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Abstract. Land Surface Temperature (LST) is a part of temperature that explains the
general temperature condition of an environment. A number of variables, including weath-
er, cloud cover, and time spent in the sun, can have an impact on LST. The present LST
situation in DKI Jakarta has substantially changed as a result of the pandemic. In the
upcoming years, these changes will have an impact on LST prediction. Therefore, the
aim of this study is to compare three selected popular deep learning methods to see which
one is the most effective at correctly predicting LST changes. Long Short-Term Memory
(LSTM), Bidirectional Long Short-Term Memory (BiLSTM), and Convolutional Neural
Network with LSTM are chosen to compare each other. The results show that BiLSTM
made a higher accurate prediction than other compared models with Root Mean Square
Error (RMSE) of 1.08039, Mean Absolute Error (MAE) of 0.79138, Mean Absolute
Percentage Error (MAPE) of 0.02959, and Coefficient of Determination (R2) Score of
0.53124. However, CNN-LSTM is faster in training and predicting based on computing
time and provides a decent degree of prediction accuracy with RMSE of 1.21163, MAE
of 0.94616, MAPE of 0.03501, and R2 Score of 0.41045.
Keywords: Land Surface Temperature, Remote sensing, Urban heat island, LSTM,
BiLSTM, CNN-LSTM, Jakarta Province

1. Introduction. All aspects of existence are influenced by temperature, which is strong-
ly tied to human life, agricultural productivity, urbanization, and social economics. Stud-
ies showed that the increase in global temperature is severe that the change for the average
global temperature would increase above 1.5◦C over the upcoming four years, from 2023
to 2026, which has increased to almost 50% [1]. It has caused several significant changes
especially in agriculture [2], health [3], and economics [4]. However, COVID-19 pandem-
ic has had a significant impact on the world, requiring restrictions on human activity
in order to slow the virus’ spread. These restrictions trigger an unexpected temperature
change in Indonesia, notably in Indonesia capital city.

The Land Surface Temperature (LST) condition in DKI Jakarta has undergone a sig-
nificant change during the pandemic. Before the pandemic, the average of LST in DKI
Jakarta could reach more than 33◦C with the highest temperature exceeding 36◦C [5]. The
increase in temperature occurred due to the urbanization and community activities. Some
researchers predicted that the trend of rising temperatures in Jakarta would continue in
the coming years, reflecting the rise in global temperatures [6]. However, the pandemic
occurred in 2020 throughout the world including Indonesia which caused a decrease in
human activities, especially in the industrial sectors and transportation activities. As a
result, the LST decreased to around 23◦C-29◦C [7]. These changes will influence LST pre-
diction in the coming years. Accurate LST prediction could provide useful information to
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urban planners, agriculturists, medical professionals, and other business planners; howev-
er, LST prediction is difficult due to a variety of uncertain relevant factors. Furthermore,
only few researchers use deep learning to predict LST.
Several popular deep learning models such as Long Short-Term Memory (LSTM),

Convolutional Neural Network (CNN), and Bidirectional Long Short-Term Memory (Bi-
LSTM) are often used in several fields due to their high performance depending on con-
ditions. Despite that, the use of deep learning models in the LST field, especially with
Landsat Imagery Satellite data is still limited. First, Kartal and Sekertekin proposed a
model named Convolutional LSTM to predict LST using MODIS Satellite Imagery and
the result is that the proposed model could be used for one step ahead spatiotemporal
prediction of LST data [8]. Second, Maddu et al. proposed a hybrid model named LSTM-
BiLSTM to predict the major coastal cities of India and the result is that proposed hybrid
model was effective in predicting LST of coastal cities of India [9]. Besides that, Khalil et
al. used LSTM model to predict the LST where the result is that LSTM model achieved
higher efficiency than Artificial Neural Network [10]. While several deep learning meth-
ods have been used to predict the LST, there is still no best model that can accurately
predict the LST under the same condition (same study area, similar weather, size of data,
etc.). Due to the fact that the training also affected from characteristics of certain areas,
some models with specific parameter tuning may be the best in one study area but not
in another. Additionally, there are only a few studies that used pixels as input data for
prediction such as Jia et al.’s experiment [11], although each pixel represents LST value
for fixed area and can be easily visualized (both input and output visualization). Hence,
the goal of this study is to find the best deep learning methods from three chosen meth-
ods for accurately predicting LST pixels change. LSTM, BiLSTM, and CNN-LSTM are
chosen due to their popularity from all deep learning models. It is hoped that through
this research, it is possible to provide information regarding each method’s performance in
predicting the LST with the same dataset. This information can be considered for further
research.
This paper is organized as follows: Section 2 describes the study area and materials,

Section 3 describes the methods, Section 4 describes the results and discussion, Section 5
describes the conclusion and the future works.

2. Study Area and Materials.

2.1. Study area. DKI Jakarta Province is located in the northwest part of Java Island
and near the equator (Figure 1). Its position is approximately between 5◦19′12′′-6◦23′54′′

South Latitude and 106◦22′42′′-106◦58′18′′ East Longitude. It has a total land area of
661.52 km2 and there are around 110 islands scattered in Thousand Islands (Kepulauan
Seribu). Administratively, DKI Jakarta Province is divided into five municipalities and
one administrative district, namely Central Jakarta, North Jakarta, East Jakarta, South
Jakarta, West Jakarta, and Thousand Islands Administrative District.

2.2. Data. Landsat 8 Satellite Imagery generates an image of the Earth in a repeating
cycle of 16 days by collecting multiple satellite images. A total of 11 bands are collected
by two specific sensors on the Landsat 8 satellite, which are Operational Land Imager
(OLI) and Thermal Infrared Sensor (TIRS). There are two bands from OLI sensor that
were used in this study, which are band 4 (Red) and band 5 (Near-infrared). Furthermore,
there is one band from TIRS sensor that becomes a main data for this study, which is
band 10 (TIRS 1).
The Land Surface Temperature (LST) data for training and testing are obtained from

Landsat 8 Satellite Imagery and the locations are North Jakarta, East Jakarta, South
Jakarta, West Jakarta, and Central Jakarta. Specifically, the data are taken from Landsat
8 OLI/TIRS Collection 2 Level-1 satellite imagery result with the path-row from 122 to 64.
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Figure 1. DKI Jakarta Province (Without Thousand Islands)

The selected data are taken from every month from January 2016 to August 2022 and will
be overall cloud free since the LST will be affected by several factors like cloud temperature
or radiation reflection induced by clouds. The data used were downloaded from the United
States Geological Survey (USGS) web page (https://earthexplorer.usgs.gov).

3. Methods. The research process has three main steps after the materials have been
collected. First, Land Surface Temperature (LST) is calculated using the materials. Sec-
ond, each related deep learning model is constructed to process the LST data including
parameter tuning. Lastly, each model is evaluated with corresponding evaluation metrics.

3.1. Land Surface Temperature (LST) calculation. LST is a crucial factor in over-
coming surface energy budget assessments, and it is usually measured using remote sensing
[12]. LST is influenced by four main factors, namely Top of Atmosphere (TOA) Spectral
Radiance, Brightness Temperature (BT), Normalized Difference Vegetation Index (ND-
VI), and Land Surface Emissivity (LSE) [13].

The first step to calculate the LST starts from measuring the TOA Spectral Radiance,
which is the light reflected from the ground and measured from the atmosphere [14]. The
formula is based on the USGS tools [15] and is as follows:

Lλ = ML ∗Qcal + AL −Oi, (1)

where ML is the band-specific multiplicative rescaling factor, Qcal is band 10 image, AL

is the band-additive rescaling factor, and Oi is the correction for band 10.
The result of the TOA Spectral Radiance calculation is used to calculate BT, which is

the second step. The thermal constants provided in the metadata file should be used to
convert the TIRS band data from spectral radiance to Brightness Temperature (BT) [16].
The formula is as follows:

BT =
K2

ln
[(

K1
Lλ

)
+ 1

] − 273.15, (2)

where K1 and K2 are the thermal conversion constants for the corresponding band that
are listed in the metadata file of the satellite image, Lλ are the TOA Spectral Radi-
ance, and the radiant temperature must be adjusted by applying absolute zero, or about
−273.15◦C, in order to output the result in Celsius.



1180 D. ANDRES AND S. M. ISA

The third step is to calculate NDVI, since the amount of vegetation present is a crucial
factor and the NDVI can be used to infer general vegetation condition [17]. NDVI is a
crucial value due to its strong correlation with the Proportion of Vegetation (Pv) and
Emissivity (ε), which are used to calculate LST:

NDVI =
NIR(band 5)−R(band 4)

NIR(band 5) +R(band 4)
, (3)

where NIR is the near-infrared band (Band 5) and R is the red band (Band 4).
Pv is the ratio of the vertical projection area of vegetation on the ground [18]. There are

two NDVI values used to calculate Pv, which are vegetation pixel thresholds (maximum
NDVI value, NDVI v) and soil pixel threshold (minimum NDVI value, NDVI s) [19], so
the formula is as follows [20]:

Pv =

(
NDVI − NDVI s
NDVI v − NDVI s

)2

, (4)

where NDVI v and NDVI s can be obtained from (3), since the output is a series of numbers.
The LSE must be calculated in order to estimate LST, since the LSE is a proportionality

factor that scales blackbody radiance (Planck’s law) to forecast emitted radiance, and it
is the efficiency of transporting heat energy over the surface into the atmosphere [21].
The formula to compute LSE is as follows [20]:

ελ = εvλPv + εsλ(1− Pv) + Cλ, (5)

where εvλ is the vegetation, εsλ is soil emissivity, Pv represents the Proportion of Vegeta-
tion, and Cλ represents the surface roughness.
The last step of calculating the LST is computed as follows [13,21]:

Ts =
BT

{1 + [(λBT/ρ) ln ελ]}
, (6)

where Ts is the LST in Celcius (◦C), BT is Brightness Temperature which is calculated
in (2), λ is the wavelength of emitted radiance, ελ represents the emissivity calculated in
(5), and

ρ = h
c

σ
= 1.438× 10−2 mK, (7)

where σ represents the Boltzmann constant (1.38 × 10−23 J/K), h is Planck’s constant
(6.626× 10−34 J/s), and c is the light velocity (2.998× 108 m/s).

3.2. Deep learning models. Three deep learning models that were used in this study
are Long Short-Term Memory (LSTM), Bidirectional Long Short-Term Memory (Bi-
LSTM), and Convolutional Neural Network with Long Short TermMemory (CNN-LSTM).
Each of these model nodes is tuned four times: 32 nodes, 64 nodes, 128 nodes, and 256
nodes, respectively. Each model is trained for 100 epochs, which is a common approach
for deep learning model training. Additionally, the input dataset used is LST data in the
form of pixel, since the objective of study is to predict the LST pixel itself according to
the study area. Each of pixel is regarded as a feature in the model.

3.2.1. LSTM. LSTM is a Recurrent Neural Network (RNN) extension that is capable of
learning long-term dependencies, especially in sequence prediction problems. LSTM was
developed to address issues with long-term learning in RNN caused by the Vanishing
Gradient Problem [23]. Unlike RNN, LSTM adds a forget gate, an input gate, and an
update gate to forget and update information to the cell state [24]. Figure 2 shows the
LSTM model architecture that is used in this study.
There are two layers with the same neuron units. These LSTM layers attempt to factor

LST value changes by using the information from LST Pixel Data stored in its memory
cell, which consists of the three gates (input, forget, and output). Additionally, there is
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Figure 2. LSTM model architecture

a dense layer that receives data from the preceding layer in its entirety. This dense layer
learns features from all combinational features of the previous layer.

3.2.2. BiLSTM. BiLSTM, also known as Bidirectional RNN, is a combination between
two LSTM models that combine information from the input sequence in both forward
and backward directions, allowing it to better grasp bidirectional semantic relationships
[25]. At first, LSTM units can make predictions based on past data but not on future
data. BiLSTM overcomes this limitation. BiLSTM structure allows for the use of both
backward and forward information. Figure 3 shows the BiLSTM model architecture that
is used in this study.

Figure 3. BiLSTM model architecture

There are two layers with identical neuron units, one dense layer and one output layer,
similar to LSTM. However, the BiLSTM structure differs in that it has two states: Forward
State and Backward State. By combining the outputs of both directions, memory can
record information from both ends of the state in relation, improving prediction accuracy.
Therefore, BiLSTM can learn the dataset from both states while LSTM only can learn it
from one state.

3.2.3. CNN-LSTM. A hybrid CNN-LSTM consists of CNN and LSTM itself. CNN is a
deep learning model that is mostly used to extract spatial information from large datasets
[26], while LSTM was designed to learn temporal properties from time series or sequen-
tial data. The basic idea to combine CNN and LSTM is that CNN model extracts the
spatial contextual elements of surrounding temperatures, while the LSTM model extracts
the temporal features. Both models will be concatenated, and parameter tuning will be
performed.

Among the many CNN designs available, AlexNet was selected for this study because it
has a faster training speed than other CNN architectures and a deeper architecture with
8 layers, which implies it can extract features more successfully. In this study, AlexNet
is used to extract spatial features, particularly from surrounding pixels, from the LST
dataset. LSTM would then accept the input from AlexNet and use its sequence data to
learn the temporal characteristic. The output is the same as LSTM and BiLSTM. Figure
4 shows the CNN-LSTM model architecture that is used in this study.

Figure 4. CNN-LSTM model architecture
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3.3. Evaluation metrics. The most crucial part of model experiment is metric evalua-
tion, which is used to compare models that have been employed [27]. Root Mean Square
Error (RMSE), Mean Absolute Error (MAE), Mean Absolute Percentage Error (MAPE),
and Coefficient of Determination (R2) are used in this study. Each evaluation index’s
equation is as follows.

RMSE =

√∑n
t=1 ∥et − e′t∥

2

n
, (8)

MAE =

∑n
t=1 |e′t − et|

n
, (9)

MAPE =
1

n

n∑
t=1

∣∣∣∣et − e′t
et

∣∣∣∣ , (10)

R2 = 1−
∑n

i=0(e
′
i − ei)

2∑n
i=0(eiē)

2
, (11)

where e is the ground truth, e′ is the predicted value, ē is the mean value, and n is the
number of data used in the testing.

4. Results and Discussion.

4.1. Results. Evaluation metrics are applied to the predicted and actual LST values,
providing the RMSE, MAE, MAPE, and R2 Score for each model, which are presented
in Table 1 for comparison. Furthermore, computational time is also included as well to
compare each model in terms of time performance.

Table 1. Model evaluation metric score

Model Nodes
Metric score Computational

RMSE MAE MAPE R2 Score time

BiLSTM

32 1.08039 0.79138 0.02959 0.53124 23.10 hours

64 1.12131 0.84149 0.03137 0.49507 31.30 hours

128 1.12611 0.84399 0.03149 0.49073 43.07 hours

256 1.14834 0.86516 0.03224 0.47043 59.70 hours

LSTM

32 1.11610 0.83101 0.03102 0.49974 17.41 hours

64 1.09266 0.80562 0.03011 0.52054 21.40 hours

128 1.11421 0.83213 0.03110 0.50144 42.21 hours

256 1.15574 0.87471 0.03256 0.46359 53.67 hours

CNN-LSTM

32 1.21163 0.94616 0.03501 0.41045 15.09 hours

64 1.42950 1.20792 0.04439 0.17937 15.35 hours

128 1.22026 0.95293 0.03528 0.40202 15.11 hours

256 1.36150 1.12869 0.04155 0.25580 15.47 hours

In terms of overall prediction error, the BiLSTMwith 32 nodes surpasses other BiLSTM,
with RMSE of 1.08039, MAE of 0.79138, MAPE of 0.02959, and R2 Score of 0.53124.
Meanwhile, LSTM with 64 nodes outperforms other LSTM, with outcomes as RMSE of
1.09266, MAE of 0.80562, MAPE of 0.03011, and R2 Score of 0.50144. Finally, a CNN-
LSTM with 32 nodes has a smaller prediction error than other CNN-LSTM models, with
values as RMSE of 1.21163, MAE of 0.94616, MAPE of 0.03501, and R2 Score of 0.41045.
The BiLSTM model is the best model when comparing the prediction errors of the

three top models since each of its model evaluation scores is higher than those of the other
models. On the other hand, CNN-LSTM is faster during training and offers a respectable
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(a) (b)

(c) (d)

Figure 5. (color online) LST visualization: (a) Actual, (b) BiLSTM pre-
diction, (c) LSTM prediction, and (d) CNN-LSTM prediction

level of prediction accuracy. Figure 5 shows the prediction results from each of the best
models when compared to real LST time series data.

4.2. Discussion. According to the data, the three best models do a great job of predict-
ing LST at DKI Jakarta, with CNN-LSTM coming in as the fastest computational model
and BiLSTM coming in as the model with the lowest error percentage. CNN-LSTM has
a faster computational time than others since it can learn two aspects simultaneously,
spatial and temporal. While LSTM learns the temporal from sequential data based on
retrieved spatial information, CNN can extract most of the spatial information that is
similar to image information. In other words, CNN-LSTM can learn and predict spatio-
temporal data. In contrast, BiLSTM’s prediction accuracy is better than others since it
incorporates data from both forward and backward directions. BiLSTM concentrated on
learning the temporal characteristic from each pixel in the LST data, even if it was unable
to adequately extract spatial information. For greater accuracy in forecasting the LST in
pixels, BiLSTM combines the sequential data in forward and backward order that it has
learned. However, the more data used, the longer BiLSTM takes to learn and predict it,
since BiLSTM only focused on each pixel.
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Furthermore, both models are capable of accurately predicting areas with high temper-
atures as shown on Figure 5. However, neither model can provide an accurate prediction
in areas with low temperatures, particularly those that are cloud-covered. In order to pro-
vide more information, MAE for each pixel is generated and plotted in the same manner
as the predicted results in the form of the DKI Jakarta map. Figure 6 shows the error
spread of the BiLSTM and CNN-LSTM models based on the minimum and maximum
range of absolute error, which were derived from each pixel based on the MAE to the
actual LST data at relevant date.

(a) (b)

(c)

Figure 6. (color online) Absolute error visualization: (a) BiLSTM, (b)
LSTM, and (c) CNN-LSTM

When comparing Figures 5 and 6, each absolute error scatter shows clearly that places
with low temperatures have a bigger error result in multiple larger brown areas. Some
cloud covers cause some small dark brown spots that represent the highest error score.
Meanwhile, the area with high temperatures has a smaller error in the majority of purple
locations. There is a resemblance pattern between the error patterns in Figures 6(a),
6(b), and 6(c). This resemblance pattern shows that areas with lower temperatures and
significant cloud cover yield higher prediction error rates.
For a more thorough study, Table 2 is created by converting Figure 5 into a table, which

displays the total number of pixels that are divided into six distinct temperature ranges.
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Table 2. LST pixel count comparison for DKI Jakarta on 18th August 2022

Temperature range Pixel count
(◦C) Actual BiLSTM LSTM CNN-LSTM

0.0◦C-5.9◦C 0 0 0 0
6.0◦C-11.9◦C 0 0 0 0
12.0◦C-17.9◦C 977 0 0 0
18.0◦C-23.9◦C 23057 16336 20676 12597
24.0◦C-29.9◦C 685421 695028 691947 700557
30.0◦C-35.9◦C 3924 2015 756 225

Table 2 shows that when predicted by BiLSTM, LSTM, and CNN-LSTM, 0.14% of
real pixels with temperature between 12.0◦C and 17.9◦C become zero. This result was ob-
tained because the majority of pixel counts correspond to temperatures between 24.0◦C
and 29.9◦C, which can be considered as imbalanced data [28]. In addition, three mod-
els provided results that were comparable: BiLSTM predicted 97.43%, LSTM predicted
96.99%, and CNN-LSTM predicted 98.20%, which spreads between temperatures in the
range of 24.0◦C and 29.9◦C. Although the results are comparable, the temperature be-
tween 30.0◦C and 35.9◦C is noticeably different. BiLSTM shows results that are more
similar to the actual compared to other models.

5. Conclusion. The Land Surface Temperature (LST) is one of the most important
essential climate variables that have several impacts towards all aspects of life. Hence,
an accurate LST prediction becomes an important factor. This paper’s objective is to
find the best deep learning methods from three chosen popular methods for accurately
predicting LST changes based on LST data obtained from Landsat 8 OLI/TIRS satellite
imagery. The results show that 32 nodes BiLSTM made a higher accurate prediction than
other compared models, with RMSE of 1.08039, MAE of 0.79138, MAPE of 0.02959,
and R2 Score of 0.53124. However, 32 nodes CNN-LSTM is faster during training in
terms of computing time and provides a decent degree of prediction accuracy with RMSE
of 1.21163, MAE of 0.94616, MAPE of 0.03501, and R2 Score of 0.41045. Furthermore,
areas with lower temperatures, particularly those that are cloud-covered, have larger error
values than those with higher temperatures in terms of prediction error. Therefore, while
considering time and resources, CNN-LSTM model is a good option for LST prediction.
Otherwise, BiLSTM is a sensible option for reliably predicting LST.

Both models require more time and resources to analyze the input data to achieve that
result, particularly when the pixel number is large. The larger the study region, the longer
it takes the model to train and forecast new pixel values. It is possible to develop a new
model that is more compact, provides comparable results, and has the potential to be
more efficient in terms of processing load and total time consumption.
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