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Abstract. The supercavitating vehicles can achieve high speed but they face techni-
cal challenges in system stability, nonlinear dynamics and unpredictable external distur-
bances. In order to design the control system of supercavitating vehicles, a sliding mode
control method based on extended state observer is proposed. An auxiliary state is con-
structed according to the system states to refer to the total disturbance, which includes
the uncertain dynamics, external disturbance and nonlinear planing force. The linear ex-
tended state observer is introduced to estimate the total disturbance. To obtain differential
approximation in dynamical model, the tracking differentiator is designed. The stability
of the system is proved by Lyapunov stability theorem. Finally, the tracking performance
of the system under disturbance and undisturbance is simulated. The simulation results
show the effectiveness of the control method.
Keywords: Supercavitating vehicle, Sliding mode control, Extended state observer,
Tracking differentiator

1. Introduction. Supercavitating vehicles (SV) are a type of underwater vehicles that
can reach extremely high speed by exploiting supercavitation technology. This emerging
technology uses the proper design of a cavitator attached to the vehicle nose to create
a large gas bubble that envelopes the vehicle body to eliminate skin friction drags, and
the gas bubble is called supercavity generated from a sharp edge of the cavitator. Thus,
there are only control surfaces such as cavitator and parts of fins and the tail of the hull
contacting with the water. The supercavity provides an opportunity for SV to achieve high
speed and underwater drag reduction. At the same time, designing a proper control system
for SV is still one of the most challenging research areas because of many factors such as
nonlinear planing force, highly coupled dynamics, model uncertainties and unpredictable
external disturbances [1].

In recent years, control strategies designed for SV have been studied in a series of papers,
such as sliding mode control [1, 2, 3], adaptive control [4, 5], robust predictive control [6],
and active disturbance rejection control [7]. Among the control algorithms, sliding mode
control is considered as the most popular scheme and has high applicability in reality.
However, it is attractive to reduce chattering caused by unknown disturbance in sliding
mode control. In [1], a fractional-order sliding mode control method is proposed to achieve
the depth and pitch attitude tracking control of SV. However, the unknown disturbance
in the control system has not been properly dealt with. In [2], a boundary sliding mode
controller based on disturbance observer is proposed for the dive plane dynamics of an
SV. The simulation results show that the presented sliding mode controllers have shown
good performance for both stabilization and tracking responses. However, disturbance
observer is transplanted to the control techniques only for external disturbances estimation
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where the internal system uncertainties are not addressed. In [8], two methods of sliding
mode controllers combined with extended state observer and adaptive law are proposed.
Simulation results show that extended state observer is the only option for disturbance
that are absolutely unknown. The SV is subjected to unpredictable disturbances during
maneuvering due to the complex underwater environment and the uncertainty of the
model. Under this circumstance, a linear extended state observer (LESO) is proposed
to solve the above problems. The main strength for LESO is that it can simultaneously
address the internal uncertainties and external disturbances in real time for systems in
the absence of accurate model information. The essence of LESO is that it treats the
inertial uncertainties and external disturbances as the total uncertainties. Then, the total
uncertainties, as a newly extended state, are observed by a state observer rather than a
disturbance one. With the aid of the linear or nonlinear nonsmooth feedback functions,
high precision and robustness of the estimations can be achieved [9].
In this paper, the sliding mode control method was exploited for designing the controller

of the SV. The nonlinear planing force and external disturbance of the SV are regarded
as the lumped disturbance, and LESO is used to estimate the lumped disturbance. The
stability of the system is proved by Lyapunov stability theorem. Finally, simulation results
show that this method can reduce the chattering of sliding mode control in the presence
of unknown disturbance of SV.
The specific contributions of this paper are as follows.
1) An auxiliary state is constructed according to the system states to refer to the total

disturbance, which includes the uncertain dynamics, external disturbances and nonlin-
ear planing force. The LESO is introduced to estimate the total disturbance, such design
decreases the computational burden dramatically, while making it very simple and achiev-
able to realize the disturbance compensation.
2) In this paper, a sliding mode control method based on LESO was proposed for SV

with consideration of model uncertainty, unpredictable external disturbances and nonlin-
ear planing force. Compared with the existing works, the highlight of the proposed control
scheme is that it can simultaneously address the internal uncertainties and external dis-
turbance in real time for systems.
3) The stability of the control system is proved by the Lyapunov theorem.
This paper is organized as follows. In Section 2, the nonlinear model of the SV on

vertical plane is briefly introduced. Section 3 introduces the control scheme designed in
this paper. Simulation results are given in Section 4 and the conclusion part is presented
in Section 5.

2. Modeling of SV on Vertical Plane. The forces on the vertical plane of the SV are
mainly the gravity on the body center of the vehicles, the fluid force on the cavitator, the
planing force on the tail of the vehicle and the thrust, etc. Based on [1, 10], the dynamic
model of the vehicles in the vertical plane is given as follows:
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where z is the vertical depth, θ is the pitch angle, v is the vertical speed, and q is the
pitch rate. δc is the cavitator deflection angle, δe is the fin deflection angle, Iyy is the
inertial moment, M is the mass of the SV, and FP is the planing force. The controller
design and simulation in this paper adopt the standard SV model in [11], and the related
SV parameters are described in Table 1.

Table 1. Model parameters of the SV

Parameters Value Unit Description
Cx0 0.82 Lift coefficient
g 9.81 m/s2 Gravitational acceleration
L 1.8 m SV length
Lc 17/28L m Cavitation force arm
Le −11/28L m Fin force arm
m 2 Density ratio ρb/ρ
n 0.5 Fin effectiveness
Rn 0.091 m Cavitator radius
R 0.0508 m SV radius
V 75 m/s Body-axis forward speed
ρ 1000 kg/m3 Density of water
ρb 2000 kg/m3 Uniform density of SV
σ 0.03 Cavitation number

3. Control Design.

3.1. Tracking differentiator design. To obtain differential approximation, the track-
ing differentiator is designed. We first give the definition of the tracking differentiator as
follows.

Definition 3.1. The following system can be utilized [12]:{
ẏ1(t) = y2(t)

ẏ2(t) = f(y1(t), y2(t))
(2)

If the solution to this system satisfies the condition y1(t)t→∞ → 0, y2(t)t→∞ → 0, then
for any constant T > 0 and bounded integrable function v(t), the solution x1(t) of system

(3) satisfies limR→∞
∫ T

0
|x1(t)− v(t)|dt = 0.{

ẋ1(t) = x2(t)

ẋ2(t) = R2f(x1(t)− v(t), x2(t)/R)
(3)

The tracking differentiator that satisfies Definition 3.1 is designed as follows:{
ẏ1(t)=y2(t)

ẏ2(t)=−R2{a1[(y1(t)− v(t)) + tanh(y1(t)− v(t))]}−R2{a2[y2(t)/R + tanh(y2(t)/R)]}
(4)

Lemma 3.1. For the designed tracking differentiator, if the parameters satisfy a1 >
0, a2 > 0, then the system is uniformly asymptotically stable at the origin (0, 0) [13].
Therefore, for any bounded integrable function v(t), the solution of system (4) satisfies
y1(t) → v(t), y2(t) → v̇(t).

3.2. Sliding mode controller design. In order to facilitate the controller design, the
dynamic model (1) of the supercavitating vehicles can be rewritten as
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Ẋ1 = A1X1 +B1X2

Ẋ2 = A2X2 +B2u+ Fg + d̃

d̃ = FP + f(w, t)

(5)

where X1 = [z, θ]T , X2 = [v, q]T , u = [δc, δe]
T , Fg = [g, 0]T , d̃ contains both parameter

uncertainty and external disturbance f(w, t).
The actual state variables of the system (5) are [X1, X2]

T , assume the reference state
variables of the system are [R1, R2]

T , then the error state variables are written as[
E1

E2

]
=

[
R1

R2

]
−

[
X1

X2

]
(6)

Therefore, the error model is
Ė1 = A1E1 +B1E2 − A1R1 −B1R2 + Ṙ1

Ė2 = A2E2 −B2u− Fg − d̃− A2R2 + Ṙ2

d̃ = FP + f(w, t)

(7)

The switch function is S = CE1 + E2, and consider the following reaching law [14] is
Ṡ = −τS − σsgn(S). Taking the derivative of the sliding manifold, we have

Ṡ = CĖ1 + Ė2

= CA1Ė1 + (CB1 + A2)Ė2 −B2u− d̃− Fg +K
= −τS − σsgn(S)

(8)

where K = −CA1R1 − (CB1 +A2)R2 +CṘ1 + Ṙ2. Then, solving for u(t) in (8) gives the
control law

u(t) = B−1
2

[
CA1E1 + (CB1 + A2)E2 − d̃− Fg +K + τS + σsgn(S)

]
(9)

3.3. Linear extended state observer design. Note that the control law consists of the
lumped disturbances, which are not completely known to us. In this subsection, a LESO is
proposed to estimate the unknown system uncertainties accurately [15]. Considering that
the kinematic and dynamic equation of the supercavitating vehicles contain uncertain
parameters and unmodeled characteristics, defining a new extended state variable X3 to
refer to the system’s unknown lumped disturbances, then the dynamic model (5) can be
extended as the following form

Ẋ1 = A1X1 +B1X2

Ẋ2 = A2X2 +B2u+ Fg +X3

Ẋ3 = g(t)

(10)

Remark 3.1. The unknown lumped disturbances X3 are differentiable and bounded by an
unknown positive constant, and its derivative g(t) is also bounded by a positive constant
g(t), that is ||g(t)|| ≤ g(t).

The LESO is designed to estimate the system’s unknown lumped disturbances. Namely,
based on [16], the LESO model for systems (10) is given by{

Ż1 = Z2 − β01(Z1 −X2) + B2u+ A2X2 + Fg

Ż2 = −β02(Z1 −X2)
(11)

where Z2 = [z21, z22]
T are the estimations of the disturbance d̃, and β01, β02 are the

relevant design parameters.
With the disturbance estimated by the LESO, the control law (9) is written as

uleso(t) = B−1
2 [CA1E1 + (CB1 + A2)E2 − Z2 − Fg +K + τS + σsgn(S)]

K = −CA1R1 − (CB1 + A2)R2 + CṘ1 + Ṙ2

(12)
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Proof: (Lyapunov stability). In order to examine the stability of the closed-loop sys-
tem, one must develop an expression for the observer error dynamics. Defining the ob-

server error Eleso1 = Z1 −X2, Eleso2 = Z2 −X3 = Z2 − d̃, the observer error dynamics are
expressed as {

Ėleso1 = Eleso2 − β01Eleso1

Ėleso2 = −g(t)− β02Eleso1

(13)

The stability of the LESO has been obtained by selecting the appropriate param-
eters β01 and β02 [17]. When the observer is stable, the derivative of vector Ėleso =[
Ėleso1, Ėleso2

]T
= 0, and then, the errors of estimation can be written as{

Eleso1 = −g(t)/β02

Eleso2 = −g(t)β01/β02
(14)

From (14), it is clear that the estimation errors are determined by the parameters β01

and β02. At the same time, parameter β01 should be larger and parameter β02 should be
small enough. Thus, via tuning these parameters properly, the estimation errors Eleso1

and Eleso2 can be limited to be small enough.
The following Lyapunov function candidate for the sliding variable is considered

V =
1

2
STS (15)

where S = [s1, s2]
T , which is an energy-like function with positive definite V > 0 of the

sliding variables.
The time derivative of this function can be given by

V̇ = ST Ṡ (16)

Then, substituting Equations (8) and (12) into (16) will lead to

V̇ = ST Ṡ

= ST
(
−τS − σsgn(S) + Z2 − d̃

)
= −τS2 − σ|S|+ ST

(
Z2 − d̃

)
= −τS2 − σ|S| − STEleso2

= −τS2 − σ|S|+ ST (g(t)β01/β02)

≤ −τS2 − σ|S|+ ST (g(t)β01/β02)

(17)

where g(t) is an unknown positive constant. Appropriate β01, β02, τ , σ can be selected
such that V̇ < 0.

Remark 3.2. In (17), the boundary layer of the sliding surface is affected by the estima-
tion error of the LESO. Thus, parameters selection of the LESO is more important because
it not only determines the performance of the LESO observing the lumped disturbance but
also impacts the behavior of the sliding surface.

4. Simulation. In this section, simulations are conducted for the supercavitating vehicle
to illustrate the performance of the proposed controller. The controlled vehicle variable
is the vertical depth z.

4.1. Case1: Depth tracking without external disturbance. In this subsection, the
step response in the vertical position is carried out with a 1 m step input introduced
for the depth z, the corresponding responses for vehicle states are given in Figure 1 for
references. It can be observed that the vehicle reaches the set point command with no
overshoot as illustrated, and the transition motions are very smooth.
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Figure 1. Tracking responses due to depth step input

The corresponding control actions are plotted in Figure 2. It can be observed that these
signals are smooth enough with almost no chattering and no saturation.
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Figure 2. Control actions due to depth step input

4.2. Case2: Depth tracking with external disturbance d̃ = [2, 0]T . The disturbance
attenuation is a crucialability of the robust controller about underwater maneuvering
motions. A disturbance is introduced at 0.5 s which tends to produce 2 m/s vertical speed
of the vehicle. Figure 3 shows that the controller can successfully fight against the external
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Figure 3. Tracking responses with external disturbance
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Figure 4. Estimation of disturbances via LESO

disturbance and finally can drive the vehicle back to the reference depth within 2 s. It
can be seen from Figure 4 that the unknown disturbance can be accurately estimated by
the designed LESO.

Because of the change of vertical speed, the vehicle aft will be immersed into water and
the planing force occurs as shown in Figure 5. And it can be seen that the planing force
disappears rapidly under the action of the controller.
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5. Conclusion. In this paper, a method combining sliding mode control and linear ex-
tended state observer has been presented for the tracking control of supercavitating vehi-
cles under the interior and external uncertainties. And nonlinear planing force as distur-
bance of system to simplify the control model. Then, the linear extended state observer
is designed to estimate the lumped disturbance and tracking differentiator is developed
to obtain differential approximation. And due to the approximation characteristics of the
tracking differentiator, the actuator reactions are more smooth. Simulation results show
that this method can improve system robustness against unknown disturbance and re-
duce the chattering of sliding mode control. In the future, the effectiveness of the control
scheme designed in this paper will be further verified in actual projects.
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