of Broyden-Fletcher-Golfarb-Shanno (BFGS) formula

Rk+1 =

(
I − ∆xk∆gT

k

∆xT
k∆gk

)
Rk

(
I − ∆xk∆gT

k

∆xT
k∆gk

)T

+
∆xk∆xT

k

∆xT
k∆gk

, (5)
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in qausi-Newton method, where ∆xk = xk+1−xk, ∆gk = gk+1−gk [1, 15, 17]. Moreover,
the conjugate gradient method reduces the computational complexity, where the conjugate
gradient qk is a direction of descent with momentum given by

qk = gk −
gT
k gk

gT
k−1gk−1

qk−1. (6)

More details of gradient-based optimization can be found in optimization textbooks.
As mentioned before, the gradient-based methods update the solutions following the

direction associated with the gradient gk. When ∥gk∥2 < εg, where ∥ · ∥2 is an L2 norm,
εg is a small positive number that indicates the threshold of local optima, the solution
is considered as that it converges to the minimum in the search region around the start
point’s neighborhood, and hence the gradient-based methods are the local search tech-
niques, where the global convergence cannot be guaranteed. If the global minima are
strongly desired, some global optimization techniques should be considered.

2.3. Global optimization methods. For global convergence, most of the global op-
timization methods attempt to cover the regions of optima’s neighborhood as many as
possible. Multi-start, perturbation and multi-individual schemes are commonly used in
global optimization.
SA method, and the methods in [24, 25] use multi-start scheme, where the search

procedures are repeated from different start points. It is expected that at least one of the
start points is within the neighborhood of global minima, clearly the more start points, the
better global convergence performance is, but the heavier computational load is required.
On the other hand, to make the solution escape from the local minima, the perturba-

tion scheme adds some perturbation into the candidate solution update in (3) [18]. The
additive perturbation level and frequency should be the trade-off between the ability to
escape from the local minima and the convergence speed.
Unlike multi-start scheme, the multi-individual schemes such as GA, PSO, ACO up-

date a set of solution candidates parallelly. Different from the gradient-based methods
that update the solutions following gradient direction, the global optimization methods
introduce probability operation into the search procedure to make the search region not
be restricted to local minima; however, it often deteriorates the computational efficiency.
Therefore, it is desired to combine the global optimization techniques with gradient for
better global convergence as well as lower computational complexity [1, 21]. Inspired by
this idea, a multi-point search scheme is investigated where the point search for global
optima is combined with region research to improve the probability of global convergence.

3. Multi-Point Search Based Optimization Algorithm. In the new multi-point
search based optimization, a set of candidate individuals are updated parallelly. The in-
dividuals are expected to cover the convergence regions of the optima as many as possible,
each individual’s local searching uses the gradient to reduce the computational complexity,
and information sharing among the individuals may avoid the redundant computation.

3.1. Initial candidate solutions. Assume that M individuals are used in the multi-
point search based optimization and let the iteration number be k = 0. The individuals’

initial values x
(m)
0 , m = 1, 2, . . . ,M are chosen randomly. Find the m∗th individual whose

value of loss function is the smallest one among f
(
x
(m)
0

)
for m = 1, 2, . . . ,M , then

exchange the 1st with m∗th individuals, and hence x
(1)
0 has the smallest value of loss

function among the M candidates. Let the 1st individual be the primary candidate whose
solution is corresponding to point search for global optimum, while the others be the
auxiliary ones corresponding to region search to avoid local minima.

Add the candidate solutions x
(1)
0 , . . . ,x

(M)
0 into the candidate history record X.
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3.2. Gradient for local searching. In the kth iteration, the candidate solutions are

updated from x
(m)
k to x

(m)
k+1. It is expected to utilize a local search algorithm with high

convergence rate for the primary individual to find the optima quickly, while the algorithm
with considerable low computational complexity for auxiliary individuals. For example,
the candidate solution of primary individual may be updated by Newton’s method if the
loss function has the 2nd order derivative in the convex region, or Gauss-Newton method
for a quadratic loss function. As for the auxiliary candidates, quasi-Newton method,
conjugate method or steepest decent method can be used.

3.3. Information sharing. Let the individual number m∗ be given by

m∗ = argmin
m

f
(
x
(m)
k+1

)
. (7)

If m∗ ̸= 1, exchange the 1st individual and the m∗th. Then, among the exchanged candi-

date solutions, x
(1)
k+1 is the powerful candidate for the next iteration.

Furthermore, if the values x
(2)
k+1, . . . ,x

(M)
k+1 of auxiliary candidates are very close, i.e., if

the solution of the mth auxiliary candidate fulfills∥∥∥x(m)
k+1 −X

∥∥∥
2
< εx, (8)

where εx is a very small positive number, x
(m)
k+1 is regarded as falling into the same local

minimum recorded in X, and should be regenerated in the perturbation step to escape
from the local minima. Otherwise, add the candidate solutions into record X.

3.4. Perturbation of auxiliary candidates. Perturbations are added to the auxiliary
candidates under the following conditions.

1) When the mth auxiliary individual’s gradient
∥∥∥g(m)

k

∥∥∥
2
< εg, the solution can be

regarded as that x
(m)
k+1 converges to the local minimum, and then x

(m)
k+1 is replaced by x

(m)
k+1+

p
(m)
k+1, where p

(m)
k+1 is a random perturbation vector to escape from the local minimum.

2) The gradient direction has the wrong direction in the neighborhood of candidate
solution, i.e., if no step size µk satisfying

f
(
x
(m)
k − µkq

(m)
k

)
< f

(
x
(m)
k

)
for εµ < µk ≤ 1 (9)

exists, the loss function of the mth auxiliary cannot be decreased further, and then the

perturbation term p
(m)
k+1 is added to x

(m)
k+1 to start the local searching from a new point.

3) Redundant candidates detected in information sharing are added the perturbation
terms to avoid wastefully repeating search of the same local minima.

3.5. Procedure of optimization. The procedure of the multi-point based optimization
algorithm is summarized in Algorithm 1.

It is seen that the larger M is, the higher probability of global convergence and com-
putational complexity will be; therefore, the choice of individual number M should be
a trade-off between the convergence probability and computation load in the large scale
problems. In the next section, Algorithm 1’s application to numerical optimization in
system identification problem is illustrated.

4. Application in System Identification. Assume that the physical process can be
described by a linear discrete-time model [2]

A
(
z−1
)
y(t) =

B
(
z−1
)

F
(
z−1
)u(t) + C

(
z−1
)

D
(
z−1
)w(t), (10)

where u(t) and y(t) are the sampled input and output, w(t) is a white stochastic noise,
respectively, and t is a normalized instant. Here A

(
z−1
)
∼ F

(
z−1
)
are the polynomials of
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Algorithm 1 Algorithm of multi-point based optimization

Set small positive numbers εg, εx, εµ and the maximal iteration number Kmax.

1: Determine the initial values x
(1)
0 , . . . ,x

(m)
0 .

2: Find the individual numberm∗ such thatm∗ = argmin
m

f
(
x
(m)
0

)
. Ifm∗ > 1, exchange

the values of x
(1)
0 with x

(m∗)
0 .

3: Add the candidate solutions x
(m)
0 , m = 1, . . . ,M into the history record X, and let

the iteration number be k = 0 to start the iteration.
4: while k < Kmax do
5: Calculate the gradients g

(m)
k of M individuals, then calculate the updating vector

q
(m)
k using the local optimization methods with respect to the primary and auxiliary

individuals, determine the step size µ
(m)
k .

6: Indicate the mth regeneration index as 1 for the auxiliary individuals if their gra-

dients
∥∥∥g(m)

k

∥∥∥
2
< εg, or the step size µ

(m)
k < εµ, otherwise indicate it as 0.

7: Update the candidate solutions x
(m)
k+1 = x

(m)
k − µ

(m)
k q

(m)
k of primary and auxiliary

individuals, respectively.

8: Regenerate the solution whose index is 1 by adding the perturbation term p
(m)
k to

x
(m)
k+1. Let it be a new start point.

9: Check whether the candidate solutions x
(m)
k+1 of auxiliary individuals are close to

any solution in the record X. If so, regenerate the solution as a new start point.

10: Find the individual number m∗ such that m∗ = argmin
m

f
(
x
(m)
k+1

)
. If m∗ > 1,

exchange the values of x
(1)
k+1 with x

(m∗)
k+1 , as well as the gradients gk(m), rotating

and scaling matrixes Rk, and q
(m)
k . Add the candidate solutions into record X,

then let k = k + 1 for the next iteration.
11: end while

a backward operator z−1, whereas except B
(
z−1
)
, the polynomials are monic. In system

identification problems, the modeling issue is to construct a prediction model

ŷ(t) =

(
1−

D̂
(
z−1
)

Ĉ
(
z−1
) Â(z−1

))
y(t) +

D̂
(
z−1
)

Ĉ
(
z−1
) B̂(z−1

)
F̂
(
z−1
)u(t), (11)

by finding the optima x through nonlinear optimization problem of a quadratic loss
function defined in (1), where x is the parameter vector of Â

(
z−1
)
∼ F̂

(
z−1
)
in (11),

and the symbolˆindicates the estimates.
The conventional identification algorithms utilize Gauss-Newton method or Levenberg-

Marquardt method, where the Hessian matrix is calculated by (4). However, if the in-
formation contained in {u(t), y(t)} is not sufficient for numerical optimization, and the

process is strongly disturbed by the noise term C(z−1)
D(z−1)

w(t), then the surface of loss function

is not smooth and there are several local minima, as a result the conventional algorithms
are hard to guarantee the global optima, so the proposed algorithm is expected to im-
prove the convergence performance. The effectiveness of the proposed algorithm will be
discussed through numerical simulations in the next section.

5. Numerical Examples. 2 numerical examples are considered to demonstrate the con-
vergence performance of the new multi-point based optimization algorithm.

5.1. Case of a benchmark function. The optimization problem of a benchmark Gold-
stein-Price function is considered first. It has 2 variables x1, x2 as follows:
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f(x1, x2) =
(
1 + (x1 + x2 + 1)2

(
19− 14x1 + 3x2

1 − 14x2 + 6x1x2 + 3x2
2

) )(
30 + (2x1 − 3x2)

2
(
18− 32x1 + 12x2

1 + 48x2 − 36x1x2 + 27x2
2

) )
. (12)

The schematic contour is shown in right of Figure 1. It is seen that besides a global min-
imum at (0,−1), there are several local minima such as (−0.6,−0.4), (0.8, 0.2), (0.6, 0.4),
and (1.2,−0.2). Hence, the gradient-based methods cannot guarantee the convergence of
global optima. The results by Newton’s method are shown in left of Figure 2. The initial
values of start points are chosen randomly in the range of −1.75 ≤ x1, x2 ≤ 1.75, and the
simulation is independently executed for 100 runs, whereas only 10 runs converge at the
global minimum (0,−1). It implies that the probability of global convergence obtained
by Newton’s method is only about 0.1 in this problem.

-1 -0.5 0 0.5 1
x

1

-1.5

-1

-0.5

0

0.5

1

x 2

Figure 2. Optimization result of function f(x1, x2). Left: Local minima
obtained by Newton’s method with random start points in 20 runs; Right:
result in 1 run of multi-point based algorithm. ◦: start point; �: perturba-
tion point; ∗: local minima.

4-point based optimization algorithm is used for this problem. Newton’s method is
chosen in the local searching of primary individual, while quasi-Newton method is chosen
for the auxiliary ones. The trajectory of primary’s solution in 1 simulation run is shown
in right of Figure 2. It is seen that the perturbation term is added to the solution 4 times
to make the candidate solution of primary individual escape from the local minima, and
then the global optimum (0,−1) can be obtained with high probability.

The average iteration number k to obtain the global optimum (0,−1) in 100 simulation
runs with respect to individual number M from 2 to 100 is summarized in Table 1. It
is seen that the least iteration number of global convergence decreases with increasing
the individual number M , while the value of k logM is almost the same in this example,
which implies that an appropriate choice of M depends on the requirement of convergence
and tolerance of computational load.

Table 1. Global convergence performance of multi-point based optimiza-
tion algorithm

M 2 3 4 5 8 12 20 30 60 100

k 79.5 52.7 40.0 36.8 27.3 22.9 19.5 16.9 13.7 12.4

k logM 55.1 55.2 55.4 59.2 56.8 57.0 58.4 57.4 56.1 57.0
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5.2. Case of system identification for dynamic model in closed-loop. Consider
a 3rd order linear process operated by a 2nd order digital controller in closed-loop, where
the control interval is 0.18 second, while the input u(t) and output y(t) are sampled at
interval of 0.06 second. Assume that the true A

(
z−1
)
, B
(
z−1
)
and F

(
z−1
)
are given by

A
(
z−1
)
= 1, B

(
z−1
)
= 0.1483z−1 − 0.1477z−2 + 0.0638z−3,

F
(
z−1
)
= 1− 2.2123z−1 + 2.0478z−2 − 0.7095z−3,

and C(z−1)
D(z−1)

w(t) is a 2nd order auto-regression moving average (ARMA) stochastic process,

w(t) is a white stochastic noise with finite variance. Due to the feedback controller, the
data of {u(t), y(t)} are not sufficiently strong for the optimization problem, and both u(t)
and y(t) are correlated with the noise term w(t), and then the numerical optimization is

an ill-conditioned problem, where the parameter estimation of F̂
(
z−1
)
is very sensitive to

the noise term and initial values at start point.
Let the coefficients of F̂

(
z−1
)
with respect to power of backward operator z−1 be

denoted as x1, x2, x3, the coefficients of B̂
(
z−1
)
as x4, x5, x6, respectively, and x be the

parameter vector of x1 ∼ x6. It is seen that all the parameters in x, especially the model
poles associated parameters x1 ∼ x3 of F̂

(
z−1
)
, influence the performance of prediction

model in (11), so the square error ∥xTrue − x∥22 rather than the error evaluation of a single
specified parameter is used to evaluate the accuracy of x in this example, where xTrue is
the vector of true parameters.
8-point based optimization algorithm is used in the simulation, where the Levenberg-

Marquardt method with regularization terms in (4) is used for local searching. The esti-
mated parameters by the proposed algorithms and the conventional Levenberg-Marquardt
method using single individual are summarized in Table 2, where the primary candidate

x = x
(1)
k in the proposed algorithm has much smaller error than that of the conventional

Levenberg-Marquardt method using single individual. Since x
(1)
k is close to xTrue, the pre-

diction model in (11) can be used to predict the true system output. Though x4 and x6

in the conventional method are also close to the true ones, the large error of x1, x2 and x3

makes the poles of F̂
(
z−1
)
be far away from that of F

(
z−1
)
; as a result, large error arises

in the prediction ŷ(k) using the estimates obtained by the conventional single individual
method.

Table 2. Parameters obtained by 8-point based optimization algorithm

Parameter x1 x2 x3 x4 x5 x6 ∥xTrue − x∥22
xTrue −2.2123 2.0478 −0.7095 0.1483 −0.1477 0.0638 −−−
8-point

algorithm
−2.1683 1.9849 −0.6476 0.1322 −0.1552 0.0400 0.0106

Conventinal
method

−2.4713 2.4423 −0.9517 0.1358 −0.1925 0.0626 0.2389

6. Conclusions. A multi-point search based algorithm is proposed for nonlinear opti-
mization problems in this paper. It uses parallel search technique to update the candi-
date solutions of a primary and several auxiliary individuals from different start points.
The gradients with respect to the parameter vector are utilized to improve the efficien-
cy of point search especially for the primary individual, and region search is performed
by auxiliary individuals. Moreover, information sharing helps to detect the local mini-
ma and to reduce the redundant computation, and perturbation added to the candidate
solutions of auxiliary individuals makes they escape from the local minima. Consequent-
ly, the proposed algorithm has better global convergence performance with considerably
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low computational complexity. Its effectiveness has been demonstrated in optimization of
benchmark function, and a closed-loop identification problem. Some meaningful issues,
for example, whether the candidate solution converges to global optima and applications
to machine learning algorithms will be considered in the future works.
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