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Abstract. This paper mainly discusses the issue of finite-time boundedness and dis-
sipativity of discrete-time repeated scalar nonlinear systems with time-varying delays.
Finite-time analysis of system is an important issue which deals with the bound of sys-
tem trajectories over a fixed finite-time interval. The aim is to design an appropriate
observer such that the resulting error system is finite-time stable and strictly finite-time
(Q,S,R) dissipative. Employing the linear matrix inequality (LMI) approach together
with a novel Lyapunov-Krasovskii functional, the sufficient conditions for the discrete-
time system with repeated scalar nonlinearities to be finite-time bounded and finite-time
dissipative are derived. Finally, based on the LMI conditions, a numerical example with
simulation is provided to verify the efficiency of the derived theoretical results.
Keywords: Finite-time bounded, Finite-time dissipative, Lyapunov-Krasovskii func-
tional, Linear matrix inequality

1. Introduction. Dissipativity analysis is one of the essential characteristics of dynam-
ical systems and it has been broadly examined in the past few decades because of their
successful applications in many fields [1, 2, 3, 4, 5]. This methodical concept was intro-
duced by Willems [6, 7] and subsequently generalized by Hill and Moylan [8, 9], in which
the basic ideas and utilization of dissipativeness are presented. Dissipativity analysis can
assure the stability by means of Lyapunov together with the dynamical performances and
utilized in various areas such as system theory and control theory. Dissipativity is a more
wide-ranging criterion compared with passivity and stability property since it performs a
significant role in network system analysis [10, 11, 12, 13, 14].

Time delays frequently occur in various types of systems due to signals transmission be-
tween difference neurons and conversion rate of the mainframes. Time delays in a network
system may cause complex dynamic network behaviors such as oscillation, divergence and
instability. It has been recognized that the stability of systems is affected by time delays
[15, 16]. In comparison with constant delays, the variable time delays have more signif-
icance in real world problems. Another essential research topic is discrete time systems
for its theoretical and practical importance. So the study of several types of discrete time
systems involving time varying delay has become a considerable attention [17, 18, 19, 20].

The repeated scalar nonlinearity involving the plant model structure [21, 22], which nat-
urally appears in physical systems like recurrent neural networks, marketing and produc-
tion control problem, is employed to state the networked systems. Consequently, repeated
scalar nonlinearity involves in examining and executing of any controller scheme. In the
last decade, this kind of systems has received much consideration and the corresponding
results have been discussed in [23, 24, 25, 26, 27, 28]. Furthermore, the phenomenon of
finite-time stability analysis and finite-time boundedness has become more attention due
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to the bound of system trajectories over a fixed finite-time interval [29, 30] and references
therein.
Moreover, the finite-time analysis of repeated scalar nonlinear systems has not been paid

more research attention. So far, no result is obtainable on finite-time boundedness and
dissipativity analysis of repeated scalar nonlinear systems, which is an essential issue and
motivates this contemporary study. Here, we examine the finite-time boundedness and
dissipativity analysis of discrete-time repeated scalar nonlinear systems with time-varying
delays. By constructing a novel Lyapunov-Krasovskii functional and utilizing linear matrix
inequality (LMI) approach, we derive a suitable control such that the subsequent closed-
loop system is finite-time bounded and dissipative. The effectiveness of the proposed
design is finally demonstrated by a numerical example. The efficiency of the estimated
design is finally established by an industrial control system.
The structure of this paper is arranged as follows. In Section 2, we provide the problem

statement and necessary preliminaries. Section 3 is devoted to the proof of main results
by using Lyapunov-Krasovskii functional method and LMI technique. In Section 4, illus-
trative example and its simulation result are presented to show the applicability of the
proposed design. Finally, the conclusion is given in Section 5.

2. Problem Statement and Preliminaries. The notations used throughout this arti-
cle are standard. The notation Y1 ≥ Y2 (respectively, Y1 > Y2) denotes the matrix Y1-Y2

is positive semi-definite (respectively, positive definite). Here Y1 and Y2 are symmetric
matrices of same dimensions. Let (Ω,F , P ) be a complete probability space with a natural
filtration {Ft}t≥0. The operator E denotes the mathematical expectation.
Consider the following discrete-time system with repeated scalar nonlinearities

y(r + 1) = Ah(y(r)) +A1p(y(r − δ(r))) + Gd(r),
ym(r) = Ch(y(r)) + C1p(y(r − δ(r))) +Dd(r),

yc(r) = Eh(y(r)) + Fd(r),

y(r) = ϕ(r), r ∈ [−δM , 0],

 (1)

where y(r) ∈ Rn denotes the system state vector; d(r) ∈ Rl is the disturbance input which
belongs to l2[0,∞); yc(r) ∈ Rp is the controlled output; ym(r) ∈ Rq is the measured output
vector; δ(r) denotes the time-varying delay with lower and upper bounds δm ≤ δ(r) ≤ δM ,
r ∈ N+, where δm, δM are known positive integers; ϕ(r) is the initial state of the system;
A, A1, G, C, C1, D, E and F are known real constant matrices with compatible dimensions.
The functions h(·) and p(·) are nonlinear and satisfy

|h(a) + h(b)| ≤ |a+ b|, ∀a, b ∈ R, |p(a) + p(b)| ≤ |a+ b|, ∀a, b ∈ R. (2)

The discrete-time observer-based structure for the system (1) is described by

ŷ(r + 1) = Ah(ŷ(r)) +A1p(ŷ(r − δ(r))) +H[ym(r)− ŷm(r)],

ŷm(r) = Ch(ŷ(r)) + C1p(ŷ(r − δ(r))),

}
(3)

where ŷ(r) ∈ Rn denotes the state estimate vector of the system (1); ŷm(r) ∈ Rq is the
output; H ∈ Rn×q is the gain parameter of the observer to be determined.
Let e(r) = y(r) − ŷ(r) be the estimation error vector, and then we have the following

closed-loop system

y(r + 1) = Ah(y(r)) +A1p(y(r − δ(r))) + Gd(r),
e(r + 1) = A[h(y(r))− h(ŷ(r))] +A1[p(y(r − δ(r)))− p(ŷ(r − δ(r)))]

+Gd(r) +H{C[h(y(r))− h(ŷ(r))]

+ C1[p(y(r − δ(r)))− p(ŷ(r − δ(r)))] +Dd(r)} .

 (4)
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From the above equality, the closed-loop system is obtained as follows

y(r + 1) = Ah(y(r)) +A1p(y(r − δ(r))) + Gd(r),
e(r + 1) = Ah̄(e(r)) +A1p̄(e(r − δ(r))) + Gd(r)

+H
{
Ch̄(e(r)) + C1p̄(e(r − δ(r))) +Dd(r)

}
,

 (5)

or the augmented form

η(r + 1) = φ1h̃(η(r)) + φ2p̃(η(r − δ(r))) + φ3d(r), (6)

where

η(r) =
[
yT (r) eT (r)

]T
, h̃(η(r)) =

[
hT (y(r)) h̄T (e(r))

]T
, h̄(e(r)) = h(y(r))− h(ŷ(r)),

p̃(η(r − δ(r))) =
[
pT (y(r − δ(r))) p̄T (e(r − δ(r)))

]T
,

p̄(e(r − δ(r))) = p(y(r − δ(r)))− p(ŷ(r − δ(r))),

φ1 =

[
A 0
0 A+HC

]
, φ2 =

[
A1 0
0 A1 +HC1

]
, φ3 =

[
G

G +HD

]
.

Here, the disturbance input vector d(r) is time-varying and for a given ν > 0, satisfies
dT (r)d(r) ≤ ν.

Definition 2.1. System (6) is said to be robustly finite-time bounded with respect to
(ρ, τ,L,N , ν), where 0 < ρ < τ and L > 0, if{

yT (r1)Ly(r1) ≤ ρ,

eT (r1)Le(r1) ≤ ρ,
⇒

{
yT (r2)Ly(r2) ≤ τ,

eT (r2)Le(r2) ≤ τ,
∀

r1 ∈ {−δM ,−δM + 1, . . . , 0},
r2 ∈ {1, 2, . . . ,N}

holds for any nonzero d(r), which satisfies dT (r)d(r) ≤ ν.

Definition 2.2. System (6) is said to be robustly finite-time stable and strictly (Q,S,R)
dissipative with respect to (ρ, τ,L,N , β, ν), where 0 < ρ < τ , β is a positive scalar and
L > 0, if system (6) is said to be robustly finite-time bounded with respect to (ρ, τ,L,N , ν),
and under the zero initial condition, the primary output satisfies

n∑
r=0

[
yTc (r)Qyc(r) + 2yTc (r)Sd(r) + dT (r)Rd(r)

]
≤ β

n∑
r=0

dT (r)d(r)

for any nonzero d(r) with dT (r)d(r) ≤ ν, where Q, S and R are real matrices with
symmetric Q and R. Also, for convenience, it is assumed that Q ≤ 0, and then we get
−Q = Q̄T

+Q̄+ for some Q̄+.

3. Main Results. Firstly, the LMI-based sufficient condition to finite-time boundedness
analysis is investigated.

Theorem 3.1. Let the positive scalars δm, δM , and gain matrix H be given. Under the
assumption dT (r)d(r) ≤ ν, for given scalar α ≥ 1, the discrete-time repeated scalar non-
linear system (6) is robustly finite-time bounded with respect to (ρ, τ,L,N , ν), if there exist
positive definite matrices P1, P2 and positive scalars µP̄1, µP̄1

such that the following LMIs
hold: 

Ψ(1,1) 0 0 0 0 0

∗ −αδMP2 + τ2I 0 0 0 0

∗ 0 −τ1I 0 0 φT
1P1

∗ ∗ ∗ −τ2I 0 φT
2P1

∗ ∗ ∗ ∗ −D φT
3P1

∗ ∗ ∗ ∗ ∗ −P1


< 0, (7)
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µP̄1L ≤ P1 ≤ µP̄1
L, (8)

0 ≤ P2 ≤ µP̄2
L, (9)

(µP̄1
+ (1 + δM − δm)µP̄2

) ρ+ µDν < µP̄1α−N τ, (10)

where Ψ(1,1) = −αP1 + (δM − δm + 1)P2 + τ1I.

Proof: In order to establish our results, we consider the following Lyapunov-Krasovskii
functional for the system (6):

V (η(r), r) = ηT (r)P1η(r) +
r−1∑

s=r−δ(r)

ηT (s)P2η(s) +
−δm∑

i=−δM+1

r−1∑
s=r+i

ηT (s)P2η(s). (11)

Calculating the forward difference by defining △V (r) = V (η(r + 1), r + 1) − V (η(r), r)
along the solution of (6) and taking the mathematical expectation, we have

E[△V (r)− (α− 1)V (r)]

= E
[
ηT (r + 1)P1η(r + 1)− αηT (r)P1η(r)

]
= E

[[
φ1h̃(η(r))+φ2p̃(η(r − δ(r)))+φ3d(r)

]T
P1

[
φ1h̃(η(r))+φ2p̃(η(r − δ(k)))+φ3d(r)

]
−αηT (r)P1η(r) + (1 + δM − δm)η

T (r)P2η(r)− αδMηT (r − δ(r))P2η(r − δ(r))

]
. (12)

Using (6) in (12) yields

E [△V (r)− (α− 1)V (r)]

≤ E
[[
φ1h̃(η(r))+φ2p̃(η(r − δ(r)))+φ3d(r)

]T
P1

[
φ1h̃(η(r))+φ2p̃(η(r − δ(r)))+φ3d(r)

]
−αηT (r)P1η(r) + (1 + δM − δm)η

T (r)P2η(r)− αδMηT (r − δ(r))P2η(r − δ(r))

]
. (13)

It follows from the assumption dT (r)d(r) ≤ ν, the following inequalities hold:

h̃T (η(r))h̃(η(r)) ≤ ηT (r)η(r) ⇒ τ1

(
ηT (r)η(r)− h̃T (η(r))h̃(η(r))

)
≥ 0,

p̃T (η(r − δ(r)))p̃(η(r − δ(r))) ≤ ηT (r − δ(r))η(r − δ(r))

⇒ τ2

(
ηT (r − δ(r))η(r − δ(r))− p̃T (η(r − δ(r)))p̃(η(r − δ(r)))

)
≥ 0.

To discuss the stochastic boundedness results of system (6), combining the above inequal-
ities and (13), we get

E
[
△V (r)− (α− 1)V (r)− dT (r)Dd(r)

]
≤ E

[
ξT (r)

[
Ψ+ΨT

1P1Ψ1

]
ξ(r)

]
, (14)

where ξ(r) =
[
ηT (r) ηT (r − δ(r)) h̃T (η(r)) p̃T (η(r − δ(r))) dT (r)

]T
,

Ψ =



Ψ(1,1) 0 0 0 0

∗ −αδMP2 + τ2I 0 0 0

∗ 0 −τ1I 0 0

∗ ∗ ∗ −τ2I 0

∗ ∗ ∗ 0 −D

 ,

Ψ(1,1) = −αP1 + (δM − δm + 1)P2 + τ1I, Ψ1 = [0 0 φ1 φ2 φ3].

By applying the Schur complement to (14), we get (7).
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Thus, it is noticed that if LMI (7) holds, then we can get Ψ < 0. Hence, it is easy to
get

△V (r)− (α− 1)V (r)− dT (r)Dd(r) ≤ 0,

V (r + 1)− V (r) ≤ (α− 1)V (r) + dT (r)Dd(r) ≤ (α− 1)V (r)− µDd
T (r)d(r),

where µD = µmax(D). Simple computation gives

V (r + 1) ≤ αV (r)− µDd
T (r)d(r). (15)

Noticing α ≥ 1, it follows that

V (r) ≤ αrV (0)− µD

r−1∑
n=0

αr−n−1dT (n)d(n) ≤ αrV (0) + αrµDν. (16)

Further, from V (r), we can get V (0) = yT (0)P1y(0). Letting P̄1 = L− 1
2P1L− 1

2 , P̄2 =

L− 1
2P2L− 1

2 , from (11) we obtain

V (0) ≤ (µP̄1
+ (1 + δM − δm)µP̄2

)yT (0)Ly(0) ≤ (µP̄1
+ (1 + δM − δm)µP̄2

)ρ, (17)

where µP̄1
= µmax

(
P̄1

)
.

On the other hand, from V (r), we can obtain that

V (r) ≤ yT (r)P1y(r) ≥ yT (r)L
1
2 P̄1L

1
2y(r) ≥ µP̄1yT (r)Ly(r), (18)

where µP̄1 = µmin

(
P̄1

)
. From (16), we get

yT (r)Ly(r) <
((µP̄1

+ (1 + δM − δm)µP̄2
)ρ+ µDν)α

r

µP̄1
. (19)

Therefore, from (10), we get yT (r)Ly(r) < τ for all r ∈ {1, 2, . . . ,N}. Thus, by Definition
2.1 the system (6) is robustly finite-time bounded. �

Now, to discuss the robust finite-time dissipativity of system (6), we consider the per-
formance index J(r) given by

J(r) = yTc (r)Qyc(r) + 2yTc (r)Sd(r) + dT (r)Rd(r).

Theorem 3.2. Let the positive scalars δm, δM , and gain matrix H be given. Under the
assumption dT (r)d(r) ≤ ν, for given scalar α ≥ 1, the discrete-time repeated scalar non-
linear system (6) is robustly finite-time bounded with respect to (ρ, τ,L,N , ν,Q,S,R), if
there exist positive definite matrices P1, P2 and positive scalars µP̄1, µP̄1

such that the
following LMI together with LMIs (8) to (10) hold:

Ψ(1,1) 0 0 0 0 0 0

∗ −αδMP2 + τ2I 0 0 0 0 0

∗ 0 −τ1I 0 −ĒTS φT
1P1 ĒTQ+

∗ ∗ ∗ −τ2I 0 φT
2P1 0

∗ ∗ ∗ ∗ −2FTS −R φT
3P1 FTQ+

∗ ∗ ∗ ∗ ∗ −P1 0

∗ ∗ ∗ ∗ ∗ ∗ −I


< 0. (20)

Proof: From (1)

J(r) =
[
Ē h̃(η(r)) + Fd(r)

]T
Q
[
Ē h̃(η(r)) + Fd(r)

]
+ 2

[
Ē h̃(η(r)) + Fd(r)

]
Sd(r)

+ dT (r)Rd(r). (21)

Then proceeding in a similar way as in Theorem 3.1, we have

E[△V (r)− (α− 1)V (r)− J(r)] ≤ E
[
ζT (r)

[
Γ + ΓT

1P1Γ1 − ΓT
2QΓ2

]
ζ(r)

]
, (22)
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where

Γ =



Ψ(1,1) 0 0 0 0

∗ −αδMP2 + τ2I 0 0 0

∗ 0 −τ1I 0 −ĒTS
∗ ∗ ∗ −τ2I 0

∗ ∗ ∗ ∗ −2FTS −R

 ,

Ψ(1,1) = −αP1 + (δM − δm + 1)P2 + τ1I, Γ1 = [0 0 φ1 φ2 φ3], Γ2 =
[
0 0 Ē 0 F̄

]
,

Ē = [E 0].

Thus, by using −Q = Q̄T
+Q̄+ and applying the Schur complement to (22) we can get (20).

Then in view of (6), it is easy to see that right hand side of above inequality is equivalent
to (20). Hence, we get

△V (r)− (α− 1)V (r)− J(r) ≤ 0. (23)

For any sufficiently small scalar σ > 0, it can always be found that

△V (r)− (α− 1)V (r)− J(r) + σdT (r)d(r) ≤ 0, (24)

V (r + 1)− V (r) ≤ (α− 1)V (r) + J(r)− σdT (r)d(r). (25)

Simple computation gives

V (r) ≤ αrV (0) +
r−1∑
i=0

αr−i−1
[
J(i)− σdT (i)d(i)

]
. (26)

Under the zero initial condition and noticing V (r) ≥ 0 for all r ∈ {1, 2, . . . ,N}, we have

r−1∑
i=0

αr−i−1
[
J(i)− σdT (i)d(i)

]
≥ 0. (27)

Noticing that α ≥ 1, we have
N∑
r=0

αN−r
[
J(r)− σdT (r)d(r)

]
≥ 0. (28)

Therefore, from the above inequality, it is easy to get the inequality in Definition 2.2.
Hence, it can be concluded that the system (6) is robust finite-time dissipative. �
Remark 3.1. It is worth pointing that the finite-time boundedness and dissipativity of
discrete-time repeated scalar nonlinear systems with time-varying delays have been studied
for the first time based on Lyapunov stability theory. The practical application of the
obtained results is shown in the numerical example.

4. Numerical Example. In this section, a numerical example is given to illustrate the
advantage of the developed results.
Assume that two types of products are manufactured in an industrial unit. The con-

sidered products share general resources and raw materials like personal computer and
laptop, colour TV and black/white TV. Now define the following during the rth period,

1) sj(r): amount of sales of product j
2) aj(r): advertisement cost utilized for product j
3) jj(r): amount of inventory of product j
4) pj(r): production of product j

where j = 1, 2. Let y(r) := [ p1(r + 1) p2(r + 1) i1(r) i2(r) ]
T .
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Consider the effect of the production in the production procedure, connection among
the amount of sales and advertisement to the sales in marketing technique (assuming one
period gestation lag), which can be written by a model as follows

y(r + 1) = Ah(y(r)) +A1p(y(r − δ(r))) + Gd(r), (29)

where h(y(r)) and p(y(r−δ(r))) are saturation nonlinearity functions. It is easily realized
that the above model for combined production problem and marketing equivalent into the
design of (1). Now we assume a particular example, where

A =


−0.03 0 0 0

0 −0.05 0 0

0.07 0 −0.03 0

0 0.05 0 −0.03

 , A1 =


0.0 0 0 0

0 0.05 0 0

0.025 0 −0.05 0

0 0.005 0 0.025

 ,

C =

[
0.5 0 −0.1 0.3

0 0.2 0 0

]
, C1 =

[
0 0.2 0 −0.5

0.1 0 −0.3 0

]
,

G =
[
0.2 0 0.5 1

]T
, D =

[
0.3 0

]T
, E =

[
0 0.5 0.1 0

]
, F = 0.1.

In view of Theorem 3.2 and by using Matlab LMI Toolbox, we can find the feasible
solution for the considered model to be dissipative

H =


0.0042 0.0272

0.0289 0.0156

−0.0232 −0.1513

−0.0810 −0.0193

 .

As a final point, we provide the simulation effects to demonstrate the efficiency of the
LMI based results established in Theorem 3.2. Here, the saturation nonlinear functions
h(y(r)) and p(y(r − δ(r))) satisfy the following

h(y(r)) =


y(r), |y(r)| ≤ 1,

1, y(r) > 1,

−1, y(r) < −1.

and p(y(r − δ(r))) = y(r) sin(y(r)).

Figure 1 shows the responses of state (green line) and its estimation (red line) of the
closed-loop system and the error response for ten random initial conditions is presented
in Figure 2. The output is described in Figure 3. It is clear that the simulation results
show the effectiveness of the obtained dissipativity results for discrete-time system with
repeated scalar nonlinearities.

5. Conclusion. In this paper, the finite-time boundedness and dissipativity analysis of
discrete-time repeated scalar nonlinear systems with time-varying delays has been in-
vestigated. The important role of this paper is to derive a suitable control such that the
subsequent closed-loop system is finite-time bounded and dissipative. Based on the choice
of a suitable Lyapunov-Krasovskii functional, some sufficient conditions have been estab-
lished in terms of LMIs. As a final point, the established results are applied on a practical
systems to illustrating the usefulness of the derived LMI-based conditions. Besides, gen-
eralizing the proposed results to more complex systems such as stochastic systems with
Levy noise, Markovian jumping parameters are considered in future.
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State y1(r) State y2(r)

State y3(r) State y4(r)

Figure 1. State response of the closed-loop system
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Figure 2. Error response
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Figure 3. Output response
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