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Abstract. In this paper, a channel reduced generalized Legendre (CRGL) filter and
corresponding filtered-x least mean square (FXLMS) and filtered-error least mean square
(FELMS) algorithms were proposed with applications in nonlinear active noise control
(NANC). The filter was developed by adding the cross products to the orthogonal Le-
gendre polynomials derived from the Volterra diagonal channel structure and updating
the dominant channel weights. The computation complexity was analyzed and compared
to validate the efficiency for the proposed CRGL filter and algorithms. Numerical simula-
tion results demonstrate effectiveness of the proposed filter with the FXLMS and FELMS
algorithms for nonlinear active noise control.
Keywords: Active noise control, Adaptive filter, Adaptive algorithm, Generalized Le-
gendre filter

1. Introduction. Vibration and noise was one of the main factors leading to fatigue
damage to local structures of aircraft, submarines and industrial equipment. Therefore,
noise control technology was widely used in military, industrial, automobile and other
fields [1,2]. Passive control technology depending on the absorption or reflection charac-
teristics of materials was first applied in various fields. However, it was difficult to meet
the growing noise control demand for the reason that the passive noise control technology
had the disadvantages of expensive materials, large volume and poor performance for low-
frequency noise [1]. Active noise control (ANC) technology according to the superposition
principle has inspired for its advantages of low cost, significant low-frequency performance
and easy implementation. It is likely to become a standard technology for noise reduction
in enclosed spaces in the future.

The linear solution of finite impulse response (FIR) filter equipped with the filtered-x
least mean square (FXLMS) algorithm [3,4] has been widely applied in actual ANC sys-
tems. However, the real systems may contain nonlinear properties which come from the
noise source, nonlinear primary and secondary paths. In the nonlinear cases, the linear so-
lution suffered performance degradation or even failed. Therefore, nonlinear active noise
control (NANC) technology was employed to process the nonlinearity [3-15]. The nonlin-
ear adaptive filter was one of the most active research areas in NANC area. At present,
the types of new filters mainly include function expansion filters [3-5], recursive filters [6,7]
and bilinear filters [8,9]. The recursive and bilinear filters faced the challenges of heavy
computational loads and unclear stability mechanism under the bounded input bounded
output (BIBO) criterion.
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The function expansion filters were famous for the simple structure and super perfor-
mance for handling nonlinearity from noise source and primary path. The Volterra [3]
and functional link artificial neural network (FLANN) [4] filters were first proposed. To
achieve better performance, several new filters have been developed, such as the gener-
alized FLANN (GFLANN) filter [10], Legendre neural network (LeNN) filter [11], expo-
nential functional link network (EFLN) filter [12], and generalized Chbyshev filter [13].
The Legendre filter expanding with Legendre expansions has been used in NANC with
good results. However, it does not use cross-terms and thus its performance can be neg-
atively affected when facing crossing nonlinearity in NANC. Therefore, one aim of our
contribution is to modify the original Legendre structure to include cross-terms, which
termed generalized Legendre filter. The heavy computational complexity caused by the
cross-terms limits the applications. Therefore, we further proposed a channel reduced gen-
eralized Legendre (CRGL) filter implementation which applied the channel reduced strat-
egy to reducing computational complexity [6-9,13,14]. The associated adaptive algorithm
using FXLMS and filtered-error LMS (FELMS) structure was derived. Furthermore, the
computational complexity compared with different filters and control performance under
various nonlinear effects were conducted to show the comprehensive performance of the
proposed filter and algorithms.
This paper is organized as follows. Section 2 proposes the CRGL filter. We derive the

FXLMS and FELMS algorithms and compare the computational complexity in Section 3.
Section 4 presents the computer simulations. Finally, the conclusion was given in Section
5.

2. Channel Reduced Generalized Legendre Filter. Legendre polynomials are a se-
ries of polynomials defined in the form of recursive equations. The recurrence relationship
of adjacent three terms for original Legendre polynomials which is a system of complete
and orthogonal polynomials is defined as follows:

ln(x) =
2n− 1

n
xln−1(x)−

n− 1

n
ln−2(x) (1)

where l0(x) = 1, l1(x) = x, l2(x) = (3x2 − 1) /2.
However, many nonlinear systems exist cross characteristic. Therefore, a generalized

Legendre filter with diagonal channel structure can be constructed based on Legendre
polynomials. In order to ensure the algebraic integrity of the constructed polynomial
structure, we multiply all the delay signals and remove the duplicates. The second order
form of the generalized Legendre filter with diagonal channel was shown in Table 1.

Table 1. Channel input vectors of the generalized Legendre filter

Input

vector
Elements

L0(n) x(n), x(n− 1), x(n− 2), x(n−N + 1)

L1(n)
[
3x2(n)− 1

]
/2,

[
3x2(n− 1)− 1

]
/2,

[
3x2(n− 2)− 1

]
/2, . . . ,

[
3x2(n−N + 1)− 1

]
/2

L2(n) x(n)x(n− 1), x(n− 1)x(n− 2), . . . , x(n−N + 2)x(n−N + 1)

L3(n) x(n)x(n− 2), x(n− 1)x(n− 3), . . . , x(n−N + 3)x(n−N + 1)

. . . . . .

LN (n) x(n)x(n−N + 1)

The output for the second order generalized Legendre filter is expressed as

y(n) = wT (n)l(n) = W T
0 (n)L0(n) +W T

1 (n)L1(n) + · · ·+W T
N (n)LN(n) (2)

where w(n) = [W0(n),W1(n), . . . ,WN(n)] designate the second order diagonal channel
weight coefficients and l(n) = [L0(n),L1(n), . . . ,LN(n)] the input signals. As shown
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in Figure 1, the signal vectors of L2 ∼ LN(n) which is time invariant are presented by
diagonal channels for N = 7. The energy of the cross diagonal structure always centralized
around the principles [14] in real systems, which lead to low calculation without sacrificing
performance using the channel reduced structure. We implemented the cross sections by
keeping the elements of a few main channels [13]. Assuming that M diagonal channels
of (solid line channels in Figure 1) are remained for the generalized Legendre filter, the
output of y(n) can be renovated as

y(n) = wT (n)l(n) = W T
0 (n)L0(n) +W T

1 (n)L1(n) + · · ·+W T
M+1(n)LM+1(n) (3)

Figure 1. Diagonal channel of cross terms

3. Adaptive Algorithm.

3.1. Filtered-x LMS algorithm. The adaptive FXLMS algorithm based on the chan-
nel reduced generalized Legendre filter for NANC system is shown in Figure 2. x(n) is the
noise source collected by the primary microphone. p(n) presented the primary transfer
function, dp(n) is the acoustic noise transmitted through the primary path, y(n) is the
control signal generated by the processer, and ds(n) the secondary control signal trans-
mitted through the secondary path noted as s(n). The error signal of e(n) sensed by the
error microphone was residual signal after superposition of the primary noise of dp(n) and
secondary noise of ds(n). The error signal reflects the control effect and was adopted to
update the weight coefficient of w(n).

Figure 2. Adaptive filtered-x LMS algorithm

From Figure 2, the secondary noise of ds(n) is symbolized as

ds(n) = s(n) ∗ y(n) (4)
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where s(n) is the real transfer function for secondary path, and ∗ denotes convolution.
The error signal is expressed as

e(n) = dp(n)− ds(n) (5)

Submitting (3) and (4) into (5), the error signal can be rewritten as

e(n) = dp(n)− s(n) ∗ y(n) = dp(n)− s(n) ∗
[
wT (n)l(n)

]
(6)

To obtain the optimal weights, the cost function is defined as

ξ = E
[
e2(n)

]
(7)

where E(.) is the expectation. In accordance with the LMS criterion, the weight coeffi-
cients can be updated by

w(n+ 1) = w(n) +
µ

2

∂ξ

∂w(n)
(8)

where µ is the step size, and ∂ξ
∂w(n)

is the general direction of gradient descent. We use

instantaneous gradient as the global gradient [15]

∂ξ

∂w(n)
= −2e(n)

∂ds(n)

∂w(n)
(9)

The update rule can be renovated as

w(n+ 1) ≈ w(n)− µe(n)
∂ds(n)

∂w(n)
(10)

where ∂ds(n)
∂w(n)

=
∑L−1

m=0
∂ds(n)

∂y(n−m)
· ∂y(n−m)

∂w(n)
, and L represents the secondary length.

The weight vector of w(n) is assumed time-varying slowly, that is

y(n−m) = wT (n−m)l[x(n−m)] ≈ wT (n)l[x(n−m)] (11)

We achieve
∂ds(n)

∂w(n)
= l(n) ∗ s′(n) (12)

where s′(n) is the estimation of the secondary path.
The update equation of FXLMS for the CRGL filter can be summarized as

w(n+ 1) = w(n)− µe(n)l′(n) (13)

3.2. Filtered-error LMS algorithm. In the FXLMS algorithm, all diagonal kernels
are filtered by the secondary estimation, which leads to heavy computational loads for
the NANC system. The FELMS structure can efficiently overcome this problem. In the
FELMS algorithm, the error signal was filtered by an error filter; meanwhile, the cross
kernels only need to be delayed some time.
As depicted in Figure 3, the updating for the FELMS algorithm can be derived as

w(n+ 1) = w(n)− µe′(n)l(n−M) (14)

where e′(n) = e(n) ∗ a(n) is the filtered error signal, and a(n) is the inversed secondary
path and expressed as

a(n) = inverse [s′(n)] =
[
s′L(n), s

′
L−1(n), . . . , s

′
1(n)

]
(15)

where L is the secondary length to make the error filter casual.

3.3. Computational complexity. For the feedforward nonlinear active noise control
system, it is assumed that the primary length is N and the secondary length is L. M
diagonal channels are maintained. The multiplication operations which need more time
to process compared with addition operation for the adaptive FXLMS and FELMS for
second-order CRGL filter include the following parts:
1) Multiplication for generating the cross channel kernels of l(n): M + 2;
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Figure 3. Adaptive filtered-error LMS algorithm

2) Multiplication for calculating the control output signal of y(n):
(
4N −M2+2MN−

M
)
/2;

3) Multiplication for filtering expanded basis function or error signal, FXLMS: L(M+2)
and FELMS: L;

4) Multiplication for updating the weight coefficients: (6N −M − 1)/2 + 1.
Table 2 shows the comparison of computational loads required for the second-order

Volterra (VFXLMS), FLANN (FSLMS), even mirror Fourier nonlinear (EMFN-FXLMS)
and proposed CRGL filters. It is apparent that the Volterra and EMFN filters have almost
the same computational loads, while EMFN demands time to generate the sine and cosine
base functions. The FELMS algorithm was computationally superior to the FXLMS al-
gorithms. The FSLMS needs the least multiplications, while additional time was needed
to generate the sine and cosine base functions.

Table 2. Computational loads for different algorithms

Items CRGL-FXLMS CRGL-FELMS VFXLMS/EMFN-FXLMS FSLMS

Cross term M + 2 M + 2 N 0

Output (4N −M2 + 2MN−M) /2 (4N −M2 + 2MN−M) /2 (N2 + 3N) /2 5N

Filtering L(M + 2) L L(N + 1) 5L

Updating (4N −M2 + 2MN−M) /2 + 1 (4N −M2 + 2MN−M) /2 + 1 (N2 + 3N) /2 + 1 5N + 1

Total 4N −M2 + 2MN+ L(M + 2) + 3 4N −M2 + 2MN+ L+ 3 N2 + 4N + L(N + 1) + 1 5N + 5L+ 1

N = 10, L = 10, M = 2 119 89 251 101

N = 30, L = 20, M = 2 319 239 1641 251

4. Computer Simulations. In this section, we designed three different nonlinear ex-
perimental conditions and compared the control effect to verify the performance of pro-
posed CRGL filter equipped with adaptive FXLMS and FELMS algorithms. Experiment
4.1 was the control comparison result under the condition of nonlinear logical chaotic
noise. Experiment 4.2 showed the control curves of Gaussian noise with the conditions of
second-order polynomial primary and secondary paths. Experiment 4.3 was the control
performance using the actual primary and secondary paths. For performance comparison,
we defined the normalized mean square error (NMSE) as

NMSE = 10lg

{
E

{
1

K

K∑
k=1

E[e2(n)]

σ2
d

}}
(16)
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where σ2
d was the energy value of the primary noise at the error sensor, andK was taken as

200. In the following experiments, 2 main diagonal channels were selected for generalized
Legendre filter. The register length of filter was chosen to be 10 in Experiments 4.1 and
4.2, 30 in Experiment 4.3.

4.1. Nonlinear noise source. The primary noise was nonlinear logistic chaotic noise,
which was a commonly used model for validating the filter performance of speech envi-
ronment, cavity internal noise environment, etc. [3,4]. We generated the logistic chaotic
noise using the following formula:

x(n+ 1) = λx(n)[1− x(n)] (17)

where λ = 4 and x(1) = 0.9.
The primary transfer function used in the experiment was defined as

P (z) = z−5 − 0.3z−6 + 0.2z−7 (18)

The secondary paths of minimum phase and non-minimum phase were given by

Sm(z) = S(z) = z−2 + 0.5z−3

Sn−m(z) = S(z) = z−2 + 1.5z−3 − z−4
(19)

The step sizes for secondary path with minimum phase were chosen as second-order
CRGL-FXLMS and CRGL-FELMS: µ1 = 0.018, µ2 = 0.006, second-order VFXLMS:
µ1 = 0.028, µ2 = 0.008, first-order FSLMS: µ1 = 0.026, µ2 = 0.006 and second-order
EMFN-FXLMS: µ1 = 0.018, µ2 = 0.006, where µ1 is the step size for linear section of
the filter, µ2 for nonlinear section. For the non-minimum phase secondary path, the steps
were second-order CRGL-FXLMS and CRGL-FELMS: µ1 = 0.012, µ2 = 0.006; second-
order VFXLMS: µ1 = 0.018, µ2 = 0.006, first-order FSLMS: µ1 = 0.018, µ2 = 0.008 and
second-order EMFN-FXLMS: µ1 = 0.018, µ2 = 0.006.
Figure 4 showed the control curves of CRGL-FXLMS, CRGL-FELMS, VFXLMS, FS-

LMS and EMFN-FXLMS algorithms. We can see that the CRGL, Volterra and FLANN
filter containing linear components have better control performance than the EMFN fil-
ter without linear section. The main reason was that the linear approximate ability of
EMFN filter depends on the linear components of the Taylor expansion of sine function.
The CRGL filter proposed in this paper achieved better control performance and faster
convergence speed under the minimum phase secondary path than the non-minimum
phase for the reason of stronger approach ability than prediction.

(a) (b)

Figure 4. Control curves for logistic chaotic noise, secondary path with
(a) minimum and (b) non-minimum phase
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4.2. Nonlinear primary and secondary paths. The second-order polynomial primary
and secondary paths were assigned to be nonlinear models in this experiment. The primary
path transfer function was defined as

d(n) = x(n) + 0.8x(n− 1) + 0.3x(n− 2) + 0.4x(n− 3)− 0.8x(n)x(n− 1)

+ 0.9x(n)x(n− 2) + 0.7x(n)x(n− 3) (20)

The relationship between the secondary signal at the error sensor and the control signal
of y(n) was

ds(n) = y(n) + 0.35y(n− 1) + 0.09y(n− 2)− 0.5y(n)y(n− 1) + 0.4y(n)y(n− 2) (21)

The input noise signal was uniform white noise, and the iteration steps used in the
experiment were second-order CRGL-FXLMS and CRGL-FELMS: µ1 = 0.008, µ2 =
0.004, second-order VFXLMS: µ1 = 0.008, µ2 = 0.006, first-order FSLMS: µ1 = 0.006,
µ2 = 0.004 and second-order EMFN-FXLMS: µ1 = 0.018, µ2 = 0.006.

The comparison of the control performance under nonlinear primary and secondary
paths was shown in Figure 5. The CRGL, Volterra and EMFN filters achieved lower
mean square error compared with FLANN filter for the cross terms exist. The CRGL
filter needs less computational loads than Volterra and EMFN filters.

Figure 5. Control curves for gauss noise under nonlinear primary and
secondary paths

4.3. Real primary and secondary paths. A real measured primary and secondary
paths [1] were adopted to test the practical performance. The magnitude and phase re-
sponses versus frequency of the practical paths were shown in Figure 6. The secondary
path was a weak nonlinearity. Three sinewaves at the frequencies of 120 Hz, 360 Hz and
640 Hz were consisted in the reference noise which was normalized to have a unit power.
The signal noise ratio (SNR) at the error sensor is set to 40 dB. The steps were second-
order CRGL-FXLMS and CRGL-FELMS: µ1 = 0.0006, µ2 = 0.0006, second-order VFXL-
MS: µ1 = 0.0006, µ2 = 0.0006, first-order FSLMS: µ1 = 0.0008, µ2 = 0.0004 and second-
order EMFN-FXLMS: µ1 = 0.0004, µ2 = 0.0002.

The NMSE curves were shown in Figure 7. CRGL and Volterra filters have the optimal
control performance with the value of about −35 dB for their similar structure. The
FLANN filter has poor performance of −23.5 dB for the leak of cross terms. The EMFN
filter has a medium performance of −30 dB for the reason that the filter did not contain
the linear section in comparison to the CRGL and Volterra filters.
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Figure 6. Amplitude and phase responses of the actual primary and sec-
ondary path

Figure 7. Control curves for saturated noise under measured primary and
secondary paths

5. Conclusions. In this paper, we propose a channel reduced generalized Legendre (CR-
GL) filter and the corresponding adaptive FXLMS and FELMS algorithms with applica-
tions in NANC area. The generalized Legendre filter was developed by adding the cross
products to the orthogonal Legendre polynomials based on the Volterra filter. A channel
reduced strategy of maintaining dominant channels was adopted to simplify the diagonal
channel elements. The computation complexity for CRGL, Volterra, FLANN and EMFN
was analyzed and compared. Computer simulation results show the better performance
of the proposed filters for nonlinear active noise control system. In the future, the partial
update algorithm and normalized step size algorithm could be explored to further reduce
the computational loads and achieved faster convergence speed.
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