INTUITIONISTIC FUZZY COMPARATIVE UP-FILTERS AND THEIR LEVEL SUBSETS

PANNAWIT KHAMROT¹, THITI GAKETEM², PONGPUN JULATHA³ NAPAPORN CHUNSEE⁴, RUKCHART PRASERTPONG⁵ AND AIYARED IAMPAN^{2,*}

¹Department of Mathematics Faculty of Science and Agricultural Technology Rajamangala University of Technology Lanna Phitsanulok 52 Moo 7, Tambon Ban Krang, Amphur Mueang, Phitsanulok 65000, Thailand pk_g@rmutl.ac.th

²Fuzzy Algebras and Decision-Making Problems Research Unit Department of Mathematics School of Science University of Phayao
19 Moo 2, Tambon Mae Ka, Amphur Mueang, Phayao 56000, Thailand thiti.ga@up.ac.th; *Corresponding author: aiyared.ia@up.ac.th

³Department of Mathematics Faculty of Science and Technology Pibulsongkram Rajabhat University 156 Moo 5, Tambon Phlai Chumphon, Amphur Mueang, Phitsanulok 65000, Thailand pongpun.j@psru.ac.th

⁴Department of Mathematics Faculty of Science and Technology Uttaradit Rajabhat University 27 Injaime Road, Tambon Tha-it, Amphur Mueang, Uttaradit 53000, Thailand napaporn@uru.ac.th

 ⁵Division of Mathematics and Statistics Faculty of Science and Technology Nakhon Sawan Rajabhat University
 398 Moo 9, Tambon Nakhon Sawan Tok, Amphur Mueang, Nakhon Sawan 60000, Thailand rukchart.p@nsru.ac.th

Received January 2023; accepted April 2023

ABSTRACT. In this paper, we introduce the concept of intuitionistic fuzzy comparative UP-filters and investigate their properties. Also, we discuss the relationship between intuitionistic fuzzy comparative UP-filters and fuzzy comparative UP-filters. Moreover, we establish the concept of complement and level subset with the intuitionistic fuzzy comparative UP-filters.

Keywords: Comparative UP-filters, UP-filters, Intuitionistic fuzzy UP-filters, Intuitionistic fuzzy comparative UP-filters

1. Introduction. In 2017, Iampan [1] introduced the concept of UP-algebras as a generalization of KU-algebras [2]. UP-algebra is an algebraic structure type of logic from an introductory algebra class. Many researchers brought this concept of UP-algebra into various concepts, such as UP-algebra with fuzzy sets [3], picture fuzzy sets [4], bipolar fuzzy sets [5], neutrosophic sets [6], and intuitionistic fuzzy sets [7].

The expansion of the UP-algebra concept to a new notion has been attractive to various researchers. For example, Jun and Iampan [8] introduced the concept of comparative

DOI: 10.24507/icicel.17.12.1321

and allied UP-filters and investigated several properties. In 2019, they discussed the relationship between a UP-filter and a comparative UP-filter, conditions for a UP-filter to be a comparative UP-filter, and characterizations of a (comparative) UP-filter. In 2022, Gaketem et al. [9] proposed the concept of bipolar fuzzy comparative UP-filters, investigated their properties, and expressed bipolar fuzzy comparative UP-filters to neutrosophic sets. Expanding this concept into different sets, like the algebraic structure is essential. In 1986, Atanassov [10] studied the concept of intuitionistic fuzzy sets as a generalization of the concept of fuzzy sets of Zadeh [11]. The concept of fuzzy sets that expresses uncertainties is an important mathematical tool for solving theoretical problems. In 2019, Thongngam and Iampan [12] studied the concept of intuitionistic fuzzy UP-filters and intuitionistic fuzzy near UP-filters. In 2020, Abdullah and Shadhan [13] applied the concept of intuitionistic fuzzy sets on Q-algebras. In addition, Songsaeng et al. [14] have also studied neutrosophic comparative UP-filters of UP-algebras in 2021. In 2023, Khamrot et al. [15] introduced the concept of intuitionistic fuzzy implicative UP-filters of UP-algebras and provided some properties of intuitionistic fuzzy implicative UP-filters and together studied the relation of intuitionistic fuzzy implicative UP-filters and intuitionistic fuzzy UP-filters in UP-algebras.

We are interested in extending the notion of comparative UP-filters to intuitionistic fuzzy comparative UP-filters (IFCUPFs) to supplement the intuitionistic fuzzy set notion of UP-algebras. This article aims to introduce the new concept of IFCUPFs in detail below and give some definitions, properties, and examples of UP-algebras in the next section. As a result, we find a relationship between IFCUPFs and their level subsets and complements. Finally, we conclude and plan to future work.

2. Preliminaries.

Definition 2.1. [1] An algebra $(\tilde{A}, \star, 0)$ of type (2,0) is called a UP-algebra, where \tilde{A} is a nonempty set, \star is a binary operation on \tilde{A} , and 0 is a fixed element of \tilde{A} (i.e., a nullary operation) if it satisfies the following axioms: (i) (for all $\tilde{x}, \tilde{y}, \tilde{z} \in \tilde{A}$) (($\tilde{y} \star \tilde{z}$) \star (($\tilde{x} \star \tilde{y}$) \star ($\tilde{x} \star \tilde{z}$)) = 0), (ii) (for all $\tilde{x} \in \tilde{A}$) ($0 \star \tilde{x} = \tilde{x}$), (iii) (for all $\tilde{x} \in \tilde{A}$) ($p \star 0 = 0$), and (iv) (for all $\tilde{x}, \tilde{y} \in \tilde{A}$) ($\tilde{x} \star \tilde{y} = 0, \tilde{y} \star \tilde{x} = 0 \Rightarrow \tilde{x} = \tilde{y}$).

Unless otherwise indicated, we will assume that \tilde{A} is a UP-algebra $(\tilde{A}, \star, 0)$.

Proposition 2.1. [1] In a UP-algebra \tilde{A} , the following properties hold: (i) (for all $\tilde{x} \in \tilde{A}$) ($\tilde{x} \star \tilde{x} = 0$), (ii) (for all $\tilde{x}, \tilde{y}, \tilde{z} \in \tilde{A}$) ($\tilde{x} \star \tilde{y} = 0, \tilde{y} \star \tilde{z} = 0 \Rightarrow \tilde{x} \star \tilde{z} = 0$), (iii) (for all $\tilde{x}, \tilde{y}, \tilde{z} \in \tilde{A}$) ($\tilde{x} \star \tilde{y} = 0 \Rightarrow (\tilde{z} \star \tilde{x}) \star (\tilde{z} \star \tilde{y}) = 0$), (iv) (for all $\tilde{x}, \tilde{y}, \tilde{z} \in \tilde{A}$) ($\tilde{x} \star \tilde{y} = 0 \Rightarrow (\tilde{z} \star \tilde{x}) \star (\tilde{z} \star \tilde{y}) = 0$), (iv) (for all $\tilde{x}, \tilde{y}, \tilde{z} \in \tilde{A}$) ($\tilde{x} \star \tilde{y} = 0 \Rightarrow (\tilde{y} \star \tilde{z}) \star (\tilde{x} \star \tilde{z}) = 0$), (v) (for all $\tilde{x}, \tilde{y} \in \tilde{A}$) ($\tilde{x} \star (\tilde{y} \star \tilde{x}) = 0$), (vi) (for all $\tilde{x}, \tilde{y} \in \tilde{A}$) ($\tilde{y} \star \tilde{x} = 0 \Leftrightarrow \tilde{x} = \tilde{y} \star \tilde{x}$), and (vii) (for all $\tilde{x}, \tilde{y} \in \tilde{A}$) ($\tilde{x} \star (\tilde{y} \star \tilde{y}) = 0$).

For examples of UP-algebras, there have been several interesting research studies (see [16, 17, 18, 19, 20]).

The binary relation \leq on a UP-algebra \tilde{A} is defined as follows: (for all $\tilde{x}, \tilde{y} \in \tilde{A}$) ($\tilde{x} \leq \tilde{y} \Leftrightarrow \tilde{x} \star \tilde{y} = 0$) and the following assertions are valid (see [1, 17]).

Next, we recall the concepts of UP-subalgebras, UP-ideals, UP-filters, comparative UP-filters, and implicative UP-filters of UP-algebras [1, 21] as the following definition.

Definition 2.2. A nonempty subset \tilde{Z} of \tilde{A} is called

(i) a UP-subalgebra (UPS) of \tilde{A} if

$$\left(for \ all \ \tilde{x}, \tilde{y} \in \tilde{Z}\right) \left(\tilde{x} \star \tilde{y} \in \tilde{Z}\right), \tag{1}$$

(ii) a UP-ideal (UPI) of \tilde{A} if

$$\in \tilde{Z},$$
 (2)

$$\left(for \ all \ \tilde{x}, \tilde{y}, \tilde{z} \in \tilde{A}\right) \left(\tilde{x} \star (\tilde{y} \star \tilde{z}) \in \tilde{Z}, \ \tilde{y} \in \tilde{Z} \Rightarrow \tilde{x} \star \tilde{z} \in \tilde{Z}\right),\tag{3}$$

(iii) a UP-filter (UPF) of \tilde{A} if it satisfies (2) and

$$\left(for \ all \ \tilde{x}, \tilde{y} \in \tilde{A}\right) \left(\tilde{x} \in \tilde{Z}, \ \tilde{x} \star \tilde{y} \in \tilde{Z} \Rightarrow \tilde{y} \in \tilde{Z}\right), \tag{4}$$

(iv) a comparative UP-filter (CUPF) of \tilde{A} if it satisfies (2) and

$$\left(for \ all \ \tilde{x}, \tilde{y}, \tilde{z} \in \tilde{A}\right) \left(\tilde{x} \star \left(\left(\tilde{y} \star \tilde{z}\right) \star \tilde{y}\right) \in \tilde{Z}, \ \tilde{x} \in \tilde{Z} \Rightarrow \tilde{y} \in \tilde{Z}\right).$$

$$(5)$$

Clearly, \tilde{A} and $\{0\}$ are UPSs and UPIs of \tilde{A} . Every CUPF is a UPF, but the converse is not generally valid, as shown in Jun and Iampan [8].

Theorem 2.1. [16] Let \mathfrak{K} be a nonempty family of UPSs (resp., UPFs, UPIs, CUPFs) of \tilde{A} . Then $\cap \mathfrak{K}$ is a UPS (resp., UPF, UPI, CUPF) of \tilde{A} .

Definition 2.3. A fuzzy set (FS) ω in a nonempty set \tilde{Z} is a function from \tilde{Z} into the unit closed interval [0,1] of real numbers, i.e., $\omega : \tilde{Z} \to [0,1]$.

For any two FSs ω_1 and ω_2 in a nonempty set \tilde{Z} , we define (i) $\omega_1 \geq \omega_2 \Leftrightarrow \omega_1(\tilde{x}) \geq \omega_2(\tilde{x})$ for all $\tilde{x} \in \tilde{Z}$, (ii) $\omega_1 = \omega_2 \Leftrightarrow \omega_1 \geq \omega_2$ and $\omega_2 \geq \omega_1$, and (iii) $(\omega_1 \wedge \omega_2)(\tilde{x}) = \min\{\omega_1(\tilde{x}), \omega_2(\tilde{x})\}$ for all $\tilde{x} \in \tilde{Z}$.

Definition 2.4. Let ω be an FS in \tilde{Z} . The FS $\overline{\omega}$ is defined by $\overline{\omega}(\tilde{x}) = 1 - \omega(\tilde{x})$ for all $\tilde{x} \in \tilde{Z}$. We called $\overline{\omega}$ a complement of ω in \tilde{Z} .

Definition 2.5. An FS ω of a UP-algebra \tilde{A} is called

(i) a fuzzy UP-subalgebra (FUPS) of \hat{A} if

$$\left(for \ all \ \tilde{x}, \tilde{y} \in \tilde{A}\right) (\omega(\tilde{x} \star \tilde{y}) \ge \min\{\omega(\tilde{x}), \omega(\tilde{y})\}),\tag{6}$$

(ii) a fuzzy UP-ideal (FUPI) of \hat{A} if

$$for all \ \tilde{x} \in \tilde{A} \ (\omega(0) \ge \omega(\tilde{x})),$$

$$(7)$$

$$\left(for \ all \ \tilde{x}, \tilde{y}, \tilde{z} \in \tilde{A}\right) (\omega(\tilde{x} \star \tilde{z}) \ge \min\{\omega(\tilde{x} \star (\tilde{y} \star \tilde{z})), \omega(\tilde{y})\}),\tag{8}$$

(iii) a fuzzy UP-filter (FUPF) of A if it satisfies (7) and

$$\left(\text{for all } \tilde{x}, \tilde{y} \in \tilde{A}\right) (\omega(\tilde{y}) \ge \min\{\omega(\tilde{x}), \omega(\tilde{x} \star \tilde{y})\}), \tag{9}$$

(iv) a fuzzy comparative UP-filter (FCUPF) of \tilde{A} if it satisfies (7) and

$$\left(\text{for all } \tilde{x}, \tilde{y}, \tilde{z} \in \tilde{A}\right) (\omega(\tilde{y}) \ge \min\{\omega(\tilde{x} \star ((\tilde{y} \star \tilde{z}) \star \tilde{y})), \omega(\tilde{x})\}).$$
(10)

It easily proves that if ω_1 and ω_2 are FUPS (resp., FUPI) of a UP-algebra \tilde{A} , then $\omega_1 \wedge \omega_2$ is also an FUPS (resp., FUPI) of \tilde{A} .

Definition 2.6. Let \tilde{Z} be the universe set. An intuitionistic fuzzy set (IFS) in \tilde{Z} is an object having the form $F := \left\{ (\tilde{x}, \omega_F(\tilde{x}), \delta_F(\tilde{x})) \middle| \tilde{x} \in \tilde{Z} \right\}$, where $\omega_F : \tilde{Z} \to [0, 1]$ and $\delta_F : \tilde{Z} \to [0, 1]$ denote the degree of membership and degree of nonmembership, respectively, and for all $\tilde{x} \in \tilde{Z}$, $0 \leq \omega_F(\tilde{x}) + \delta_F(\tilde{x}) \leq 1$.

We shall use the symbol $F = (\omega_F, \delta_F)$ for the IFS $F = \left\{ (\tilde{x}, \omega_F(\tilde{x}), \delta_F(\tilde{x})) \middle| \tilde{x} \in \tilde{Z} \right\}$ for the sake of notational simplicity.

Kesorn et al. [7] and Thongngam and Iampan [12] introduced the concepts of intuitionistic fuzzy UP-subalgebras, intuitionistic fuzzy UP-ideals, and intuitionistic fuzzy UP-filters of UP-algebras as follows.

Definition 2.7. [7] An IFS $F = (\omega_F, \delta_F)$ in \tilde{A} is called an intuitionistic fuzzy UPsubalgebra (IFUPS) of \tilde{A} if it satisfies the following conditions: $\omega_F(\tilde{x} \star \tilde{y}) \geq \min\{\omega_F(\tilde{x}), \omega_F(\tilde{y})\}$ and $\delta_F(\tilde{x} \star \tilde{y}) \leq \max\{\delta_F(\tilde{x}), \delta_F(\tilde{y})\}$ for all $\tilde{x}, \tilde{y} \in \tilde{A}$.

Definition 2.8. [7] An IFS $F = (\omega_F, \delta_F)$ in \tilde{A} is called an intuitionistic fuzzy UP-ideal (IFUPI) of \tilde{A} if

$$\left(\text{for all } \tilde{x} \in \tilde{A}\right) (\omega_F(0) \ge \omega_F(\tilde{x})), \tag{11}$$

$$\left(\text{for all } \tilde{x} \in \tilde{A}\right) (\delta_F(0) \le \delta_F(\tilde{x})), \tag{12}$$

$$\left(for \ all \ \tilde{x}, \tilde{y}, \tilde{z} \in \tilde{A} \right) (\omega_F(\tilde{x} \star \tilde{z}) \ge \min\{\omega_F(\tilde{x} \star (\tilde{y} \star \tilde{z})), \omega_F(\tilde{y})\}), \tag{13}$$

$$\left(for \ all \ \tilde{x}, \tilde{y}, \tilde{z} \in \tilde{A}\right) \left(\delta_F(\tilde{x} \star \tilde{z}) \le \max\{\delta_F(\tilde{x} \star (\tilde{y} \star \tilde{z})), \delta_F(\tilde{y})\}\right).$$
(14)

Definition 2.9. [12] An IFS $F = (\omega_F, \delta_F)$ in a UP-algebra \tilde{A} is called an intuitionistic fuzzy UP-filter (IFUPF) of \tilde{A} if it satisfies (11), (12), and

$$\left(for \ all \ \tilde{x}, \tilde{y} \in \tilde{A}\right) (\omega_F(\tilde{y}) \ge \min\{\omega_F(\tilde{x} \star \tilde{y}), \omega_F(\tilde{x})\}), \tag{15}$$

$$\left(for \ all \ \tilde{x}, \tilde{y} \in \tilde{A}\right) \left(\delta_F(\tilde{y}) \le \max\{\delta_F(\tilde{x} \star \tilde{y}), \delta_F(\tilde{x})\}\right).$$
(16)

3. Intuitionistic Fuzzy Comparative UP-Filters. This section shows the main results. We introduce IFCUPFss and investigate their properties.

Definition 3.1. An IFS $F = (\omega_F, \delta_F)$ in a UP-algebra \tilde{A} is called an intuitionistic fuzzy comparative UP-filter (IFCUPF) of \tilde{A} if it satisfies (11), (12), and

$$\left(for \ all \ \tilde{x}, \tilde{y}, \tilde{z} \in \tilde{A}\right) \left(\omega_F(\tilde{y}) \ge \min\{\omega_F(\tilde{x} \star ((\tilde{y} \star \tilde{z}) \star \tilde{y})), \omega_F(\tilde{x})\}\right),\tag{17}$$

$$\left(for \ all \ \tilde{x}, \tilde{y}, \tilde{z} \in \tilde{A}\right) \left(\delta_F(\tilde{y}) \le \max\{\delta_F(\tilde{x} \star ((\tilde{y} \star \tilde{z}) \star \tilde{y})), \delta_F(\tilde{x})\}\right).$$
(18)

Example 3.1. Consider a UP-algebra $\tilde{A} = \{0, \tilde{y}_1, \tilde{y}_2, \tilde{y}_3, \tilde{y}_4\}$ with the following Cayley table:

*	0	\tilde{y}_1	\tilde{y}_2	\tilde{y}_3	\tilde{y}_4
0	0	\tilde{y}_1	\tilde{y}_2	\tilde{y}_3	\tilde{y}_4
\tilde{y}_1	0	0	0	0	0
\tilde{y}_2	0	\tilde{y}_2	0	0	0
\tilde{y}_3	0	\tilde{y}_2	\tilde{y}_4	0	0
\tilde{y}_4	0	\tilde{y}_1	\tilde{y}_3	\tilde{y}_3	0

Define an IFS $F = (\omega_F, \delta_F)$ in \tilde{A} as follows:

Â	0	\tilde{y}_1	\tilde{y}_2	\tilde{y}_3	\tilde{y}_4
ω_F	0.2	0.7	0.2	0.8	0.2
δ_F	0.1	0.3	0.2	0.4	0.2

Then $F = (\omega_F, \delta_F)$ is an IFCUPF of \tilde{A} .

Theorem 3.1. Every IFCUPF of a UP-algebra \tilde{A} is an IFUPF of \tilde{A} .

Proof: Let $F = (\omega_F, \delta_F)$ be an IFCUPF of \tilde{A} . Then, for all $\tilde{x}, \tilde{y} \in \tilde{A}$, we have $\omega_F(0) \ge \delta_F(\tilde{x}), \delta_F(0) \le \omega_F(\tilde{x}), \omega_F(\tilde{y}) \ge \min\{\omega_F(\tilde{x} \star ((\tilde{y} \star \tilde{y}) \star \tilde{y})), \omega_F(\tilde{x})\} = \min\{\omega_F(\tilde{x} \star \tilde{y}), \omega_F(\tilde{x})\},$ and $\delta_F(\tilde{y}) \le \max\{\delta_F(\tilde{x} \star ((\tilde{y} \star \tilde{y}) \star \tilde{y})), \delta_F(\tilde{x})\} = \max\{\delta_F(\tilde{x} \star \tilde{y}), \delta_F(\tilde{x})\}.$ Hence, $F = (\omega_F, \delta_F)$ is an IFUPF of \tilde{A} .

Example 3.2. Consider a UP-algebra $\tilde{A} = \{0, \tilde{z}_1, \tilde{z}_2, \tilde{z}_3, \tilde{z}_4\}$ with the following Cayley table:

*	0	\tilde{z}_1	\tilde{z}_2	\tilde{z}_3	\tilde{z}_4
0	0	\tilde{z}_1	\tilde{z}_2	\tilde{z}_3	\tilde{z}_4
\tilde{z}_1	0	0	\tilde{z}_4	\tilde{z}_1	\tilde{z}_4
\tilde{z}_2	0	\tilde{z}_1	0	\tilde{z}_1	0
\tilde{z}_3	0	0	\tilde{z}_4	0	\tilde{z}_4
\tilde{z}_4	0	\tilde{z}_1	\tilde{z}_4	\tilde{z}_1	0

Define an IFS $F = (\omega_F, \delta_F)$ in \hat{A} as follows:

Then $F = (\omega_F, \delta_F)$ is an IFUPF of \tilde{A} , but it is not an IFCUPF of \tilde{A} . Indeed, $\omega_F(\tilde{z}_3) = 0.1 < 0.5 = \min\{\omega_F(\tilde{z}_1 \star ((\tilde{z}_3 \star \tilde{z}_4) \star \tilde{z}_3)), \omega_F(\tilde{z}_1)\}.$

Theorem 3.2. If an IFS $F = (\omega_F, \delta_F)$ in a UP-algebra \tilde{A} is constant, then $F = (\omega_F, \delta_F)$ is an IFCUPF of \tilde{A} .

Proof: Suppose that an IFS $F = (\omega_F, \delta_F)$ in \hat{A} is constant. Then, there exist elements \vec{m} and \vec{n} in [0,1] such that $\omega_F(\tilde{x}) = \vec{m}$ and $\delta_F(\tilde{x}) = \vec{n}$ for all $\tilde{x} \in \tilde{A}$. Thus, $\omega_F(0) = \vec{m} = \omega_F(\tilde{x})$ and $\delta_F(0) = \vec{n} = \delta_F(\tilde{x})$ for all $\tilde{x} \in \tilde{A}$. For all $\tilde{x}, \tilde{y}, \tilde{z} \in \tilde{A}$, we get $\omega_F(\tilde{y}) = \vec{m} = \min\{\omega_F(\tilde{x} \star ((\tilde{y} \star \tilde{z}) \star \tilde{y})), \omega_F(\tilde{x})\}$ and $\delta_F(\tilde{y}) = \vec{n} = \max\{\delta_F(\tilde{x} \star ((\tilde{y} \star \tilde{z}) \star \tilde{y})), \delta_F(\tilde{x})\}$. Altogether, we have that $F = (\omega_F, \delta_F)$ is an IFCUPF of \tilde{A} .

Theorem 3.3. An IFS $F = (\omega_F, \delta_F)$ in a UP-algebra \tilde{A} is an IFCUPF of \tilde{A} if and only if the FSs ω_F and $\overline{\delta_F}$ are FCUPFs of \tilde{A} .

Proof: Assume that an IFS $F = (\omega_F, \delta_F)$ is an IFCUPF of \tilde{A} . Clearly, ω_F is an FCUPF of \tilde{A} . Then, it is necessary to show that $\overline{\delta_F}$ is an FCUPF of \tilde{A} . Let $\tilde{x}, \tilde{y}, \tilde{z} \in \tilde{A}$. By the assumption, we obtain $\delta_F(0) \leq \delta_F(\tilde{x})$ and $\delta_F(\tilde{y}) \leq \max\{\delta_F(\tilde{x} \star ((\tilde{y} \star \tilde{z}) \star \tilde{y})), \delta_F(\tilde{x})\}$. Thus, $\overline{\delta_F}(0) = 1 - \delta_F(0) \leq 1 - \delta_F(\tilde{x}) = \overline{\delta_F}(\tilde{x})$, so $\overline{\delta_F}(\tilde{y}) = 1 - \delta_F(\tilde{y}) \geq 1 - \max\{\delta_F(\tilde{x} \star ((\tilde{y} \star \tilde{z}) \star \tilde{y})), \delta_F(\tilde{x})\} = \min\{1 - \delta_F(\tilde{x} \star ((\tilde{y} \star \tilde{z}) \star \tilde{y})), 1 - \delta_F(\tilde{x})\} = \min\{\overline{\delta_F}(\tilde{x} \star ((\tilde{y} \star \tilde{z}) \star \tilde{y})), \overline{\delta_F}(\tilde{x})\}$. Therefore, we have that $\overline{\delta_F}$ is an FCUPF of \tilde{A} .

Conversely, suppose that the FSs ω_F and $\overline{\delta_F}$ are FCUPFs of \tilde{A} . Clearly, $F = (\omega_F, \delta_F)$ satisfies (11) and (17). Since $\overline{\delta_F}$ is an FCUPF of \tilde{A} , we have $1 - \delta_F(0) \ge 1 - \delta_F(\tilde{x})$ and $1 - \delta_F(\tilde{y}) \ge \min\{1 - \delta_F(\tilde{x} \star ((\tilde{y} \star \tilde{z}) \star \tilde{y})), 1 - \delta_F(\tilde{x})\} = 1 - \max\{\delta_F(\tilde{x} \star ((\tilde{y} \star \tilde{z}) \star \tilde{y})), \delta_F(\tilde{x})\}$ for all $\tilde{x}, \tilde{y}, \tilde{z} \in \tilde{A}$. Thus, we illustrate that $\delta_F(0) \le \delta_F(\tilde{x})$ and $\delta_F(\tilde{y}) \le \max\{\delta_F(\tilde{x} \star ((\tilde{y} \star \tilde{z}) \star \tilde{y})), \delta_F(\tilde{x})\}$ for all $\tilde{x}, \tilde{y}, \tilde{z} \in \tilde{A}$. Thus, we illustrate that $\delta_F(0) \le \delta_F(\tilde{x})$ and $\delta_F(\tilde{y}) \le \max\{\delta_F(\tilde{x} \star ((\tilde{y} \star \tilde{z}) \star \tilde{y})), \delta_F(\tilde{x})\}$ for all $\tilde{x}, \tilde{y}, \tilde{z} \in \tilde{A}$. This shows that $F = (\omega_F, \delta_F)$ satisfies (12) and (18). Therefore, $F = (\omega_F, \delta_F)$ is an IFCUPF of \tilde{A} . **Theorem 3.4.** An IFS $F = (\omega_F, \delta_F)$ in a UP-algebra \tilde{A} is an IFCUPF of \tilde{A} if and only if the IFSs $\Box F = (\omega_F, \overline{\omega_F})$ and $\diamond F = (\overline{\delta_F}, \delta_F)$ are IFCUPFs of \tilde{A} .

Proof: Assume that $F = (\omega_F, \delta_F)$ is an IFCUPF of \tilde{A} . Then, we have $\Box F = (\omega_F, \overline{\omega_F})$ satisfies (11) and (17). Thus, $\overline{\omega_F}(0) = 1 - \omega_F(0) \leq 1 - \omega_F(\tilde{x}) = \overline{\omega_F}(\tilde{x})$ and $\overline{\omega_F}(\tilde{y}) = 1 - \omega_F(\tilde{y}) \leq 1 - \min\{\omega_F(\tilde{x} \star ((\tilde{y} \star \tilde{z}) \star \tilde{y})), \omega_F(\tilde{x})\} = \max\{1 - \omega_F(\tilde{x} \star ((\tilde{y} \star \tilde{z}) \star \tilde{y})), 1 - \omega_F(\tilde{x})\} = \max\{\overline{\omega_F}(\tilde{x} \star ((\tilde{y} \star \tilde{z}) \star \tilde{y})), \overline{\omega_F}(\tilde{x})\}$ for all $\tilde{x}, \tilde{y}, \tilde{z} \in \tilde{A}$. Hence, $\Box F = (\omega_F, \overline{\omega_F})$ satisfies (12) and (18). Therefore, $\Box F = (\omega_F, \overline{\omega_F})$ is an IFCUPF of \tilde{A} .

Next, we will show that $\diamond F = (\overline{\delta_F}, \delta_F)$ is an IFCUPF of A. By the assumption, we get $\diamond F = (\overline{\delta_F}, \delta_F)$ satisfies (12) and (18). Thus, for all $\tilde{x}, \tilde{y}, \tilde{z} \in \tilde{A}, \overline{\delta_F}(0) = 1 - \delta_F(0) \leq 1 - \delta_F(\tilde{x}) = \overline{\delta_F}(\tilde{x})$ and $\overline{\delta_F}(\tilde{y}) = 1 - \delta_F(\tilde{y}) \geq 1 - \max\{\delta_F(\tilde{x} \star ((\tilde{y} \star \tilde{z}) \star \tilde{y})), \delta_F(\tilde{x})\} = \min\{1 - \delta_F(\tilde{x} \star ((\tilde{y} \star \tilde{z}) \star \tilde{y})), 1 - \delta_F(\tilde{x})\} = \min\{\overline{\delta_F}(\tilde{x} \star ((\tilde{y} \star \tilde{z}) \star \tilde{y})), \overline{\delta_F}(\tilde{x})\}$. Hence, $\diamond F = (\overline{\delta_F}, \delta_F)$ satisfies (11) and (17). Therefore, $\diamond F = (\overline{\delta_F}, \delta_F)$ is an IFCUPF of \tilde{A} .

Assume that the IFSs $\Box F = (\omega_F, \overline{\omega_F})$ and $\Diamond F = (\overline{\delta_F}, \delta_F)$ are IFCUPFs of \tilde{A} . Then ω_F and $\overline{\delta_F}$ are FCUPFs of \tilde{A} . Therefore, it follows from Theorem 3.3 that $F = (\omega_F, \delta_F)$ is an IFCUPF of \tilde{A} .

Theorem 3.5. An IFS $F = (\omega_F, \delta_F)$ in a UP-algebra \tilde{A} is an IFCUPF of \tilde{A} if and only if the IFS $\Delta F = (\overline{\delta_F}, \overline{\omega_F})$ is an IFCUPF of \tilde{A} .

Proof: Assume that $F = (\omega_F, \delta_F)$ is an IFCUPF of \tilde{A} . By Theorem 3.4, we obtain that the IFSs $\Box F = (\omega_F, \overline{\omega_F})$ and $\diamond F = (\overline{\delta_F}, \delta_F)$ are IFCUPFs of \tilde{A} . Thus, $\overline{\delta_F}$ satisfies (11) and (17), and $\overline{\omega_F}$ satisfies (12) and (18). Hence, $\Delta F = (\overline{\delta_F}, \overline{\omega_F})$ is an IFCUPF of \tilde{A} .

Suppose that $\Delta F = (\overline{\delta_F}, \overline{\omega_F})$ is an IFCUPF of \tilde{A} . By Theorem 3.3, we get that the FSs $\overline{\delta_F}$ and $\overline{\overline{\omega_F}}$ are FCUPFs of \tilde{A} . Since $\overline{\overline{\omega_F}} = 1 - (1 - \omega_F) = \omega_F$, we have ω_F is an FCUPF of A. By Theorem 3.3, we have $F = (\omega_F, \delta_F)$ is an IFCUPF of \tilde{A} .

For a nonempty subset \tilde{Z} of a nonempty set \tilde{A} , the characteristic function $f_{\tilde{Z}}$ of \tilde{A} is a function of \tilde{A} into $\{0,1\}$ defined as follows: for all $\tilde{x} \in \tilde{A}$, $f_{\tilde{Z}}(\tilde{x}) = \begin{cases} 1 & \text{if } \tilde{x} \in \tilde{Z}, \\ 0 & \text{if } \tilde{x} \notin \tilde{Z}. \end{cases}$

Then, for all $\tilde{x} \in \tilde{A}$, we have $\overline{f_{\tilde{Z}}}(\tilde{x}) = \begin{cases} 1 & \text{if } \tilde{x} \notin \tilde{Z}, \\ 0 & \text{if } \tilde{x} \in \tilde{Z}. \end{cases}$ Now, we denote the IFS in \tilde{A} with the degree of membership $f_{\tilde{Z}}$ and the degree of nonmembership $\overline{f_{\tilde{Z}}}$ by $F_{\tilde{Z}}$, that is, $F_{\tilde{Z}} = (f_{\tilde{Z}}, \overline{f_{\tilde{Z}}}).$

Theorem 3.6. A nonempty subset \tilde{Z} of a UP-algebra \tilde{A} is a CUPF of \tilde{A} if and only if the IFS $F_{\tilde{Z}} = (f_{\tilde{Z}}, \overline{f_{\tilde{Z}}})$ is an IFCUPF of \tilde{A} .

Proof: Assume that \tilde{Z} is a CUPF of \tilde{A} . Then, since $0 \in \tilde{Z}$, we have $f_{\tilde{Z}}(0) = 1 \ge f_{\tilde{Z}}(\tilde{x})$ and $\overline{f_{\tilde{Z}}}(0) = 0 \le \overline{f_{\tilde{Z}}}(\tilde{x})$ for all $\tilde{x} \in \tilde{A}$. Thus, $F_{\tilde{Z}}$ satisfies (11) and (12). Let $\tilde{x}, \tilde{y}, \tilde{z} \in \tilde{A}$. In the case that $\tilde{x} \star ((\tilde{y} \star \tilde{z}) \star \tilde{y}) \notin \tilde{Z}$ or $\tilde{x} \notin \tilde{Z}$, we have $\overline{f_{\tilde{Z}}}(\tilde{y}) \le 1 = \max\{\overline{f_{\tilde{Z}}}(\tilde{x} \star ((\tilde{y} \star \tilde{z}) \star \tilde{y})), \overline{f_{\tilde{Z}}}(\tilde{x})\}$ and $f_{\tilde{Z}}(\tilde{y}) \ge 0 = \min\{f_{\tilde{Z}}(\tilde{x} \star ((\tilde{y} \star \tilde{z}) \star \tilde{y})), f_{\tilde{Z}}(\tilde{x})\}$. On the other hand, let $\tilde{x} \star ((\tilde{y} \star \tilde{z}) \star \tilde{y}) \in \tilde{Z}$ and $\tilde{x} \in \tilde{Z}$. By the assumption, we get $\tilde{y} \in \tilde{Z}$. Hence, $\overline{f_{\tilde{Z}}}(\tilde{y}) = 0 = \max\{\overline{f_{\tilde{Z}}}(\tilde{x} \star ((\tilde{y} \star \tilde{z}) \star \tilde{y})), \overline{f_{\tilde{Z}}}(\tilde{x})\}$ and $f_{\tilde{Z}}(\tilde{x})\}$ and $f_{\tilde{Z}}(\tilde{y}) = 1 = \min\{f_{\tilde{Z}}(\tilde{x} \star ((\tilde{y} \star \tilde{z}) \star \tilde{y})), f_{\tilde{Z}}(\tilde{x})\}$. This shows that $F_{\tilde{Z}}$ satisfies (17) and (18). Therefore, $F_{\tilde{Z}}$ is an IFCUPF of \tilde{A} .

Assume that $F_{\tilde{Z}} = (f_{\tilde{Z}}, \overline{f_{\tilde{Z}}})$ is an IFCUPF of \tilde{A} . Then $f_{\tilde{Z}}(0) \geq f_{\tilde{Z}}(\tilde{x}) = 1$ when $\tilde{x} \in \tilde{Z}$. Thus, $0 \in \tilde{Z}$ and so \tilde{Z} satisfies (2). Next, we will show that \tilde{Z} satisfies (5). Let $\tilde{x}, \tilde{y}, \tilde{z} \in \tilde{A}$ be such that $\tilde{x} \star ((\tilde{y} \star \tilde{z}) \star \tilde{y}) \in \tilde{Z}$ and $\tilde{x} \in \tilde{Z}$. By using the assumption, we get $f_{\tilde{Z}}(\tilde{y}) \geq \min\{f_{\tilde{Z}}(\tilde{x} \star ((\tilde{y} \star \tilde{z}) \star \tilde{y})), f_{\tilde{Z}}(\tilde{x})\} = 1$. Hence, $\tilde{y} \in \tilde{Z}$. This shows that \tilde{Z} satisfies (5). Altogether, \tilde{Z} is a CUPF of \tilde{A} .

Definition 3.2. Let ω and δ be FSs in a nonempty set \tilde{A} . For $\vec{m}, \vec{n} \in [0, 1]$, the set $\tilde{U}(\omega; \vec{m}) = \left\{ \tilde{x} \in \tilde{A} \middle| \omega(\tilde{x}) \geq \vec{m} \right\}$ and $\tilde{U}^+(\omega; \vec{m}) = \left\{ \tilde{x} \in \tilde{A} \middle| \omega(\tilde{x}) > \vec{m} \right\}$ are called an upper \vec{m} -level subset and an upper \vec{m} -strong level subset of ω , respectively. The set $\tilde{L}(\omega; \vec{m}) = \left\{ \tilde{x} \in \tilde{A} \middle| \omega(\tilde{x}) \leq \vec{m} \right\}$ and $\tilde{L}^-(\omega; \vec{m}) = \left\{ \tilde{x} \in \tilde{A} \middle| \omega(\tilde{x}) < \vec{m} \right\}$ are called a lower \vec{m} -level subset and a lower \vec{m} -strong level subset of ω , respectively. The set $\tilde{C}(\omega, \delta; \vec{m}, \vec{n}) = \tilde{U}(\omega; \vec{m}) \cap \tilde{L}(\delta, \vec{n})$ is called the (\vec{m}, \vec{n}) -cut of ω and δ .

Theorem 3.7. An IFS $F = (\omega_F, \delta_F)$ in a UP-algebra \tilde{A} is an IFCUPF of \tilde{A} if and only if the sets $\tilde{U}(\omega_F; \vec{m})$ and $\tilde{L}(\delta_F; \vec{n})$ are CUPFs of \tilde{A} for each $\vec{m}, \vec{n} \in [0, 1]$ such that $\tilde{U}(\omega_F; \vec{m}) \neq \emptyset$ and $\tilde{L}(\delta_F; \vec{n}) \neq \emptyset$.

Proof: Assume that $F = (\omega_F, \delta_F)$ is an IFCUPF of \tilde{A} , let $\vec{m}, \vec{n} \in [0, 1]$ be such that $\tilde{U}(\omega_F; \vec{m})$ and $\tilde{L}(\delta_F; \vec{n})$ are nonempty subsets of \tilde{A} . Then, there exist $\tilde{x} \in \tilde{U}(\omega_F; \vec{m})$ and $\tilde{y} \in \tilde{L}(\delta_F; \vec{n})$. Thus, $\omega(\tilde{x}) \geq \vec{m}$ and $\delta_F(\tilde{y}) \leq \vec{n}$. By the assumption, we have $\omega_F(0) \geq \omega_F(\tilde{x}) \geq \vec{m}$ and $\delta_F(0) \leq \delta_F(\tilde{y}) \leq \vec{n}$. Hence, $0 \in \tilde{U}(\omega_F; \vec{m})$ and $0 \in \tilde{L}(\delta_F; \vec{n})$. Therefore, $\tilde{U}(\omega_F; \vec{m})$ and $\tilde{L}(\delta_F; \vec{n})$ satisfy (2).

Next, will show that $\tilde{U}(\omega_F; \vec{m})$ satisfies (5). Let $\tilde{x}, \tilde{y}, \tilde{z} \in \tilde{A}$ be such that $\tilde{x} \star ((\tilde{y} \star \tilde{z}) \star \tilde{y}) \in \tilde{U}(\omega; \vec{m})$ and $\tilde{x} \in \tilde{U}(\omega; \vec{m})$. Thus, $\omega_F(\tilde{x} \star ((\tilde{y} \star \tilde{z}) \star \tilde{y})) \geq \vec{m}$ and $\omega_F(\tilde{x}) \geq \vec{m}$. By the assumption, we have $\omega_F(\tilde{y}) \geq \min\{\omega_F(\tilde{x} \star ((\tilde{y} \star \tilde{z}) \star \tilde{y})), \omega_F(\tilde{x})\} \geq \vec{m}$. So, $y \in \tilde{U}(\omega_F; \vec{m})$. Hence, $\tilde{U}(\omega_F; \vec{m})$ satisfies (5).

Finally, to show that $\tilde{L}(\delta_F; \vec{n})$ satisfies (5), let $\tilde{x}, \tilde{y}, \tilde{z} \in \tilde{A}$ be such that $\tilde{x} \star ((\tilde{y} \star \tilde{z}) \star \tilde{y}) \in \tilde{L}(\delta_F; \vec{n})$ and $\tilde{x} \in \tilde{L}(\delta_F; \vec{n})$. Then $\delta_F(\tilde{x} \star ((\tilde{y} \star \tilde{z}) \star \tilde{y})) \leq \vec{n}$ and $\delta_F(\tilde{x}) \leq \vec{n}$. Thus, $\delta_F(\tilde{y}) \leq \max\{\delta_F(\tilde{x} \star ((\tilde{y} \star \tilde{z}) \star \tilde{y})), \delta_F(\tilde{x})\} \leq \vec{n}$. This shows that $y \in \tilde{L}(\delta_F; \vec{n})$. Hence, $\tilde{L}(\delta_F; \vec{n})$ satisfies (5).

Altogether, we have that $U(\omega_F; \vec{m})$ and $L(\delta_F, \vec{n})$ are CUPFs of \hat{A} .

Assume that the sets $\tilde{U}(\omega_F; \vec{m})$ and $\tilde{L}(\delta_F; \vec{n})$ are CUPFs of \tilde{A} for each $\vec{m}, \vec{n} \in [0, 1]$ such that $\tilde{U}(\omega_F; \vec{m}) \neq \emptyset$ and $\tilde{L}(\delta_F; \vec{n}) \neq \emptyset$. Let $\tilde{x} \in \tilde{A}$. Then, we have $\tilde{x} \in \tilde{U}(\omega_F; \omega_F(\tilde{x}))$ and $\tilde{x} \in \tilde{L}(\delta_F; \delta_F(\tilde{x}))$. By the assumption, we have $\tilde{U}(\omega_F; \omega_F(\tilde{x}))$ and $\tilde{L}(\delta_F; \delta_F(\tilde{x}))$ are CUPFs of \tilde{A} . Thus, $0 \in \tilde{U}(\omega_F; \omega_F(\tilde{x}))$ and $0 \in \tilde{L}(\delta_F; \delta_F(\tilde{x}))$ which imply $\omega_F(0) \geq \omega_F(\tilde{x})$ and $\delta_F(0) \leq \delta_F(\tilde{x})$. Hence, $F = (\omega_F, \delta_F)$ satisfies (11) and (12).

Next, we will show that $F = (\omega_F, \delta_F)$ satisfies (17). Suppose that there exist $\tilde{x}, \tilde{y}, \tilde{z} \in \tilde{A}$ such that $\omega_F(\tilde{y}) < \min\{\omega_F(\tilde{x}\star((\tilde{y}\star\tilde{z})\star\tilde{y})), \omega_F(\tilde{x})\}$. Choose $\vec{m}_0 = \frac{1}{2}[\omega_F(\tilde{y}) + \min\{\omega_F(\tilde{x}\star((\tilde{y}\star\tilde{z})\star\tilde{y})), \omega_F(\tilde{x})\}]$. Thus, $\vec{m}_0 \in [0, 1]$ and $\omega_F(\tilde{y}) < \vec{m}_0 < \min\{\omega_F(\tilde{x}\star((\tilde{y}\star\tilde{z})\star\tilde{y})), \omega_F(\tilde{x})\}$. It implies that $\tilde{y} \notin \tilde{U}(\omega_F; \vec{m}_0)$ but $\tilde{x} \star ((\tilde{y}\star\tilde{z})\star\tilde{y}), \tilde{x} \in \tilde{U}(\omega_F; \vec{m}_0)$. Thus, $\tilde{U}(\omega_F; \vec{m}_0)$ is not a CUPF of \tilde{A} , which is a contradiction. Hence, we obtain that $\omega_F(\tilde{y}) \geq \min\{\omega_F(\tilde{x}\star((\tilde{y}\star\tilde{z})\star\tilde{y})), \omega_F(\tilde{x})\}$ for all $\tilde{x}, \tilde{y}, \tilde{z} \in \tilde{A}$. This implies that $F = (\omega_F, \delta_F)$ satisfies (17).

Finally, we will show that $F = (\omega_F, \delta_F)$ satisfies (18). Suppose that there exist $\tilde{x}, \tilde{y}, \tilde{z} \in \tilde{A}$ such that $\delta_F(\tilde{y}) > \max\{\delta_F(\tilde{x} \star ((\tilde{y} \star \tilde{z}) \star \tilde{y})), \delta_F(\tilde{x})\}$. Choose $\vec{n}_0 = \frac{1}{2}[\delta_F(\tilde{y}) + \max\{\delta_F(\tilde{x} \star ((\tilde{y} \star \tilde{z}) \star \tilde{y})), \delta_F(\tilde{x})\}]$. Thus, $\vec{n}_0 \in [0, 1]$ and $\max\{\delta_F(\tilde{x} \star ((\tilde{y} \star \tilde{z}) \star \tilde{y})), \delta_F(\tilde{x})\} < \vec{n}_0 < \delta_F(\tilde{y})$. It implies that $\tilde{y} \in \tilde{L}(\delta_F; \vec{n}_0)$ but $\tilde{x} \star ((\tilde{y} \star \tilde{z}) \star \tilde{y}), \tilde{x} \in \tilde{L}(\delta_F; \vec{n}_0)$. Then, $\tilde{L}(\delta_F; \vec{n}_0)$ is not a CUPF of \tilde{A} , which is a contradiction. Therefore, $\delta_F(\tilde{y}) \leq \max\{\delta_F(\tilde{x} \star ((\tilde{y} \star \tilde{z}) \star \tilde{y})), \delta_F(\tilde{x})\}$ for all $\tilde{x}, \tilde{y}, \tilde{z} \in \tilde{A}$, which implies that $F = (\omega_F, \delta_F)$ satisfies (18).

Altogether, we get that $F = (\omega_F, \delta_F)$ is an IFCUPF of A.

Corollary 3.1. An IFS $F = (\omega_F, \delta_F)$ is an IFCUPF of \tilde{A} if and only if, for all $\vec{m}, \vec{n} \in [0, 1]$, the set $\tilde{C}(\omega_F, \delta_F; \vec{m}, \vec{n})$ is either empty or a CUPF of \tilde{A} .

Proof: The necessity is straightforward from Theorems 2.1 and 3.7.

Conversely, assume that, the set $\tilde{C}(\omega_F, \delta_F; \vec{m}, \vec{n})$ is either empty or a CUPF of \tilde{A} for all $\vec{m}, \vec{n} \in [0, 1]$. Let $\vec{m} \in [0, 1]$ be such that $\tilde{U}(\omega_F; \vec{m}) \neq \emptyset$. Then $\emptyset \neq \tilde{U}(\omega_F; \vec{m}) =$

 $\tilde{U}(\omega_F; \vec{m}) \cap \tilde{A} = \tilde{U}(\omega_F; \vec{m}) \cap \tilde{L}(\delta_F; 1) = \tilde{C}(\omega_F, \delta_F; \vec{m}, 1)$. By the assumption, we have that $\tilde{U}(\omega_F; \vec{m}) = \tilde{C}(\omega_F, \delta_F; \vec{m}, 1)$ is a CUPF of \tilde{A} .

Let $\vec{n} \in [0,1]$ be such that $\tilde{L}(\delta_F;s) \neq \emptyset$. Then $\emptyset \neq \tilde{L}(\delta_F;\vec{n}) = \tilde{A} \cap \tilde{L}(\delta_F;\vec{n}) = \tilde{U}(\omega_F;0) \cap \tilde{L}(\delta_F;\vec{n}) = \tilde{C}(\omega_F,\delta_F;0,\vec{n})$. By the assumption, we get that $\tilde{L}(\delta_F;\vec{n}) = \tilde{C}(\omega_F,\delta_F;0,\vec{n})$ is a CUPF of \tilde{A} . By Theorem 3.7, we have $F = (\omega_F,\delta_F)$ is an IFCUPF of \tilde{A} .

Theorem 3.8. If an IFS $F = (\omega_F, \delta_F)$ in a UP-algebra \tilde{A} is an IFCUPF of \tilde{A} , then the set $\tilde{U}^+(\omega_F; \vec{m})$ and $\tilde{L}^-(\delta_F; \vec{n})$ are CUPFs of \tilde{A} for each $\vec{m}, \vec{n} \in [0, 1]$ such that $\tilde{U}^+(\omega_F; \vec{m}) \neq \emptyset$ and $\tilde{L}^-(\delta_F; \vec{n}) \neq \emptyset$.

Proof: Suppose that an IFS $F = (\omega_F, \delta_F)$ is an IFCUPF of \tilde{A} . Let $\vec{m}, \vec{n} \in [0, 1]$ be such that $\tilde{U}^+(\omega_F; \vec{m})$ and $\tilde{L}^-(\delta_F; \vec{n})$ are nonempty subsets of \tilde{A} . Then, there exist $\tilde{a} \in \tilde{U}^+(\omega_F; \vec{m})$ and $\tilde{b} \in \tilde{L}^-(\delta_F; \vec{n})$ which imply that $\omega_F(\tilde{y}) > \vec{m}$ and $\delta_F(\tilde{z}) < \vec{n}$. By the assumption, we have $\omega_F(0) \ge \omega_F(\tilde{y}) > \vec{m}$ and $\delta_F(0) \le \delta_F(\tilde{z}) < \vec{n}$. Thus, $0 \in \tilde{U}^+(\omega_F; \vec{m})$ and $0 \in \tilde{L}(\delta_F; \vec{n})$. Hence, $\tilde{U}^+(\omega_F; \vec{m})$ and $\tilde{L}^-(\delta_F; \vec{n})$ satisfy (2).

Next, let $\tilde{x}, \tilde{y}, \tilde{z} \in \tilde{A}$ be such that $\tilde{x} \star ((\tilde{y} \star \tilde{z}) \star y), \tilde{x} \in \tilde{U}^+(\omega_F; \vec{m})$. Then, $\omega_F(\tilde{x} \star ((\tilde{y} \star \tilde{z}) \star y)) > \vec{m}$ and $\omega_F(\tilde{x}) > \vec{m}$. Thus, $\omega_F(\tilde{y}) \ge \min\{\omega_F(\tilde{x} \star ((\tilde{y} \star \tilde{z}) \star y)), \omega_F(\tilde{x})\} > \vec{m}$, which implies $\tilde{y} \in \tilde{U}^+(\omega_F; \vec{m})$. Hence, $\tilde{U}^+(\omega_F; \vec{m})$ satisfies (5).

Finally, let $\tilde{x}, \tilde{y}, \tilde{z} \in \tilde{A}$ be such that $\tilde{x} \star ((\tilde{y} \star \tilde{z}) \star \tilde{y}) \in \tilde{L}^{-}(\delta_{F}; \vec{n})$ and $\tilde{x} \in \tilde{L}^{-}(\delta_{F}; \vec{n})$. Then $\delta_{F}(\tilde{x} \star ((\tilde{y} \star \tilde{z}) \star \tilde{y})) < \vec{n}$ and $\delta_{F}(\tilde{x}) < \vec{n}$. Thus, $\delta_{F}(\tilde{y}) \leq \max\{\delta_{F}(\tilde{x} \star ((\tilde{y} \star \tilde{z}) \star \tilde{y})), \delta_{F}(\tilde{x})\} < \vec{n}$, so $\tilde{y} \in \tilde{L}^{-}(\delta_{F}; \vec{n})$. This shows that $\tilde{L}^{-}(\delta_{F}; \vec{n})$ satisfies (5).

Altogether, $\tilde{U}^+(\omega_F; \vec{m})$ and $\tilde{L}^-(\delta_F; \vec{n})$ are CUPFs of \tilde{A} .

4. **Conclusion.** In this paper, we have introduced the concept of IFCUPF of UP-algebras, and provided their properties. In our future work, we will utilize ideas and results in this paper in IFCUPFs to study the substructures of algebraic systems related to UP-algebras.

In the near future, we will broaden the scope of the research covered in this work to include investigation into essential comparative UP-filters and *t*-essential intuitionistic fuzzy comparative UP-filters, in accordance with [22, 23].

Acknowledgment. This research project was supported by the Thailand Science Research and Innovation Fund and the University of Phayao (Grant No. FF67-UoE-Aiyared-Iampan).

REFERENCES

- A. Iampan, A new branch of the logical algebra: UP-algebras, J. Algebra Relat. Top., vol.5, no.1, pp.35-54, 2017.
- [2] C. Prabpayak and U. Leerawat, On ideals and congruences in KU-algebras, Sci. Magna., vol.5, no.1, pp.54-57, 2009.
- [3] J. Somjanta, N. Thuekaew, P. Kumpeangkeaw and A. Iampan, Fuzzy sets in UP-algebras, Ann. Fuzzy Math. Inform., vol.12, no.6, pp.739-756, 2016.
- [4] P. Kankaew, S. Yuphaphin, N. Lapo, R. Chinram and A. Iampan, Picture fuzzy set theory applied to UP-algebras, *Missouri J. Math. Sci.*, vol.34, no.1, pp.94-120, 2022.
- [5] K. Kawila, C. Udomsetchai and A. Iampan, Bipolar fuzzy UP-algebras, *Math. Comput. Appl.*, vol.23, no.4, Article No. 69, 2018.
- [6] M. Songsaeng and A. Iampan, Neutrosophic set theory applied to UP-algebras, Eur. J. Pure Appl. Math., vol.12, no.4, pp.1382-1409, 2019.
- [7] B. Kesorn, K. Maimun, W. Ratbandan and A. Iampan, Intuitionistic fuzzy sets in UP-algebras, *Ital. J. Pure Appl. Math.*, vol.34, pp.339-364, 2015.
- [8] Y. B. Jun and A. Iampan, Comparative and allied UP-filters, *Lobachevskii J. Math*, vol.40, no.1, pp.60-66, 2019.
- [9] T. Gaketem, P. Khamrot, P. Julatha and A. Iampan, Bipolar fuzzy comparative UP-filters, *IAENG Int. J. Appl. Math.*, vol.52, no.3, pp.704-709, 2022.
- [10] K. T. Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets Syst., vol.35, pp.87-96, 1986.
- [11] L. A. Zadeh, Fuzzy sets, Inf. Control, vol.8, no.3, pp.338-353, 1965.

- [12] N. Thongngam and A. Iampan, A novel approach to intuitionistic fuzzy sets in UP-algebras, Korean J. Math., vol.27, no.4, pp.1077-1108, 2019.
- [13] H. K. Abdullah and M. T. Shadhan, Intuitionistic fuzzy pseudo ideals in Q-algebra, J. Phys.: Conf. Ser., vol.1591, 012095, 2020.
- [14] M. Songsaeng, K. P. Shum, R. Chinram and A. Iampan, Neutrosophic implicative UP-filters, neutrosophic comparative UP-filters, and neutrosophic shift UP-filters of UP-algebras, *Neutrosophic Sets* Syst., vol.47, pp.620-643, 2021.
- [15] P. Khamrot, T. Gaketem, P. Julatha, N. Chunsee, R. Prasertpong and A. Iampan, A note on intuitionistic fuzzy implicative UP-filters, *ICIC Express Letters, Part B: Applications*, vol.14, no.4, pp.339-347, 2023.
- [16] N. Dokkhamdang, A. Kesorn and A. Iampan, Generalized fuzzy sets in UP-algebras, Ann. Fuzzy Math. Inform., vol.16, no.2, pp.171-190, 2018.
- [17] A. Iampan, Introducing fully UP-semigroups, Discuss. Math. Gen. Algebra Appl., vol.38, no.2, pp.297-306, 2018.
- [18] M. A. Ansari, A. Haidar and A. N. A. Koam, On a graph associated to UP-algebras, Math. Comput. Appl., vol.23, no.4, 61, 2018.
- [19] A. Satirad, P. Mosrijai and A. Iampan, Formulas for finding UP-algebras, Int. J. Math. Comput. Sci., vol.14, no.2, pp.403-409, 2019.
- [20] A. Satirad, P. Mosrijai and A. Iampan, Generalized power UP-algebras, Int. J. Math. Comput. Sci., vol.14, no.1, pp.17-25, 2019.
- [21] Y. B. Jun and A. Iampan, Implicative UP-filters, Afr. Mat., vol.30, pp.1093-1101, 2019.
- [22] T. Gaketem and A. Iampan, Essential UP-ideals and t-essential fuzzy UP-ideals of UP-algebras, ICIC Express Letters, vol.15, no.12, pp.1283-1289, 2021.
- [23] T. Gaketem, P. Khamrot and A. Iampan, Essential UP-filters and t-essential fuzzy UP-filters of UP-algebras, *ICIC Express Letters*, vol.16, no.10, pp.1057-1062, 2022.