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Abstract. This paper studies the adaptive fuzzy formation control problem for multiple
unmanned helicopters. The desired ultimate position information is introduced into the
consensus error; thus, the formation control can be carried out. The unknown dynamics
in the modeling process is approximated by FLSs. Combining with backstepping recursive
design, an adaptive fuzzy formation control algorithm is developed. Based on Lyapunov
stability theory, the boundedness of the closed-loop signals and the formation error con-
vergence can be guaranteed, respectively.
Keywords: Fuzzy formation control, Unmanned helicopter, Backstepping recursive de-
sign

1. Introduction. The unmanned system is an important class of system, it is because
many difficult and dangerous tasks can be completed by unmanned system, and thus
humans do not need to take a risk to complete these tasks. Many unmanned systems
have been widely used in practical engineering, such as the formation of unmanned aerial
vehicle (UAV) [1], and the information consensus of multiple unmanned vehicle [2].

As the unmanned system becomes more and more attractive, the control study for
unmanned system is also popular, especially for the formation control. The time-varying
formation control design has been studied in [3] for unmanned vehicle, the formation
information is introduced into the consensus error, and thus the convergence of consensus
error can guarantee that the formation control can be achieved. Subsequently, the authors
in [4] extend the work in [3] to the formation control problem under the switching topology.
A leader-follower formation control problem has been investigated in [5] for unmanned
aircraft systems, for which, the communication among all aircraft is not needed. The
leader-follower fault-tolerant formation control problem is also studied in [6] for UAV, the
actuator faults and potential collisions are all considered in the controlled system, and the
developed controllers are divided into the outer-loop controller and inner-loop controller.

Recently, the intelligent control method has been recognized as an effective control
method for the unmanned systems. The fuzzy logic systems (FLSs) and radial basis func-
tion neural networks (RBFNNs) can effectively deal with the unknown dynamics existing
in the modeling process; thus, many adaptive fuzzy formation control results have been
achieved in [7,8] for unmanned systems. In [7], the authors have studied the adaptive
fuzzy formation control problem of unmanned surface vehicles, the considered unmanned
surface vehicles contain unknown model nonlinearity and actuator saturation, and the
unknown model nonlinearity and actuator saturation are solved by using the FLSs and
auxiliary system, respectively. A neural network-based control method is proposed to
achieve the formation control in [8] for second-order autonomous unmanned systems, and
two cases are considered in the formation control design, that is, the velocity of leader is
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constant and time-varying function. Although many research achievements for the forma-
tion control of unmanned systems have been obtained, the formation control of unmanned
helicopter is always ignored. The formation control study for unmanned helicopter is al-
so necessary, and it plays an important role in search-and-rescue and war. The authors
in [9] have studied the control problem of unmanned helicopter, but the control study
is for single unmanned helicopter. Two classes of formation control problems have been
investigated in [10] for multiple unmanned helicopters via sliding mode control, but the
intelligent control approach to the formation for multiple unmanned helicopters is less
reported. Motivated by the above works, an adaptive fuzzy formation control algorithm
has been developed for multiple unmanned helicopters. Its main contributions can be
summarized as the following.
1) With the help of the approximated technique benefiting from FLSs, the unknown

dynamics existing in the modeling process have been handled successfully.
2) A novel formation control algorithm has been developed for unmanned vehicle by

using intelligent control method instead of the sliding control one in [10]. Although the
authors in [9] have studied the control problem of unmanned helicopter, the formation
control problem cannot be solved.

2. Problem Statement and Preliminaries.

2.1. The kinematics equations of attitude for helicopter. As stated in [9], the
attitude of helicopter can be expressed as a quaternion, and it has the following form

k = λ1i+ λ2j + λ3k + λ4 = [λ1 λ2 λ3 λ4]
T =

 u sin
β

2

[0.6hl] cos
β

2

 =

[
δ
ζ

]
(1)

where u = [ux uy uz]
T denotes the unite vector and its norm is equal to one. β denotes

the direction angular, h and l are suitable constants with hl = 5/3, δ and ζ represent
a vector and a scalar, respectively. Thus, the direction cosine matrix parameterized by
quaternion k can be expressed as

M(k) = I − 2δT δI + 2δδT + 2ζΛ(δ)

= I + 2ζΛ(δ) + 2Λ2(δ)

=

 λ21 + λ24 − λ22 − λ23 2(λ1λ2 + λ3λ4) 2(λ1λ3 − λ2λ4)

2(λ1λ2 − λ3λ4) λ22 + λ24 − λ21 − λ23 2(λ2λ3 + λ1λ4)

2(λ1λ3 − λ2λ4) 2(λ2λ3 − λ1λ4) λ23 + λ24 − λ21 − λ22

 (2)

where I ∈ R3×3 is an identity matrix. Λ ∈ R3×3 represents a skew symmetric matrix,
which can be described as

Λ(δ) =

 0 −δ3 δ2
δ3 0 −δ1
−δ2 δ1 0

 (3)

The derivative of the quaternion can be written as

k̇ =

[
δ̇

ζ̇

]
=

1

2
K(k)w (4)

with K(k) =

[
ζI + Λ(δ)

−δT

]
=

[
K1(k)

−δT

]
=


λ4 −λ3 −λ2
λ3 λ4 −λ1
−λ2 λ1 λ4
−λ1 −λ2 −λ3

. w = [wx wy wz]
T ∈

R3 is the angular velocity in the body-fixed frame. The error attitude matrix is given as
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Ke = KdK
T , and the unit quaternion of Ke is expressed as ke = [δe, ζe]

T . Similar to [10],
the error kinematic is defined as

k̇e =
1

2
K(ke)w =

1

2

[
K1(ke)

−δTe

]
w (5)

The key control objective is to design a controller ω which can guarantee the stability of
quaternion error dynamics and ke = [0 0 0 1]T with ∥δe∥ = 0 and ∥ζe∥ = 1.

Lemma 2.1. [9] With respect to the error kinematics (5), if the controller ω is designed
as

ω = −cw
(
KT

1 (ke) + (1− ζe)I
)
δe = −cwδe (6)

then, for any given positive constant cw, ke will converge to [0 0 0 1]T .

Lemma 2.2. [7] For any continuous function ρ(υ) defined over a compact set Λ, and any
given positive constant ψ, there always exists an FLS ρ̂ (υ|µ∗) = µ∗Tϕ(υ) such that

sup
υ∈Λ

∣∣ρ(υ)− µ∗Tϕ(υ)
∣∣ ≤ ψ (7)

where ϕi(υ) are fuzzy basis functions, and they are usually chosen as Gaussian functions.

ϕ(υ) = [ϕ1(υ), ϕ2(υ), . . . , ϕN(υ)]
T
/∑N

1 ϕi(υ) are the fuzzy basis function vectors and sat-

isfy that 0 < ϕT (υ)ϕ(υ) ≤ 1. µ∗ = [µ∗
1, µ

∗
2, . . . , µ

∗
N ]

T denotes the ideal weight vector and
N is the fuzzy rules number.

Figure 1. The structure of unmanned helicopter

2.2. The developed dynamic model structure. As shown in Figure 1, the unmanned
helicopter contains six degrees of freedom, that is, the position d = [dx dy dz]

T ∈ R3 and
the attitude [θ ϕ φ]T ∈ R3. The linear velocity and the angular velocity are expressed as
v = [vx vy vz]

T ∈ R3 and w = [wx wy wz]
T ∈ R3, respectively. Therefore, the kinematic

model of helicopter can be written as

ḋ = K(k)v (8)

and

k̇ =
1

2
K(k)w (9)

where K(k) is the direction cosine matrix, and it satisfies ∥K(k)∥2 ≤ β. With the help
of (8) and (9), the proposed linear and angular accelerations of our model contain the
following relationship:

v̇ = −S(w)v +MTf +Gv +B1u1 +∆1 + dv(s, θ1)
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ẇ = A−1S(Aw)w + Cw +B2u2 +∆2 + dw(s, θ2) (10)

where f = [0 0 f0]
T ∈ R3 is the gravity, A ∈ R3×3 denotes a symmetric positive define

inertial matrix. u1 = [0 0 u4]
T ∈ R3 and u2 = [u1 u2 u3]

T ∈ R3 are the control input
to drive the unmanned helicopter. G = diag[g1 g2 g3] ∈ R3×3, C = diag[c1 c2 c3] ∈
R3×3, B1 ∈ R, and B2 = diag[b21 b22 b23] ∈ R3×3, ∆1 = diag[0 0 ∆13] ∈ R3×3 and
∆2 = diag[∆21 ∆22 ∆23] ∈ R3×3 are the coefficients confirmed by flight data through the
method in [10]. dv ∈ R3 and dw ∈ R3 denote the uncertainties in the modeling process,
which can be approximated by the FLSs.

3. Distributed Adaptive Fuzzy Formation Control of Unmanned Helicopter
and Stability Analysis. In this section, the desired position information of each un-
manned helicopter is introduced into the consensus error, and the nonlinear dynamics
caused by modeling process are approximated by using FLSs. Combining with backstep-
ping recursive design, an adaptive fuzzy controller is developed to achieve the formation
of unmanned helicopters. Based on the Lyapunov stability theorem, all the signals in
closed-loop are guaranteed to be bounded, and the formation error convergence can be
guaranteed.
The developed control algorithm is based on two steps backstepping technique, its basic

coordinate transformation is defined as

zi,1 =
N∑
j=1

ai,j(di + ρi − dj − ρj) + bi,0(di + ρi − yr) (11)

zi,2 = vi − αi,1 (12)

ei = w − kwζe (13)

where zi,1 ∈ R3 denotes the formation error, and ei ∈ R3 represents the attitude error.
αi,1 ∈ R3 is an immediate control signal.
Step 1: From (8), the derivative of position of unmanned helicopter ri can be expressed

as
ḋi =Mvi =M(zi,2 + αi,1) (14)

Consider the following Lyapunov function as

V1 =
1

2

N∑
i=1

zTi,1zi,1 (15)

Combining (14) and (15), it can be shown that

V̇1 =
N∑
i=1

zTi,1żi,1

=
N∑
i=1

zTi,1

(
N∑
j=1

ai,j (Mzi,2 +Mαi,1 + ρ̇i −Mvj − ρ̇j) + bi,0 (Mzi,2 +Mαi,1 − ẏr)

)
(16)

Design the virtual controller αi,1 as

αi,1 = (pM)−1

[
−ci,1zi,1 −

N∑
j=1

ai,j (ρ̇i −Mvj − ρ̇j) + bi,0ẏr

]
(17)

where ci,1 ∈ R3 is positive design parameter vector, p =
∑N

j=1 ai,j + bi,0.
The derivative of V1 satisfies

V̇1 ≤
N∑
i=1

{
−ci,1zTi,1zi,1 + pzTi,1Mzi,2

}
(18)
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Step 2: With the help of (10) and (12), the derivative of vi can be written as

v̇i = −A−1S(Awi)wi +MTf +Gv +Biu1 +∆1 + dv(s, θ1) (19)

Since the nonlinear dynamics dv(s, θ1) ∈ R3 is unknown, an FLS is utilized to approxi-
mate it as

dv(s, θ1) = W T
i φi(s, θ1) + εi (20)

where εi ∈ R3 denotes the approximate error, and there exists an unknown constant ε∗i
such that ∥εi∥ ≤ ε∗i .

Construct the following Lyapunov function as

V2 = V1 +
N∑
i=1

{
1

2
zTi,2zi,2 +

1

2
tr
{
W̃ T

i γ
−1
i W̃i

}}
(21)

with γi being a design parameter matrix.
Then the derivative of V2 satisfies

V2 = V̇1 +
N∑
i=1

{
zTi,2żi,2 − tr

{
W̃ T

i γ
−1
i

˙̂
Wi

}}
= V̇1 +

N∑
i=1

{
zTi,2
(
−S(wi)vi +MTf +Gv +Biu1 +∆1 +W T

i φi(s, θ1) + εi
)

− tr
{
W̃ T

i γ
−1
i

˙̂
Wi

}}
(22)

Design the controller ui,1 and the parameter adaptive law of Ŵi as

u1 = BT
1

(
−ci,2z2i,2 − zi,2/2− zi,1

(
N∑
j=1

ai,j + bi,0

)
M + S(wi)vi −MTf −Gv −∆1

− Ŵ T
i φi(s, θ1)

)
(23)

˙̂
Wi = γiφi(s, θ1)z

T
i,2 − σiŴi (24)

where ci,2 > 0 and σi > 0 are positive parameters.
Substituting (23) and (24) into (22) yields

V2 ≤
N∑
i=1

{
2∑

j=1

−ci,jzTi,jzi,j + tr
{
W̃ T

i γ
−1
i σiŴi

}
+Υi

}
(25)

where Υi =
1
2
ε∗2i .

Taking (10) and (13) into account, the derivative of w can be expressed as

ẇi = A−1S(Aw)w + Cw +B2u2 +∆2 + Θ̃T
i φi(s, θ2) + ε̄i (26)

To prove the stability of attitude error system, construct the following Lyapunov func-
tion

V3 =
N∑
i=1

{
1

2
eTi ei +

1

2
tr
{
Θ̃T

i ς
−1
i Θ̃i

}}
(27)

where ςi is a design parameter matrix.
From (26) and (27), we can obtain

V̇3 =
N∑
i=1

{
eTi ėi − tr

{
Θ̃T

i ς
−1
i

˙̂
Θi

}}
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=
N∑
i=1

{
eTi
(
A−1S(Aw)w + Cw +B2u2 +∆2 +ΘT

i φi(s, θ2) + ε̄i
)

− tr
{
Θ̃T

i ς
−1
i

˙̂
Θi

}}
(28)

Since the nonlinear dynamics dw(s, θ1) ∈ R3 is unknown, an FLS is utilized to approx-
imate it as

dw(s, θ1) = ΘT
i φi(s, θ2) + ε̄i (29)

where ε̄i ∈ R3 denotes the approximate error, and there exists an unknown constant ε̄ ∗
i

such that ∥ε̄i∥ ≤ ε̄ ∗
i .

Design the controller u2 and the adaptive law of Θ̂i as

u2 = B−1
2

(
−c̄iei − A−1S(Aw)w − Cw −∆2 − Θ̂T

i φi(s, θ2)
)

(30)

˙̂
Θi = ςiφi(s, θ2)e

T
i − σ̄iΘ̂i (31)

where c̄i and σ̄i are positive design parameters.
Substituting (30) and (31) into (28) yields

V̇3 ≤
N∑
i=1

{
−c̄ieTi ei + tr

{
Θ̃T

i ς
−1
i σ̄iΘ̂i

}
+ d̄i

}
(32)

where d̄i =
1
2
∥ε̄i∥∗2.

Theorem 3.1. For unmanned helicopter system (10), under Lemma 2.1, and Lemma 2.2,
if the virtual controller is designed as (23) and (30), the actual controllers are designed
as (17), and the parameter adaptive laws are designed as (24) and (31), the developed
control scheme can guarantee that all the signals in closed-loop system are bounded, and
the formation error will converge to zero.

Proof: Consider the following Lyapunov function

V = V2 + V3 (33)

From (25) and (32), we have

V̇ ≤
N∑
i=1

{
−c̄eTi ei + tr

{
Θ̃T

i ς
−1
i σ̄iΘ̂i

}
+ d̄−

2∑
j=1

ci,jz
T
i,jzi,j + tr

{
W̃ T

i γ
−1
i σiŴi

}
+Υi

}
(34)

Based on Young’s inequality, one has

tr
{
Θ̃T

i ς
−1
i σ̄iΘ̂i

}
≤ −1

2
tr
{
Θ̃T

i ς
−1
i σ̄iΘ̃i

}
+

1

2
tr
{
ΘT

i ς
−1
i σ̄iΘi

}
(35)

tr
{
W̃ T

i γ
−1
i σiŴi

}
≤ −1

2
tr
{
W̃ T

i γ
−1
i σiW̃i

}
+

1

2
tr
{
W T

i γ
−1
i σiWi

}
(36)

Substituting (35) and (36) into (34) yields

V̇ ≤
N∑
i=1

{
−c̄ieTi ei −

1

2
tr
{
Θ̃T

i ς
−1
i σ̄iΘ̃i

}
−

2∑
j=1

ci,jz
2
i,j −

1

2
tr
{
W̃ T

i γ
−1
i σiW̃i

}
+Di

}
(37)

where Di =
1
2
tr
{
W T

i γ
−1
i σiWi

}
+ 1

2
tr
{
ΘT

i ς
−1
i σ̄iΘi

}
+Υi + d̄i.

Choose Ci = min {c̄i, ci,j, σi, σ̄i} and C = min1≤i≤N{Ci}, and define D =
∑N

i=1Di. (37)
can be written as

V̇ ≤ −CV +D (38)

Integrating two sides of (38) on [0, t] yields

V (t) ≤ (V (0)−D/C)e−Ct +D/C (39)
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From (39), it can be concluded that the closed-loop signals zi,1, zi,2, Ŵi, and Θ̂i are all
bounded. Furthermore, the formation error satisfies

∥zi,1∥ ≤
√

2[(V (0)−D/C)e−Ct +D/C] (40)

which means that the formation error will converge to a compact set, and the compact
set can be adjusted arbitrary small by increasing the parameters ci,1, ci,2, c̄i,1, γi, and ςi.

However, the small error will lead to large control action, and the parameters should
be selected to satisfy the desired performance. Thus, the proof of Theorem 3.1 has been
completed.

4. Conclusions. In this paper, a novel adaptive fuzzy formation control scheme has been
developed for multiple unmanned helicopters. FLSs are utilized to identify the unknown
dynamic existing in the modeling process. The formation information is introduced in-
to the consensus error to achieve the formation control. Combining with backstepping
technique, an adaptive fuzzy formation controller is developed. Based on Lyapunov sta-
bility theorem, it is proven the boundedness of closed-loop signals and formation error
convergence. The future work is aimed at studying the fault-tolerant formation control
for multiple unmanned helicopters with unknown actuator faults.
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