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Abstract. In this article, a fault-tolerant control method is developed for a class of
first-order nonlinear multi-vehicle formation system with hybrid actuator faults and un-
known internal dynamics problem. For unknown internal dynamics problems, the un-
known function is efficiently approximated based on neural network techniques. At the
same time, the unknown function is combined with the adaptive backstepping technique
to design the controller and the adaptive law of the first-order system. Compared with
previous research results, this paper presents a novel cooperative fault-tolerant control
problem by combining hybrid actuator faults with the multi-vehicle formation problem.
Based on the adaptive neural network and the algebraic graph theory, the error model of
the multi-vehicle system is established, and the distributed consensus cooperative fault-
tolerant controller is designed. Through Lyapunov stability analysis, it is demonstrated
that the proposed control method can accomplish the control task.
Keywords: Multi-vehicle formation system, Fault tolerant control (FTC), Neural net-
works (NNs), Graph theory, Hybrid actuator faults

1. Introduction. The subject of fault tolerance control of multi-vehicle formation sys-
tems has gotten a lot of attention from researchers in recent years [1]. With the deepening
of the complex process and the expanding control scale of the multi-vehicle system, there
is inevitably more unknown uncertainty, multivariable characteristics and more frequent
system failures, all of which have a negative impact on the high-performance dynamic
characteristics of the formation system. Because system failures are common in real-life
situations and can even lead to significant losses, the study of failure-related problem is
critical [2,3]. Various methods based on current control theory have been utilized to over-
come the above challenges, including compensating the system for actuator failures and
solving unknown internal dynamics problems. At present, the actuator fault problems are
mostly studied in [4-6] based on some fault method.

In [7], the tracking control problem for fractional-order fault systems is investigated
and a compensation term is introduced into the conventional control law to compensate
for the effects caused by actuator faults. In [8], based on an adaptive nonlinear state
feedback method, an adaptive fault-tolerant constrained controller is designed to solve
the spacecraft docking relative position control problem in the presence of control in-
put constraints, partial actuator failures and unknown external disturbances, and the
designed control method does not require precise knowledge of actuator faults and can
reject uncertain fault information. Afterwards, combining fault-tolerant control with rein-
forcement learning algorithms, a direct adaptive optimal controller is designed [9], which
can effectively reduce the computational effort by using fewer learning parameters than
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conventional reinforcement learning algorithms, and an adaptive auxiliary signal is es-
tablished to compensate for the effect of faults on control performance. In addition, the
study of control system uncertainty is a key issue.
The presence of uncertainty can pose significant obstacles to controller design. Uncer-

tainty includes parameter uncertainty, function uncertainty, structure uncertainty, etc.
For different uncertainties, the corresponding treatment method is also different. The un-
certainty of the parameters is handled by the adaptive techniques [10]. The uncertainty of
functions is usually managed by neural network [11], fuzzy logic system [12] or generalized
fuzzy hyperbolic models [13], and the structural uncertainty is usually handled using a
robust approach.
Compared to the contributions in [4-9], the main features of the proposed cooperative

control scheme designed for hybrid actuator failures are summarized in two aspects.
1) In this paper, the unknown uncertainty of the internal function of the system is

considered. The ability of adaptive neural network control methods to approximate in
nonlinear systems has been demonstrated, so the neural network is used to approximate
the unknown functions.
2) This paper also considers the fault problem of hybrid actuators and proposes a

cooperative fault-tolerant control scheme under different types of faults. Fault-tolerant
fault control is an effective fault handling method, which can design the appropriate
controller to ensure that it still maintains the stability and tracking performance of the
original performance. However, most of the current research on fault-tolerant control
addresses a certain class of faults. Therefore, this paper addresses the problem of hybrid
actuator faults by designing a cooperative controller.
The structure of this paper is as follows. Section 2 provides a description and prelim-

inary knowledge of the neural network and graph theory, laying the foundation for the
following expansion. Section 3 describes the system and presents the necessary definition,
lemma and assumption. In Section 4, the paper shows the design process and stabili-
ty proof of a fault-tolerant controller for a first-order nonlinear multi-vehicle formation
system. Finally, the conclusion is given in Section 5.

2. Preliminary Knowledge.

2.1. Graph theory. In the paper, the multi-vehicle formation system communication
network is depicted by an undirected connected graph G = (A,N,Ξ), where A = [aij] ∈
Rm×m is the adjacency matrix whose element aij ≥ 0 is the communicated weight between
vehicles i and j, N = {n1, n2, . . . , nm} is the node set, and Ξ = N ×N is the edge set. If
there is a communication from node nj to node ni, then the edge n̄ij = (ni, nj) ∈ Ξ, and
the node nj is said to be a neighbor of the node ni, and Si = {nj|(ni, nj) ∈ Ξ} denotes
the neighbor label set. If n̄ij ∈ Ξ, the corresponding adjacency element aij = 1, and if
n̄ij /∈ Ξ, the corresponding adjacency element aij = 0. When aij = aji, the graph G is
called as an undirected graph. The undirected graph G is called to be connected if there
is a path for any pair of distinct nodes (ni, ni1), (ni1 , ni2), . . . , (nii , nj). Associated with
the graph G, the Laplacian matrix is

L = C − A (1)

where C = diag
{∑m

j=1 a1j, . . . ,
∑m

j=1 amj

}
. The communication matrix between the fol-

lowing and lead vehicles is D = diag {d1, d2, . . . , dm}, where di, i = 1, 2, . . . ,m is the
communication weight between vehicle i and leader.
If the vehicle i can have the communication with the leader, then di = 1; otherwise,

di = 0. It is supposed that d1 + d2 + · · · + dm ≥ 1, which implies that at least one of
vehicles is connected with the leader.
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2.2. Neural networks. Neural networks (NNs) had been demonstrated to have the uni-
versal function approximation ability, and they can approximate a continuous unknown
function f(x) : Rm → Rn, by the following form over a compact set Ω

f̂(x) = θTφ(x) (2)

where θ ∈ Rq×n is the weight matrix with the neuron number q, φ(x) = [φ1(x), . . . , φq(x)]
T

is the basis function vector with φi(x) = exp
(
− (x−µi)

T (x−µi)

2δ2i

)
, µi = [µi1, . . . , µim]

T is the

center of receptive field and δi is width.
For the continuous function f(x), there exists the ideal NNs weight θ∗ ∈ Rq×n described

as

θ∗ := arg min
θ∈Rq×n

{
sup
x∈Ω

∥∥f(x)− θTφ(x)
∥∥} (3)

so that f(x) can be rewritten as

f(x) = θ∗Tφ(x) + ε(x) (4)

where ε(x) ∈ Rn is approximation error, and ∥ε(x)∥ ≤ εd, εd is a positive constant.
In (4), since the ideal weight matrix θ∗ is an unknown constant matrix, it is unavailable

for the actual control design. Therefore, the estimation θ̂ of the ideal NNs weight θ∗ is
used.

3. System Descriptions and Assumptions. The nonlinear multi-agent system is de-
scribed in the following.

ẋi(t) = ui + fi(xi(t)) i = 1, 2, . . . ,m (5)

where xi(t) = [xi1, . . . , xin]
T ∈ Rn, ui = [ui1, . . . , uin]

T ∈ Rn are the system state and
control input, respectively. fi(·) ∈ Rn is the unknown smooth function.

Assumption 3.1. [14] fi(·) + ui are Lipschitz continuous.

Assumption 3.2. [14] The desired trajectory of formation movement xd and its derivative
ẋd(t) are bounded.

To better study the hybrid actuator faults contained in the system, classify the fault
model types in the system model formula (5), as shown in Equation (6). Then, the system
input can be described as

uF
i (t) = (1− ρi)ui(t) + κiδi(t) (6)

where uF
i (t), ui(t) represent the i vehicle input signal and the actuator input signal, and

the δi(t) indicates the input signal of the i actuator failure, which is divided into four
categories, see Table 1.

Table 1. Actuator fault types

Type Number
Faultless ρi = 0, κi = 0

Partial failure fault 0 < ρi < 1, κi = 0
Bias fault 0 < ρi < 1, κi = 1
Stuck fault ρi = 1, κi = 1

In Table 1, ρi and κi are the fault parameters. When the actuator is biased fault, δi(t)
is bounded, ∥δi(t)∥ ≤ δd, where δd is a known positive constant, and the bias fault is
unknown time-varying bounded.

Lemma 3.1. [15] A necessary and sufficient condition that the Laplacian matrix is irre-
ducible is that the undirected graph G is connected.
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Lemma 3.2. [15] If the Laplacian matrix L is irreducible, then L̃ = L +D is a positive
definite matrix.

Lemma 3.3. [14] The continuous function V (t) ≥ 0 is with bounded initial condition. If
it holds V̇ (t) ≤ −αV (t)+ β, where α, β > 0 are two positive constants, then the following
inequality can be held.

V̇ (t) ≤ V (0)e−αt +
β

α

(
1− e−αt

)
(7)

Definition 3.1. [10] The first-order leader-follower formation can be achieved if the non-
linear multi-vehicle system (5) satisfies limt→∞ ∥xi(t)− xd(t)− ηi∥ = 0, i = 1, . . . ,m,
where xd(t) ∈ Rn denotes the desired trajectory of the relative positions of the formation

movement, and ηi = [ηi1, ηi2, . . . , ηin]
T ∈ Rn is the relative position between the follower

vehicles and the leader vehicle.

The Control Objective: For a first-order nonlinear multi-vehicle queueing system
(5) consisting of a single leader vehicle and multiple following vehicles, design an adaptive
formation control protocol so that i) all error signals are semi-globally uniformly ultimately
bounded (SGUUB); ii) the first-order leader-follower formation control holds.

4. Main Results.

4.1. Controller design. Consider the actuator faults (6), the nonlinear multi-vehicle
system (5) can be expressed as

ẋi(t) = (1− ρi)ui(t) + κiδi(t) + fi(xi(t)) i = 1, 2, . . . ,m (8)

The desired trajectory of formation movement is denoted by a time variable xd(t),
where it and its derivative ẋd(t) are assumed bounded. The tracking errors are defined as

zi(t) = xi(t)− xd(t)− ηi (9)

where ηi = [ηi1, ηi2, . . . , ηin]
T ∈ Rn is the relative position between vehicle i and leader,

which depicts the formation pattern.
From Equation (8), the following error dynamics can be generated.

żi(t) = fi(xi) + (1− ρi)ui(t) + κiδi(t)− ẋd(t) (10)

Define the formation errors as

ei(t) =
∑
j∈Ni

aij(xi(t)− ηi − xj(t) + ηj) + di(xi(t)− xd(t)− ηi) (11)

Using (9), the formation error (11) can be rewritten as

ei(t) =
∑
j∈Ni

aij(zi(t)− zj(t)) + dizi (12)

Remark 4.1. According to Lemma 3.2, the matrix L̃ = L + D is a positive definite
matrix. Let χ1, . . . , χm be its eigenvectors associated with the eigenvalues λ1, . . . , λm, the
following inequality is held.

λmin∥e(t)∥2 ≤ zT (t)
(
L̃⊗ Im

)
z(t) ≤ λmax∥e(t)∥2 (13)

where z(t) =
[
zT1 (t), . . . , z

T
m(t)

]T ∈ Rmn, e(t) =
[
eT1 (t), . . . , e

T
m(t)

]T ∈ Rmn, λmin and λmax

are the minimal and maximal eigenvalues of the matrix, respectively. M =
(
QTΛ−1Q

)
⊗Im

with Q = [χ1, . . . , χm] ∈ Rmn, Λ = diag {λ1, . . . , λm}.
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The time derivative of formation error ei(t) is

ėi(t) = biẋi − diẋd −
∑
j∈Ni

aijẋj (14)

where bi =
∑

j∈Ni
aij + di.

Combining (5) and (10), (14) can be further described as

ėi(t) = bifi(xi) + biui − diẋd(t)−
∑
j∈Ni

aijfj(xj)−
∑
j∈Ni

aijuj (15)

Design the actual fault tolerant controller as

ui(t) =
1

1− ρi

(
−γiei(t)−

1

2
θ̂Ti (t)φi(xi)− κiδi(t)

)
(16)

where γi is a constant.
Design the adaptive law as

˙̂
θi(t) = Γi

(
φi(xi)e

T
i (t)− σiθ̂i(t)

)
(17)

where Γi is a positive definite matrix, and σi > 0 is a design constant.

Remark 4.2. In controller (16), the error term ei(t) defined in (11) is intended to control

the multi-vehicle system keeping the formation pattern. The NNs term θ̂Ti (t)φi(xi) aims

to compensate the unknown dynamic via on-line tuning the NNs weight θ̂i(t) using the
updating law (17). Since the proposed scheme provides an ideal solution for the basic
formation control of first-order nonlinear multi-vehicle systems, it can be applied and
extended by combining it with various control techniques, such as the problem of finite-
time fault-tolerant control [14].

4.2. Stability analysis. To verify the main results of the designed collaborative fault-
tolerant controller, the following theorem is given.

Theorem 4.1. Consider a typical class of nonlinear multi-vehicle formation system (5)
with collaborative fault-tolerant. It is guaranteed that in the case of actuator failure, if
adaptive formation control (16) with the update law (17) is performed on the multi-
intelligent system and the design constants are chosen to satisfy γi > 1, then the following
control objective can be achieved by choosing appropriate design parameters.

1) All errors are semi-globally uniformly ultimately bounded (SGUUB).
2) The multi-agent formation can be achieved for sufficiently smooth movement trajec-

tory.

Proof: Choose the following Lyapunov function candidate

V (t) =
1

2
zT (t)

(
L̃⊗ Im

)
z(t) +

1

2

m∑
i=1

Tr
{
θ̃Ti (t)Γ

−1
i θ̃i(t)

}
(18)

Then, the first-order derivative of V (t) is

V̇ (t) = zT (t)
(
L̃⊗ Im

)
⊗ ż(t)−

m∑
i=1

Tr
{
θ̃Ti (t)

(
φi(xi)e

T
i (t)− σiθ̂i(t)

)}
(19)

where z(t) =
[
zT1 (t), . . . , z

T
n (t)

]T ∈ Rn, θ̃i(t) = θ̂i(t)− θ∗i (t).
The time derivative of V (t) along (10) and (17) is

V̇ (t) =
m∑
i=1

eTi (t) (fi(xi)− ẋd(t) + (1− ρi)ui(t) + κiδi(t))



1140 Z. TIAN AND G. DONG

−
m∑
i=1

Tr
{
θ̃Ti (t)

(
φ(x)eTi (t)− σiθ̂i(t)

)}
(20)

Inserting the controller (16) into (20), we have

V̇ (t) =
m∑
i=1

eTi (t)

(
θ∗Ti (t)φi(xi)− γiei(t)−

1

2
θ̂Ti (t)φi(xi)− ẋd(t) + εi(xi)

)

−
m∑
i=1

Tr
{
θ̃Ti (t)

(
φi(xi)e

T
i (t)− σiθ̂i(t)

)}
(21)

From Equation (21), we can derive

V̇ (t) =
m∑
i=1

eTi (t)

(
1

2
θ̂Ti (t)φi(xi)− γiei(t)− θ̃Ti (t)φi(xi)− ẋd(t) + εi(xi)

)

−
m∑
i=1

Tr
{
θ̃Ti (t)

(
φi(xi)e

T
i (t)− σiθ̂i(t)

)}
(22)

From Equation (22), we can derive

V̇ (t) =
m∑
i=1

(
1

2
eTi (t)θ̂i(t)φi(xi)− γie

T
i (t)ei(t)− eTi (t)θ̃i(t)φi(xi)− eTi (t)ẋd(t)

+ eTi (t)εi(xi)

)
−

m∑
i=1

Tr
{
θ̃Ti (t)

(
φi(xi)e

T
i (t)− σiθ̂i(t)

)}
(23)

According to the property of trace operation, aT b = Tr
{
abT

}
= Tr

{
baT

}
for ∀a, b ∈

Rn we have

eTi (t)θ̃
T
i (t)φi(xi) = Tr

{
θ̃Ti (t)φi(xi)e

T
i (t)

}
(24)

Using the above Equation (24), Equation (23) can become the following one.

V̇ (t) =
m∑
i=1

1

2
eTi (t)θ̂i(t)φi(xi)−

m∑
i=1

γie
T
i (t)ei(t)−

m∑
i=1

eTi (t)ẋd(t) +
m∑
i=1

eTi (t)εi(xi)

−
m∑
i=1

Tr
{
σiθ̃

T
i (t)θ̂i(t)

}
(25)

Applying Cauchy-Bchwarz inequality
(
xTy

)2 ≤ ∥x∥2∥y∥2, x, y ∈ Rn and Young’s in-

equality ab ≤ 1
2
a2 + 1

2
b2, a, b ∈ Rn, there are the following facts.

−eTi (t)ẋd(t) ≤
1

2
∥ei(t)∥2 +

1

2
∥ẋd(t)∥2 (26)

eTi (t)εi(xi) ≤
1

2
∥ei(t)∥2 +

1

2
ε2d (27)

1

2
eTi (t)θ̂i(t)φi(xi) ≤

1

4
∥ei(t)∥2 +

1

4
Tr

{
θ̂Ti (t)φi(xi)φ

T
i (xi)θ̂i(t)

}
(28)

Inserting Inequalities (26), (27) and (28) into (25) has

V̇ (t) ≤ −
m∑
i=1

(
γi −

5

4

)
∥ei(t)∥2 +

1

2

m∑
i=1

∥ẋd(t)∥2 +
1

2

m∑
i=1

ε2d

+
1

4

m∑
i=1

Tr
{
θ̂Ti (t)φi(xi)φ

T
i (xi)θ̂i(t)

}
−

m∑
i=1

Tr
{
σiθ̃

T
i (t)θ̂i(t)

}
(29)
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Based on the facts θ̃i(t) = θ̂i(t)− θ∗i (t), we have

Tr
{
σiθ̃

T
i (t)θ̂i(t)

}
=

σi

2
Tr

{
θ̃Ti (t)θ̃i(t)

}
+

σi

2
Tr

{
θ̂Ti (t)θ̂i(t)

}
− σi

2
Tr

{
θ∗Ti (t)θ∗i (t)

}
(30)

Substituting (30) into (29) yields

V̇ (t) ≤ −
m∑
i=1

(
γi −

5

4

)
∥ei(t)∥2 −

m∑
i=1

σi

2
Tr

{
θ̃Ti (t)θ̃i(t)

}
−

m∑
i=1

τiTr
{
θ̂Ti (t)φi(xi)φ

T
i (xi)θ̂i(t)

}
+∆(t) (31)

where ∆(t) =
∑m

i=1
σi

2
Tr

{
θ∗Ti θ∗i

}
+ 1

2

∑m
i=1 ∥ẋd(t)∥2+ 1

2

∑m
i=1 ε

2
d, because all terms of ∆(t)

are bounded, it satisfies ∥∆(t)∥ ≤ β, where β is a constant.

Let γ = mini=1,...,n

{(
γi − 5

4

)}
, σ = mini=1,...,n

{
σi

λ
Γ−1
i

max

}
, τ = mini=1,...,m {τiλφi

min}, γi >

1 and λ
Γ−1
i

max denote the maximal eigenvalue of Γ−1
i , λφi

min is the minimal eigenvalue of
φi(xi)φ

T
i (xi), then Inequality (31) can be rewritten as

V̇ (t) ≤ − γ

2λmax

zT (t)
(
L̃⊗ Im

)
z(t)− σ

2

m∑
i=1

Tr
{
θ̃Ti (t)Γ

−1
i θ̃i(t)

}
−τ

2

m∑
i=1

Tr
{
θ̃Ti (t)θ̃i(t)

}
+ β (32)

Further, let α = min
{

γ
λmax

, σ
}
, Inequality (32) can be rewritten as

V̇ (t) ≤ −αV (t) + β (33)

Applying Lemma 3.3, the following inequality can be held.

V (t) ≤ e−αtV (0) +
β

α

(
1− e−αt

)
(34)

Combined with Theorem 4.1, all error signals are SGUUB. At the same time, the
tracking errors can obtain the desired accuracy by choosing the design parameters large
enough, and it means that the multi-vehicle formation can be achieved.

5. Conclusions. In this paper, a collaborative fault-tolerant control method is developed
for a class of first-order nonlinear multi-vehicle formation system under hybrid actuator
faults and unknown internal dynamics problems. The collaborative fault-tolerant control
method can compensate for multiple types of actuator failures and stabilize the system. In
the proposed control scheme, NNs is used to approximate the unknown dynamic functions.
The method is proposed to compensate for the loss of multiple types of actuator failures
without any fault detection and isolation mechanism. The control method in this paper
can compensate for multiple types of actuator failures and stabilize the system successfully.
In addition, the method ensures bounded output even in the case of an actuator failure.
Thus, the goal of effective, cost-efficient and reliable system control design can be achieved.

Finally, it is a future topic to design controllers and adaptive laws to ensure that the
output tracks the reference signal for a finite time.
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