
ICIC Express Letters ICIC International c⃝2023 ISSN 1881-803X
Volume 17, Number 12, December 2023 pp. 1321–1329

INTUITIONISTIC FUZZY COMPARATIVE UP-FILTERS
AND THEIR LEVEL SUBSETS

Pannawit Khamrot1, Thiti Gaketem2, Pongpun Julatha3

Napaporn Chunsee4, Rukchart Prasertpong5 and Aiyared Iampan2,∗

1Department of Mathematics
Faculty of Science and Agricultural Technology

Rajamangala University of Technology Lanna Phitsanulok
52 Moo 7, Tambon Ban Krang, Amphur Mueang, Phitsanulok 65000, Thailand

pk g@rmutl.ac.th

2Fuzzy Algebras and Decision-Making Problems Research Unit
Department of Mathematics

School of Science
University of Phayao

19 Moo 2, Tambon Mae Ka, Amphur Mueang, Phayao 56000, Thailand
thiti.ga@up.ac.th; ∗Corresponding author: aiyared.ia@up.ac.th

3Department of Mathematics
Faculty of Science and Technology
Pibulsongkram Rajabhat University

156 Moo 5, Tambon Phlai Chumphon, Amphur Mueang, Phitsanulok 65000, Thailand
pongpun.j@psru.ac.th

4Department of Mathematics
Faculty of Science and Technology
Uttaradit Rajabhat University

27 Injaime Road, Tambon Tha-it, Amphur Mueang, Uttaradit 53000, Thailand
napaporn@uru.ac.th

5Division of Mathematics and Statistics
Faculty of Science and Technology
Nakhon Sawan Rajabhat University

398 Moo 9, Tambon Nakhon Sawan Tok, Amphur Mueang, Nakhon Sawan 60000, Thailand
rukchart.p@nsru.ac.th

Received January 2023; accepted April 2023

Abstract. In this paper, we introduce the concept of intuitionistic fuzzy comparative
UP-filters and investigate their properties. Also, we discuss the relationship between in-
tuitionistic fuzzy comparative UP-filters and fuzzy comparative UP-filters. Moreover, we
establish the concept of complement and level subset with the intuitionistic fuzzy compar-
ative UP-filters.
Keywords: Comparative UP-filters, UP-filters, Intuitionistic fuzzy UP-filters, Intuition-
istic fuzzy comparative UP-filters

1. Introduction. In 2017, Iampan [1] introduced the concept of UP-algebras as a gen-
eralization of KU-algebras [2]. UP-algebra is an algebraic structure type of logic from
an introductory algebra class. Many researchers brought this concept of UP-algebra into
various concepts, such as UP-algebra with fuzzy sets [3], picture fuzzy sets [4], bipolar
fuzzy sets [5], neutrosophic sets [6], and intuitionistic fuzzy sets [7].

The expansion of the UP-algebra concept to a new notion has been attractive to vari-
ous researchers. For example, Jun and Iampan [8] introduced the concept of comparative
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and allied UP-filters and investigated several properties. In 2019, they discussed the re-
lationship between a UP-filter and a comparative UP-filter, conditions for a UP-filter to
be a comparative UP-filter, and characterizations of a (comparative) UP-filter. In 2022,
Gaketem et al. [9] proposed the concept of bipolar fuzzy comparative UP-filters, investi-
gated their properties, and expressed bipolar fuzzy comparative UP-filters to neutrosophic
sets. Expanding this concept into different sets, like the algebraic structure is essential.
In 1986, Atanassov [10] studied the concept of intuitionistic fuzzy sets as a generalization
of the concept of fuzzy sets of Zadeh [11]. The concept of fuzzy sets that expresses un-
certainties is an important mathematical tool for solving theoretical problems. In 2019,
Thongngam and Iampan [12] studied the concept of intuitionistic fuzzy UP-filters and
intuitionistic fuzzy near UP-filters. In 2020, Abdullah and Shadhan [13] applied the con-
cept of intuitionistic fuzzy sets on Q-algebras. In addition, Songsaeng et al. [14] have also
studied neutrosophic comparative UP-filters of UP-algebras in 2021. In 2023, Khamrot et
al. [15] introduced the concept of intuitionistic fuzzy implicative UP-filters of UP-algebras
and provided some properties of intuitionistic fuzzy implicative UP-filters and together
studied the relation of intuitionistic fuzzy implicative UP-filters and intuitionistic fuzzy
UP-filters in UP-algebras.
We are interested in extending the notion of comparative UP-filters to intuitionistic

fuzzy comparative UP-filters (IFCUPFs) to supplement the intuitionistic fuzzy set notion
of UP-algebras. This article aims to introduce the new concept of IFCUPFs in detail
below and give some definitions, properties, and examples of UP-algebras in the next
section. As a result, we find a relationship between IFCUPFs and their level subsets and
complements. Finally, we conclude and plan to future work.

2. Preliminaries.

Definition 2.1. [1] An algebra
(
Ã, ⋆, 0

)
of type (2, 0) is called a UP-algebra, where Ã

is a nonempty set, ⋆ is a binary operation on Ã, and 0 is a fixed element of Ã (i.e., a

nullary operation) if it satisfies the following axioms: (i)
(
for all x̃, ỹ, z̃ ∈ Ã

)
((ỹ ⋆ z̃) ⋆

((x̃ ⋆ ỹ) ⋆ (x̃ ⋆ z̃)) = 0), (ii)
(
for all x̃ ∈ Ã

)
(0 ⋆ x̃ = x̃), (iii)

(
for all x̃ ∈ Ã

)
(p ⋆ 0 = 0),

and (iv)
(
for all x̃, ỹ ∈ Ã

)
(x̃ ⋆ ỹ = 0, ỹ ⋆ x̃ = 0 ⇒ x̃ = ỹ).

Unless otherwise indicated, we will assume that Ã is a UP-algebra
(
Ã, ⋆, 0

)
.

Proposition 2.1. [1] In a UP-algebra Ã, the following properties hold: (i)
(
for all x̃ ∈

Ã
)
(x̃ ⋆ x̃ = 0), (ii)

(
for all x̃, ỹ, z̃ ∈ Ã

)
(x̃ ⋆ ỹ = 0, ỹ ⋆ z̃ = 0 ⇒ x̃ ⋆ z̃ = 0), (iii)(

for all x̃, ỹ, z̃ ∈ Ã
)
(x̃ ⋆ ỹ = 0 ⇒ (z̃ ⋆ x̃) ⋆ (z̃ ⋆ ỹ) = 0), (iv)

(
for all x̃, ỹ, z̃ ∈ Ã

)
(x̃ ⋆ ỹ =

0 ⇒ (ỹ ⋆ z̃) ⋆ (x̃ ⋆ z̃) = 0), (v)
(
for all x̃, ỹ ∈ Ã

)
(x̃ ⋆ (ỹ ⋆ x̃) = 0), (vi)

(
for all x̃, ỹ ∈ Ã

)
((ỹ ⋆ x̃) ⋆ x̃ = 0 ⇔ x̃ = ỹ ⋆ x̃), and (vii)

(
for all x̃, ỹ ∈ Ã

)
(x̃ ⋆ (ỹ ⋆ ỹ) = 0).

For examples of UP-algebras, there have been several interesting research studies (see
[16, 17, 18, 19, 20]).

The binary relation ≤ on a UP-algebra Ã is defined as follows:
(
for all x̃, ỹ ∈ Ã

)
(x̃ ≤

ỹ ⇔ x̃ ⋆ ỹ = 0) and the following assertions are valid (see [1, 17]).
Next, we recall the concepts of UP-subalgebras, UP-ideals, UP-filters, comparative

UP-filters, and implicative UP-filters of UP-algebras [1, 21] as the following definition.
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Definition 2.2. A nonempty subset Z̃ of Ã is called

(i) a UP-subalgebra (UPS) of Ã if(
for all x̃, ỹ ∈ Z̃

)(
x̃ ⋆ ỹ ∈ Z̃

)
, (1)

(ii) a UP-ideal (UPI) of Ã if

0 ∈ Z̃, (2)(
for all x̃, ỹ, z̃ ∈ Ã

)(
x̃ ⋆ (ỹ ⋆ z̃) ∈ Z̃, ỹ ∈ Z̃ ⇒ x̃ ⋆ z̃ ∈ Z̃

)
, (3)

(iii) a UP-filter (UPF) of Ã if it satisfies (2) and(
for all x̃, ỹ ∈ Ã

)(
x̃ ∈ Z̃, x̃ ⋆ ỹ ∈ Z̃ ⇒ ỹ ∈ Z̃

)
, (4)

(iv) a comparative UP-filter (CUPF) of Ã if it satisfies (2) and(
for all x̃, ỹ, z̃ ∈ Ã

)(
x̃ ⋆ ((ỹ ⋆ z̃) ⋆ ỹ) ∈ Z̃, x̃ ∈ Z̃ ⇒ ỹ ∈ Z̃

)
. (5)

Clearly, Ã and {0} are UPSs and UPIs of Ã. Every CUPF is a UPF, but the converse
is not generally valid, as shown in Jun and Iampan [8].

Theorem 2.1. [16] Let K be a nonempty family of UPSs (resp., UPFs, UPIs, CUPFs)
of Ã. Then ∩K is a UPS (resp., UPF, UPI, CUPF) of Ã.

Definition 2.3. A fuzzy set (FS) ω in a nonempty set Z̃ is a function from Z̃ into the
unit closed interval [0, 1] of real numbers, i.e., ω : Z̃ → [0, 1].

For any two FSs ω1 and ω2 in a nonempty set Z̃, we define (i) ω1 ≥ ω2 ⇔ ω1(x̃) ≥
ω2(x̃) for all x̃ ∈ Z̃, (ii) ω1 = ω2 ⇔ ω1 ≥ ω2 and ω2 ≥ ω1, and (iii) (ω1 ∧ ω2)(x̃) =
min{ω1(x̃), ω2(x̃)} for all x̃ ∈ Z̃.

Definition 2.4. Let ω be an FS in Z̃. The FS ω is defined by ω(x̃) = 1 − ω(x̃) for all
x̃ ∈ Z̃. We called ω a complement of ω in Z̃.

Definition 2.5. An FS ω of a UP-algebra Ã is called

(i) a fuzzy UP-subalgebra (FUPS) of Ã if(
for all x̃, ỹ ∈ Ã

)
(ω(x̃ ⋆ ỹ) ≥ min{ω(x̃), ω(ỹ)}), (6)

(ii) a fuzzy UP-ideal (FUPI) of Ã if(
for all x̃ ∈ Ã

)
(ω(0) ≥ ω(x̃)), (7)(

for all x̃, ỹ, z̃ ∈ Ã
)
(ω(x̃ ⋆ z̃) ≥ min{ω(x̃ ⋆ (ỹ ⋆ z̃)), ω(ỹ)}), (8)

(iii) a fuzzy UP-filter (FUPF) of Ã if it satisfies (7) and(
for all x̃, ỹ ∈ Ã

)
(ω(ỹ) ≥ min{ω(x̃), ω(x̃ ⋆ ỹ)}), (9)

(iv) a fuzzy comparative UP-filter (FCUPF) of Ã if it satisfies (7) and(
for all x̃, ỹ, z̃ ∈ Ã

)
(ω(ỹ) ≥ min{ω(x̃ ⋆ ((ỹ ⋆ z̃) ⋆ ỹ)), ω(x̃)}). (10)

It easily proves that if ω1 and ω2 are FUPS (resp., FUPI) of a UP-algebra Ã, then
ω1 ∧ ω2 is also an FUPS (resp., FUPI) of Ã.
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Definition 2.6. Let Z̃ be the universe set. An intuitionistic fuzzy set (IFS) in Z̃ is an

object having the form F :=
{
(x̃, ωF (x̃), δF (x̃))

∣∣∣x̃ ∈ Z̃
}
, where ωF : Z̃ → [0, 1] and δF :

Z̃ → [0, 1] denote the degree of membership and degree of nonmembership, respectively,
and for all x̃ ∈ Z̃, 0 ≤ ωF (x̃) + δF (x̃) ≤ 1.

We shall use the symbol F = (ωF , δF ) for the IFS F =
{
(x̃, ωF (x̃), δF (x̃))

∣∣∣x̃ ∈ Z̃
}

for

the sake of notational simplicity.
Kesorn et al. [7] and Thongngam and Iampan [12] introduced the concepts of intu-

itionistic fuzzy UP-subalgebras, intuitionistic fuzzy UP-ideals, and intuitionistic fuzzy
UP-filters of UP-algebras as follows.

Definition 2.7. [7] An IFS F = (ωF , δF ) in Ã is called an intuitionistic fuzzy UP-
subalgebra (IFUPS) of Ã if it satisfies the following conditions: ωF (x̃ ⋆ ỹ) ≥ min{ωF (x̃),
ωF (ỹ)} and δF (x̃ ⋆ ỹ) ≤ max{δF (x̃), δF (ỹ)} for all x̃, ỹ ∈ Ã.

Definition 2.8. [7] An IFS F = (ωF , δF ) in Ã is called an intuitionistic fuzzy UP-ideal
(IFUPI) of Ã if(

for all x̃ ∈ Ã
)
(ωF (0) ≥ ωF (x̃)), (11)(

for all x̃ ∈ Ã
)
(δF (0) ≤ δF (x̃)), (12)(

for all x̃, ỹ, z̃ ∈ Ã
)
(ωF (x̃ ⋆ z̃) ≥ min{ωF (x̃ ⋆ (ỹ ⋆ z̃)), ωF (ỹ)}), (13)(

for all x̃, ỹ, z̃ ∈ Ã
)
(δF (x̃ ⋆ z̃) ≤ max{δF (x̃ ⋆ (ỹ ⋆ z̃)), δF (ỹ)}). (14)

Definition 2.9. [12] An IFS F = (ωF , δF ) in a UP-algebra Ã is called an intuitionistic
fuzzy UP-filter (IFUPF) of Ã if it satisfies (11), (12), and(

for all x̃, ỹ ∈ Ã
)
(ωF (ỹ) ≥ min{ωF (x̃ ⋆ ỹ), ωF (x̃)}), (15)(

for all x̃, ỹ ∈ Ã
)
(δF (ỹ) ≤ max{δF (x̃ ⋆ ỹ), δF (x̃)}). (16)

3. Intuitionistic Fuzzy Comparative UP-Filters. This section shows the main re-
sults. We introduce IFCUPFss and investigate their properties.

Definition 3.1. An IFS F = (ωF , δF ) in a UP-algebra Ã is called an intuitionistic fuzzy
comparative UP-filter (IFCUPF) of Ã if it satisfies (11), (12), and(

for all x̃, ỹ, z̃ ∈ Ã
)
(ωF (ỹ) ≥ min{ωF (x̃ ⋆ ((ỹ ⋆ z̃) ⋆ ỹ)), ωF (x̃)}), (17)(

for all x̃, ỹ, z̃ ∈ Ã
)
(δF (ỹ) ≤ max{δF (x̃ ⋆ ((ỹ ⋆ z̃) ⋆ ỹ)), δF (x̃)}). (18)

Example 3.1. Consider a UP-algebra Ã = {0, ỹ1, ỹ2, ỹ3, ỹ4} with the following Cayley
table:

⋆ 0 ỹ1 ỹ2 ỹ3 ỹ4

0 0 ỹ1 ỹ2 ỹ3 ỹ4

ỹ1 0 0 0 0 0

ỹ2 0 ỹ2 0 0 0

ỹ3 0 ỹ2 ỹ4 0 0

ỹ4 0 ỹ1 ỹ3 ỹ3 0

Define an IFS F = (ωF , δF ) in Ã as follows:
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Ã 0 ỹ1 ỹ2 ỹ3 ỹ4
ωF 0.2 0.7 0.2 0.8 0.2

δF 0.1 0.3 0.2 0.4 0.2

Then F = (ωF , δF ) is an IFCUPF of Ã.

Theorem 3.1. Every IFCUPF of a UP-algebra Ã is an IFUPF of Ã.

Proof: Let F = (ωF , δF ) be an IFCUPF of Ã. Then, for all x̃, ỹ ∈ Ã, we have ωF (0) ≥
δF (x̃), δF (0) ≤ ωF (x̃), ωF (ỹ) ≥ min{ωF (x̃ ⋆ ((ỹ ⋆ ỹ) ⋆ ỹ)), ωF (x̃)} = min{ωF (x̃ ⋆ ỹ), ωF (x̃)},
and δF (ỹ) ≤ max{δF (x̃ ⋆ ((ỹ ⋆ ỹ) ⋆ ỹ)), δF (x̃)} = max{δF (x̃ ⋆ ỹ), δF (x̃)}. Hence, F = (ωF ,
δF ) is an IFUPF of Ã. 2

Example 3.2. Consider a UP-algebra Ã = {0, z̃1, z̃2, z̃3, z̃4} with the following Cayley
table:

⋆ 0 z̃1 z̃2 z̃3 z̃4

0 0 z̃1 z̃2 z̃3 z̃4

z̃1 0 0 z̃4 z̃1 z̃4

z̃2 0 z̃1 0 z̃1 0

z̃3 0 0 z̃4 0 z̃4

z̃4 0 z̃1 z̃4 z̃1 0

Define an IFS F = (ωF , δF ) in Ã as follows:

Ã 0 z̃1 z̃2 z̃3 z̃4
ωF 0.5 0.1 0.5 0.1 0.1

δF 0.4 0.3 0.4 0.3 0.3

Then F = (ωF , δF ) is an IFUPF of Ã, but it is not an IFCUPF of Ã. Indeed, ωF (z̃3) =
0.1 < 0.5 = min{ωF (z̃1 ⋆ ((z̃3 ⋆ z̃4) ⋆ z̃3)), ωF (z̃1)}.

Theorem 3.2. If an IFS F = (ωF , δF ) in a UP-algebra Ã is constant, then F = (ωF , δF )
is an IFCUPF of Ã.

Proof: Suppose that an IFS F = (ωF , δF ) in Ã is constant. Then, there exist elements
m⃗ and n⃗ in [0, 1] such that ωF (x̃) = m⃗ and δF (x̃) = n⃗ for all x̃ ∈ Ã. Thus, ωF (0) =
m⃗ = ωF (x̃) and δF (0) = n⃗ = δF (x̃) for all x̃ ∈ Ã. For all x̃, ỹ, z̃ ∈ Ã, we get ωF (ỹ) =
m⃗ = min{ωF (x̃ ⋆ ((ỹ ⋆ z̃) ⋆ ỹ)), ωF (x̃)} and δF (ỹ) = n⃗ = max{δF (x̃ ⋆ ((ỹ ⋆ z̃) ⋆ ỹ)), δF (x̃)}.
Altogether, we have that F = (ωF , δF ) is an IFCUPF of Ã. 2

Theorem 3.3. An IFS F = (ωF , δF ) in a UP-algebra Ã is an IFCUPF of Ã if and only
if the FSs ωF and δF are FCUPFs of Ã.

Proof: Assume that an IFS F = (ωF , δF ) is an IFCUPF of Ã. Clearly, ωF is an FCUPF
of Ã. Then, it is necessary to show that δF is an FCUPF of Ã. Let x̃, ỹ, z̃ ∈ Ã. By the
assumption, we obtain δF (0) ≤ δF (x̃) and δF (ỹ) ≤ max{δF (x̃ ⋆ ((ỹ ⋆ z̃)⋆ ỹ)), δF (x̃)}. Thus,
δF (0) = 1− δF (0) ≤ 1− δF (x̃) = δF (x̃), so δF (ỹ) = 1− δF (ỹ) ≥ 1−max{δF (x̃ ⋆ ((ỹ ⋆ z̃) ⋆
ỹ)), δF (x̃)} = min{1− δF (x̃ ⋆ ((ỹ ⋆ z̃) ⋆ ỹ)), 1− δF (x̃)} = min

{
δF (x̃ ⋆ ((ỹ ⋆ z̃) ⋆ ỹ)), δF (x̃)

}
.

Therefore, we have that δF is an FCUPF of Ã.
Conversely, suppose that the FSs ωF and δF are FCUPFs of Ã. Clearly, F = (ωF , δF )

satisfies (11) and (17). Since δF is an FCUPF of Ã, we have 1 − δF (0) ≥ 1 − δF (x̃) and
1− δF (ỹ) ≥ min{1− δF (x̃ ⋆ ((ỹ ⋆ z̃) ⋆ ỹ)), 1− δF (x̃)} = 1−max{δF (x̃ ⋆ ((ỹ ⋆ z̃) ⋆ ỹ)), δF (x̃)}
for all x̃, ỹ, z̃ ∈ Ã. Thus, we illustrate that δF (0) ≤ δF (x̃) and δF (ỹ) ≤ max{δF (x̃ ⋆ ((ỹ ⋆
z̃) ⋆ ỹ)), δF (x̃)} for all x̃, ỹ, z̃ ∈ Ã. This shows that F = (ωF , δF ) satisfies (12) and (18).
Therefore, F = (ωF , δF ) is an IFCUPF of Ã. 2
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Theorem 3.4. An IFS F = (ωF , δF ) in a UP-algebra Ã is an IFCUPF of Ã if and only
if the IFSs �F = (ωF , ωF ) and 3F =

(
δF , δF

)
are IFCUPFs of Ã.

Proof: Assume that F = (ωF , δF ) is an IFCUPF of Ã. Then, we have �F = (ωF , ωF )
satisfies (11) and (17). Thus, ωF (0) = 1 − ωF (0) ≤ 1 − ωF (x̃) = ωF (x̃) and ωF (ỹ) =
1−ωF (ỹ) ≤ 1−min{ωF (x̃⋆((ỹ⋆z̃)⋆ỹ)), ωF (x̃)} = max{1−ωF (x̃⋆((ỹ⋆z̃)⋆ỹ)), 1−ωF (x̃)} =
max{ωF (x̃ ⋆ ((ỹ ⋆ z̃) ⋆ ỹ)), ωF (x̃)} for all x̃, ỹ, z̃ ∈ Ã. Hence, �F = (ωF , ωF ) satisfies (12)
and (18). Therefore, �F = (ωF , ωF ) is an IFCUPF of Ã.
Next, we will show that 3F =

(
δF , δF

)
is an IFCUPF of Ã. By the assumption, we

get 3F =
(
δF , δF

)
satisfies (12) and (18). Thus, for all x̃, ỹ, z̃ ∈ Ã, δF (0) = 1 − δF (0) ≤

1−δF (x̃) = δF (x̃) and δF (ỹ) = 1−δF (ỹ) ≥ 1−max{δF (x̃ ⋆ ((ỹ ⋆ z̃)⋆ ỹ)), δF (x̃)} = min{1−
δF (x̃ ⋆ ((ỹ ⋆ z̃) ⋆ ỹ)), 1− δF (x̃)} = min

{
δF (x̃ ⋆ ((ỹ ⋆ z̃) ⋆ ỹ)), δF (x̃)

}
. Hence, 3F =

(
δF , δF

)
satisfies (11) and (17). Therefore, 3F =

(
δF , δF

)
is an IFCUPF of Ã.

Assume that the IFSs �F = (ωF , ωF ) and 3F =
(
δF , δF

)
are IFCUPFs of Ã. Then

ωF and δF are FCUPFs of Ã. Therefore, it follows from Theorem 3.3 that F = (ωF , δF )
is an IFCUPF of Ã. 2

Theorem 3.5. An IFS F = (ωF , δF ) in a UP-algebra Ã is an IFCUPF of Ã if and only
if the IFS △F =

(
δF , ωF

)
is an IFCUPF of Ã.

Proof: Assume that F = (ωF , δF ) is an IFCUPF of Ã. By Theorem 3.4, we obtain
that the IFSs �F = (ωF , ωF ) and 3F =

(
δF , δF

)
are IFCUPFs of Ã. Thus, δF satisfies

(11) and (17), and ωF satisfies (12) and (18). Hence, △F =
(
δF , ωF

)
is an IFCUPF of Ã.

Suppose that △F =
(
δF , ωF

)
is an IFCUPF of Ã. By Theorem 3.3, we get that the FSs

δF and ωF are FCUPFs of Ã. Since ωF = 1− (1− ωF ) = ωF , we have ωF is an FCUPF
of A. By Theorem 3.3, we have F = (ωF , δF ) is an IFCUPF of Ã. 2

For a nonempty subset Z̃ of a nonempty set Ã, the characteristic function fZ̃ of Ã

is a function of Ã into {0, 1} defined as follows: for all x̃ ∈ Ã, fZ̃(x̃) =

{
1 if x̃ ∈ Z̃,

0 if x̃ /∈ Z̃.

Then, for all x̃ ∈ Ã, we have fZ̃(x̃) =

{
1 if x̃ /∈ Z̃,

0 if x̃ ∈ Z̃.
Now, we denote the IFS in Ã

with the degree of membership fZ̃ and the degree of nonmembership fZ̃ by FZ̃ , that is,
FZ̃ =

(
fZ̃ , fZ̃

)
.

Theorem 3.6. A nonempty subset Z̃ of a UP-algebra Ã is a CUPF of Ã if and only if
the IFS FZ̃ =

(
fZ̃ , fZ̃

)
is an IFCUPF of Ã.

Proof: Assume that Z̃ is a CUPF of Ã. Then, since 0 ∈ Z̃, we have fZ̃(0) = 1 ≥
fZ̃(x̃) and fZ̃(0) = 0 ≤ fZ̃(x̃) for all x̃ ∈ Ã. Thus, FZ̃ satisfies (11) and (12). Let

x̃, ỹ, z̃ ∈ Ã. In the case that x̃ ⋆ ((ỹ ⋆ z̃) ⋆ ỹ) /∈ Z̃ or x̃ /∈ Z̃, we have fZ̃(ỹ) ≤ 1 =
max

{
fZ̃(x̃ ⋆ ((ỹ ⋆ z̃) ⋆ ỹ)), fZ̃(x̃)

}
and fZ̃(ỹ) ≥ 0 = min{fZ̃(x̃ ⋆ ((ỹ ⋆ z̃) ⋆ ỹ)), fZ̃(x̃)}. On

the other hand, let x̃ ⋆ ((ỹ ⋆ z̃) ⋆ ỹ) ∈ Z̃ and x̃ ∈ Z̃. By the assumption, we get ỹ ∈ Z̃.
Hence, fZ̃(ỹ) = 0 = max

{
fZ̃(x̃ ⋆ ((ỹ ⋆ z̃) ⋆ ỹ)), fZ̃(x̃)

}
and fZ̃(ỹ) = 1 = min{fZ̃(x̃ ⋆ ((ỹ ⋆

z̃) ⋆ ỹ)), fZ̃(x̃)}. This shows that FZ̃ satisfies (17) and (18). Therefore, FZ̃ is an IFCUPF

of Ã.
Assume that FZ̃ =

(
fZ̃ , fZ̃

)
is an IFCUPF of Ã. Then fZ̃(0) ≥ fZ̃(x̃) = 1 when

x̃ ∈ Z̃. Thus, 0 ∈ Z̃ and so Z̃ satisfies (2). Next, we will show that Z̃ satisfies (5). Let
x̃, ỹ, z̃ ∈ Ã be such that x̃ ⋆ ((ỹ ⋆ z̃) ⋆ ỹ) ∈ Z̃ and x̃ ∈ Z̃. By using the assumption, we get
fZ̃(ỹ) ≥ min{fZ̃(x̃ ⋆ ((ỹ ⋆ z̃) ⋆ ỹ)), fZ̃(x̃)} = 1. Hence, ỹ ∈ Z̃. This shows that Z̃ satisfies

(5). Altogether, Z̃ is a CUPF of Ã. 2
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Definition 3.2. Let ω and δ be FSs in a nonempty set Ã. For m⃗, n⃗ ∈ [0, 1], the set

Ũ(ω; m⃗) =
{
x̃ ∈ Ã

∣∣∣ω(x̃) ≥ m⃗
}

and Ũ+(ω; m⃗) =
{
x̃ ∈ Ã

∣∣∣ω(x̃) > m⃗
}

are called an upper

m⃗-level subset and an upper m⃗-strong level subset of ω, respectively. The set L̃(ω; m⃗) ={
x̃ ∈ Ã

∣∣∣ω(x̃) ≤ m⃗
}
and L̃−(ω; m⃗) =

{
x̃ ∈ Ã

∣∣∣ω(x̃) < m⃗
}
are called a lower m⃗-level subset

and a lower m⃗-strong level subset of ω, respectively. The set C̃(ω, δ; m⃗, n⃗) = Ũ(ω; m⃗) ∩
L̃(δ, n⃗) is called the (m⃗, n⃗)-cut of ω and δ.

Theorem 3.7. An IFS F = (ωF , δF ) in a UP-algebra Ã is an IFCUPF of Ã if and
only if the sets Ũ(ωF ; m⃗) and L̃(δF ; n⃗) are CUPFs of Ã for each m⃗, n⃗ ∈ [0, 1] such that
Ũ(ωF ; m⃗) ̸= ∅ and L̃(δF ; n⃗) ̸= ∅.

Proof: Assume that F = (ωF , δF ) is an IFCUPF of Ã, let m⃗, n⃗ ∈ [0, 1] be such that
Ũ(ωF ; m⃗) and L̃(δF ; n⃗) are nonempty subsets of Ã. Then, there exist x̃ ∈ Ũ(ωF ; m⃗) and
ỹ ∈ L̃(δF ; n⃗). Thus, ω(x̃) ≥ m⃗ and δF (ỹ) ≤ n⃗. By the assumption, we have ωF (0) ≥
ωF (x̃) ≥ m⃗ and δF (0) ≤ δF (ỹ) ≤ n⃗. Hence, 0 ∈ Ũ(ωF ; m⃗) and 0 ∈ L̃(δF ; n⃗). Therefore,
Ũ(ωF ; m⃗) and L̃(δF ; n⃗) satisfy (2).

Next, will show that Ũ(ωF ; m⃗) satisfies (5). Let x̃, ỹ, z̃ ∈ Ã be such that x̃⋆((ỹ ⋆z̃)⋆ỹ) ∈
Ũ(ω; m⃗) and x̃ ∈ Ũ(ω; m⃗). Thus, ωF (x̃ ⋆ ((ỹ ⋆ z̃) ⋆ ỹ)) ≥ m⃗ and ωF (x̃) ≥ m⃗. By the
assumption, we have ωF (ỹ) ≥ min{ωF (x̃ ⋆ ((ỹ ⋆ z̃) ⋆ ỹ)), ωF (x̃)} ≥ m⃗. So, y ∈ Ũ(ωF ; m⃗).
Hence, Ũ(ωF ; m⃗) satisfies (5).

Finally, to show that L̃(δF ; n⃗) satisfies (5), let x̃, ỹ, z̃ ∈ Ã be such that x̃ ⋆ ((ỹ ⋆ z̃) ⋆
ỹ) ∈ L̃(δF ; n⃗) and x̃ ∈ L̃(δF ; n⃗). Then δF (x̃ ⋆ ((ỹ ⋆ z̃) ⋆ ỹ)) ≤ n⃗ and δF (x̃) ≤ n⃗. Thus,
δF (ỹ) ≤ max{δF (x̃ ⋆ ((ỹ ⋆ z̃) ⋆ ỹ)), δF (x̃)} ≤ n⃗. This shows that y ∈ L̃(δF ; n⃗). Hence,
L̃(δF ; n⃗) satisfies (5).

Altogether, we have that Ũ(ωF ; m⃗) and L̃(δF , n⃗) are CUPFs of Ã.
Assume that the sets Ũ(ωF ; m⃗) and L̃(δF ; n⃗) are CUPFs of Ã for each m⃗, n⃗ ∈ [0, 1]

such that Ũ(ωF ; m⃗) ̸= ∅ and L̃(δF ; n⃗) ̸= ∅. Let x̃ ∈ Ã. Then, we have x̃ ∈ Ũ(ωF ;ωF (x̃))
and x̃ ∈ L̃(δF ; δF (x̃)). By the assumption, we have Ũ(ωF ;ωF (x̃)) and L̃(δF ; δF (x̃)) are
CUPFs of Ã. Thus, 0 ∈ Ũ(ωF ;ωF (x̃)) and 0 ∈ L̃(δF ; δF (x̃)) which imply ωF (0) ≥ ωF (x̃)
and δF (0) ≤ δF (x̃). Hence, F = (ωF , δF ) satisfies (11) and (12).

Next, we will show that F = (ωF , δF ) satisfies (17). Suppose that there exist x̃, ỹ, z̃ ∈ Ã
such that ωF (ỹ) < min{ωF (x̃⋆((ỹ⋆z̃)⋆ỹ)), ωF (x̃)}. Choose m⃗0 =

1
2
[ωF (ỹ)+min{ωF (x̃⋆((ỹ⋆

z̃) ⋆ ỹ)), ωF (x̃)}]. Thus, m⃗0 ∈ [0, 1] and ωF (ỹ) < m⃗0 < min{ωF (x̃ ⋆ ((ỹ ⋆ z̃) ⋆ ỹ)), ωF (x̃)}. It
implies that ỹ /∈ Ũ(ωF ; m⃗0) but x̃ ⋆ ((ỹ ⋆ z̃) ⋆ ỹ), x̃ ∈ Ũ(ωF ; m⃗0). Thus, Ũ(ωF ; m⃗0) is not
a CUPF of Ã, which is a contradiction. Hence, we obtain that ωF (ỹ) ≥ min{ωF (x̃ ⋆ ((ỹ ⋆
z̃) ⋆ ỹ)), ωF (x̃)} for all x̃, ỹ, z̃ ∈ Ã. This implies that F = (ωF , δF ) satisfies (17).

Finally, we will show that F = (ωF , δF ) satisfies (18). Suppose that there exist x̃, ỹ, z̃ ∈
Ã such that δF (ỹ) > max{δF (x̃ ⋆ ((ỹ ⋆ z̃) ⋆ ỹ)), δF (x̃)}. Choose n⃗0 =

1
2
[δF (ỹ)+max{δF (x̃ ⋆

((ỹ ⋆ z̃) ⋆ ỹ)), δF (x̃)}]. Thus, n⃗0 ∈ [0, 1] and max{δF (x̃ ⋆ ((ỹ ⋆ z̃) ⋆ ỹ)), δF (x̃)} < n⃗0 < δF (ỹ).
It implies that ỹ ∈ L̃(δF ; n⃗0) but x̃ ⋆ ((ỹ ⋆ z̃) ⋆ ỹ), x̃ ∈ L̃(δF ; n⃗0). Then, L̃(δF ; n⃗0) is not a
CUPF of Ã, which is a contradiction. Therefore, δF (ỹ) ≤ max{δF (x̃ ⋆ ((ỹ ⋆ z̃) ⋆ ỹ)), δF (x̃)}
for all x̃, ỹ, z̃ ∈ Ã, which implies that F = (ωF , δF ) satisfies (18).

Altogether, we get that F = (ωF , δF ) is an IFCUPF of Ã. 2

Corollary 3.1. An IFS F = (ωF , δF ) is an IFCUPF of Ã if and only if, for all m⃗, n⃗ ∈
[0, 1], the set C̃(ωF , δF ; m⃗, n⃗) is either empty or a CUPF of Ã.

Proof: The necessity is straightforward from Theorems 2.1 and 3.7.
Conversely, assume that, the set C̃(ωF , δF ; m⃗, n⃗) is either empty or a CUPF of Ã for

all m⃗, n⃗ ∈ [0, 1]. Let m⃗ ∈ [0, 1] be such that Ũ(ωF ; m⃗) ̸= ∅. Then ∅ ̸= Ũ(ωF ; m⃗) =
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Ũ(ωF ; m⃗)∩ Ã = Ũ(ωF ; m⃗)∩ L̃(δF ; 1) = C̃(ωF , δF ; m⃗, 1). By the assumption, we have that
Ũ(ωF ; m⃗) = C̃(ωF , δF ; m⃗, 1) is a CUPF of Ã.
Let n⃗ ∈ [0, 1] be such that L̃(δF ; s) ̸= ∅. Then ∅ ̸= L̃(δF ; n⃗) = Ã ∩ L̃(δF ; n⃗) = Ũ(ωF ;

0)∩ L̃(δF ; n⃗) = C̃(ωF , δF ; 0, n⃗). By the assumption, we get that L̃(δF ; n⃗) = C̃(ωF , δF ; 0, n⃗)
is a CUPF of Ã. By Theorem 3.7, we have F = (ωF , δF ) is an IFCUPF of Ã. 2

Theorem 3.8. If an IFS F = (ωF , δF ) in a UP-algebra Ã is an IFCUPF of Ã, then the set
Ũ+(ωF ; m⃗) and L̃−(δF ; n⃗) are CUPFs of Ã for each m⃗, n⃗ ∈ [0, 1] such that Ũ+(ωF ; m⃗) ̸= ∅
and L̃−(δF ; n⃗) ̸= ∅.

Proof: Suppose that an IFS F = (ωF , δF ) is an IFCUPF of Ã. Let m⃗, n⃗ ∈ [0, 1]
be such that Ũ+(ωF ; m⃗) and L̃−(δF ; n⃗) are nonempty subsets of Ã. Then, there exist

ã ∈ Ũ+(ωF ; m⃗) and b̃ ∈ L̃−(δF ; n⃗) which imply that ωF (ỹ) > m⃗ and δF (z̃) < n⃗. By the
assumption, we have ωF (0) ≥ ωF (ỹ) > m⃗ and δF (0) ≤ δF (z̃) < n⃗. Thus, 0 ∈ Ũ+(ωF ; m⃗)
and 0 ∈ L̃(δF ; n⃗). Hence, Ũ

+(ωF ; m⃗) and L̃−(δF ; n⃗) satisfy (2).
Next, let x̃, ỹ, z̃ ∈ Ã be such that x̃ ⋆ ((ỹ ⋆ z̃) ⋆ y), x̃ ∈ Ũ+(ωF ; m⃗). Then, ωF (x̃ ⋆ ((ỹ ⋆

z̃) ⋆ y)) > m⃗ and ωF (x̃) > m⃗. Thus, ωF (ỹ) ≥ min{ωF (x̃ ⋆ ((ỹ ⋆ z̃) ⋆ y)), ωF (x̃)} > m⃗, which
implies ỹ ∈ Ũ+(ωF ; m⃗). Hence, Ũ+(ωF ; m⃗) satisfies (5).
Finally, let x̃, ỹ, z̃ ∈ Ã be such that x̃⋆((ỹ ⋆ z̃)⋆ ỹ) ∈ L̃−(δF ; n⃗) and x̃ ∈ L̃−(δF ; n⃗). Then

δF (x̃ ⋆ ((ỹ ⋆ z̃) ⋆ ỹ)) < n⃗ and δF (x̃) < n⃗. Thus, δF (ỹ) ≤ max{δF (x̃ ⋆ ((ỹ ⋆ z̃) ⋆ ỹ)), δF (x̃)} <
n⃗, so ỹ ∈ L̃−(δF ; n⃗). This shows that L̃

−(δF ; n⃗) satisfies (5).
Altogether, Ũ+(ωF ; m⃗) and L̃−(δF ; n⃗) are CUPFs of Ã. 2

4. Conclusion. In this paper, we have introduced the concept of IFCUPF of UP-algebras,
and provided their properties. In our future work, we will utilize ideas and results in this
paper in IFCUPFs to study the substructures of algebraic systems related to UP-algebras.
In the near future, we will broaden the scope of the research covered in this work to

include investigation into essential comparative UP-filters and t-essential intuitionistic
fuzzy comparative UP-filters, in accordance with [22, 23].
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