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Abstract. This paper studies the adaptive fuzzy output feedback control problem for
nonlinear cyber-physical systems (CPSs) under deception attacks. In the control design,
fuzzy logic systems (FLSs) are used to approximate unknown nonlinear dynamics, using
the Nussbaum function, the controller protected from time-varying gains caused by decep-
tion attacks. Combined with backstepping technique, a novel robust adaptive fuzzy output
feedback control scheme is developed. Based on Lyapunov stability theory, it is proved
that all closed-loop signals are semi-globally uniformly ultimately bounded (SGUUB).
Keywords: Fuzzy control, Nonlinear CPSs, Deception attacks, Nussbaum function

1. Introduction. Cyber-physical systems (CPSs), as the next-generation mainstream
system, have been widely researched in various fields. Many practical engineering cases are
mostly related to CPSs, such as smart grids [1] and environmental control [2]. However,
due to the embedded networked control technique, CPSs become more vulnerable and
consequent cyber attacks have become one of the major threats to CPSs. For example,
Stuxnet achieved this goal by inserting code into an executive loop to hijack or fully
control the sensor [3]. In [4], adversaries compromised the Dtrack variant corrupted the
management network. In the case of Brazil power services, adversaries attacked with the
Sodinokibi ransomware to cause damage [5]. Therefore, the secure problems of the systems
are much worthy of our research for CPSs.

In the articles published in recent years, many scholars have turned their focus to how
to improve the safety of CPSs [6-10]. The authors in [6,7] have achieved the secure state
estimation (SSE) and control for CPSs, respectively. Subsequently, the authors provided
the conditions for SSE in [8] and proposed a control loop for secure local to improve
the resilience of system. Different from the existing literature [8], to reduce unnecessary
network resource transmission, the event-triggered control algorithms have been developed
in [9]. Although the above studies are abundant, most of the mentioned results are all for
linear system, and algorithms relevant for linear systems may not be suitable for nonlinear
system.

As we all know, the nonlinear system model is more complicated than linear sys-
tem model due to the relationship of nonlinear dynamics, and the corresponding control
method is also different from linear system model. According to a recent study report, be-
cause of the stronger approximated capacity to unknown nonlinear dynamics, FLSs/radial
basis function neural networks (RBFNNs) are important tools for solving nonlinear sys-
tem control problems; many scholars have proposed fuzzy/neural network control schemes
for secure control problems [10]. The authors in [10] have presented an adaptive switching
mechanism for a large-scale class of nonlinear system under DoS (denial of service) at-
tacks. In [11], to mitigate the effects caused by the considered attacks, a novel coordinate
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transformation is developed in the backstepping control design, and then a state feedback
control design has been achieved for nonlinear CPSs under deception attacks. However,
no results are available yet for output feedback control of nonlinear CPSs with deception
attacks. Therefore, the secure problems of the output feedback control are much worthy
of our research for nonlinear CPSs.
Inspired by the results of the above discussion, adaptive fuzzy secure control design

is studied for nonlinear system under deception attacks and unmeasured states in this
paper. FLSs are used to approximate unknown nonlinear function along with an observer
designed for unmeasured states. In addition, to deal with the multiple unknown time-
varying gains caused by the deception attacks, the new types of Nussbaum functions are
introduced in the adaptive control. Based on these algorithms, we design a novel adaptive
output feedback control algorithm based on the backstepping method. Compared with
[11], its main contributions are summarized as the following.
1) This paper proposes a fuzzy adaptive state secure control method for nonlinear CPSs

with unmeasured states under deception attacks. Although [11] studies nonlinear CPSs
under deception attacks, it is based on state feedback, but the developed control algorithm
in [11] cannot be adopted to solve the output feedback control issue.
2) Different from [11], with the help of the approximated technique of FLS, the restric-

tive assumption that the unknown nonlinear dynamics can be converted to the product of
a known function and upper of time-varying gain caused by deception attacks is removed.

2. Problem Statement and Preliminaries.

2.1. System descriptions and assumptions. In this paper, consider the nonlinear
system as

ẋi = xi+1 + fi (x̄i)

ẋn = u+ fn (x̄n)

y = x1 (1)

where x̄i = [x1, . . . , xi]
T ∈ Ri is a state vector and it is assumed that x̄i are unmeasured, u

and y denote the control input and output of system, respectively. fi (x̄i) is an unknown
smooth nonlinear function and satisfies fi(0) = 0.

Remark 2.1. The system (1) is a common strict-feedback nonlinear system. In practice,
many real-world system can be modeled as the above nonlinear strict-feedback system, such
as unmanned aerial vehicles system [10] and marine surface vehicles.

Then, we can rewrite system (1) as

ẋ = Ax+Ky +
n∑

i=1

Iifi (x̄i) +Bu

y = Cx (2)

where matrix A is a strict Hurwitz (chooses a vector K such that it holds), and A = −k1 · · · I
... · · · ...

−kn · · · 0

, K =

 k1
...
kn

, Ii =

0, . . . , 0︸ ︷︷ ︸
i−1

, 1, 0, . . . , 0

T

, B = [0, . . . , 0, 1]T , C =

[1, . . . , 0, 0]T .

2.2. Deception attacks model. According to the definition of deception attacks, we
can describe

x̃i(t) = xi(t) + δs(xi(t), t) (3)
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where δs(xi(t), t) is the malicious sensor deception attack signal. Similar to [11], assume
that the attack is parametric and state-dependent δs(xi(t), t) = w(t)xi(t) with unknown
time-varying weight w(t).

Assumption 2.1. [11] With w(t), 1+w(t) ̸= 0. Assume |w(t)| ≤ w̄ and |ẇ(t)| ≤ ¯̇w with
unknown positive constants w̄ and ¯̇w, and define the following function

λ =
1

1 + w(t)
(4)

where λ ≤ λ ≤ λ̄ and λ̇ ≤ λ̇ ≤ ¯̇λ, λ, λ̄, λ̇ and ¯̇λ are unknown constants.
According to (3) and (4), one has

xi(t) = λx̃i(t) (5)

2.3. Nussbaum function properties.

Definition 2.1. [11] The continuous known Nussbaum-type function N (ς), and

lim
k→+∞

sup
1

k

∫ k

0

N (ς)dς = +∞ (6)

lim
k→−∞

inf
1

k

∫ k

0

N (ς)dς = −∞ (7)

Lemma 2.1. [11] Smooth functions V (x, t) ≥ 0 and ς : R+ → R, which is defined
on [0, tf ). N (ς) holds 0 < |m(x, t)| ≤ m′ < ∞, and a constant m′. Let n0 choose the
appropriate constant, and P (t) is real-valued continuous and P (0) = 0; we can get

V (x, t) ≤ n0 + e−cl

∫ t

0

(m(x, t)N (ς)ς̇ + ς̇) ecldl + P (t) (8)

The functions V (x, t), ς(t),
∫ t

0
(m(x, t)N (ς)ς̇ + ς̇) dl are bounded on [0, tf ).

3. State Observer Design. In this paper, a measurement of a state is attacked, and
the state is said to be unavailable. We need to design a state observer to estimate the
unavailable states x̄i, i = 1, . . . , n. Similar to [12], fi (x̄i) = θTi φi

(
ˆ̄xi

)
+ εi, and x̂ =

[x̂1, x̂2, . . . , x̂n]
T is the estimation of state x.

For the unavailable state of system (2), design the state observer as

˙̂x = Ax̂+
n∑

i=1

Iiθ̂
T
i φi

(
ˆ̄xi

)
+Bu

ŷ = Cx̂ (9)

The observation error is defined as e = x− x̂. From (2) and (9), we can get

ė = ẋ− ˙̂x = Ae+Ky + ε+
n∑

i=1

Iiθ̃
T
i φi

(
ˆ̄xi

)
(10)

where e = [e1, e2, . . . , en]
T and θ̃ = θ − θ̂.

Choosing the Lyapunov function candidate as V0 =
1
2
eTPe, from (10), it can be obtained

that V0 along the time derivative satisfies

V̇0 =
1

2
eT
(
ATP + PA

)
e+ eTP

(
Ky + ε+

n∑
i=1

Iiθ̃
T
i φi

(
ˆ̄xi

))
(11)

By employing the Young’s inequality, we can get

eTP

(
Ky + ε+

n∑
i=1

Iiθ̃
T
i φi

(
ˆ̄xi

))
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≤ 1

2
∥e∥2∥P∥2

(
∥K∥2 + 1 + n

)
+

1

2
λ̄2x̃2

1 +
1

2
∥ε0∥2 +

1

2

n∑
i=1

θ̃Ti θ̃i (12)

Substituting (12) into (11) yields

V̇0 ≤ −ϑ0∥e∥2 +
1

2

n∑
i=1

θ̃Ti θ̃i +
1

2
λ̄2x̃2

1 +D0 (13)

where ϑ0 = −λmin(Q)− 1
2
∥P∥2∥K∥2 − 1

2
∥P∥2 and D0 =

1
2
∥ε0∥2.

4. Control Design. In this section, an observer-based fuzzy adaptive output feedback
control strategy using adaptive backstepping technique is proposed. First, coordinate
transformation is

z1 = x̃1

zi = x̂i − vi

χi = vi − αi−1 (14)

where zi is the error surface, αi−1 is a virtual control function to be designed in each step,
and vi is a corresponding first-order filter virtual control. χi is the output error of the
first-order filter, and the first-order filter is designed as

wiv̇i + vi = αi−1, vi(0) = αi−1(0) (15)

where wi, i = 1, . . . , n are positive constants.
Step 1: From (5) and (14), it can be obtained that z1 along the time derivative satisfies

ż1 = ˙̃x1 =
ẋ1

λ
− λ̇z1

λ
(16)

Choosing the Lyapunov candidate function V1 = V0 +
1
2
z21 +

1
2γ1

θ̃T1 θ̃1 +
1
2τ1

λ̃2
1 +

1
2τ2

λ̃2
2,

according to (16), it can be obtained that V1 along the time derivative satisfies

V̇1 ≤ V̇0 + z1

[
1

λ

(
e2 + z2 + θT1 φ1(x1) + ε1 + χ2 + α1

)
− λ̇z1

λ

]
− 1

γ1
θ̃T1

˙̂
θ1 −

1

τ1
λ̃1

˙̂
λ1 −

1

τ2
λ̃2

˙̂
λ2 (17)

By employing the Young’s inequality, we can get

z1
1

λ

(
e2 + θT1 φ1(x1) + z2 + ε1 + χ2

)
≤ 5

2λ2 z
2
1 +

1

2
∥e∥2 + 1

2
z22 +

1

2
∥θ1∥2 +

1

2
ε210 +

1

2
χ2
2 (18)

According to (13) and (18), rewrite (18) as

V̇1 ≤ −
(
ϑ0 −

1

2

)
∥e∥2 + 1

2
z22 + z1

[
1

λ
α1 +

1

2
λ̂1z1 + λ̂2z1 + θ̂T1 φ1 (x̂1)

]
+

1

2

n∑
i=1

θ̃Ti θ̃i − z1θ
T
1 φ1 (x̂1) +

1

γ1
θ̃T1

(
˙̂
θ1 − γ1z1φ1 (x̂1)

)
− 1

τ1
λ̃1

(
˙̂
λ1 −

1

2
τ1z

2
1

)
− 1

τ2
λ̃2

(
˙̂
λ2 − τ2z

2
1

)
+

1

2

(
ε210 + ∥θ1∥2 + χ2

2

)
+D0 (19)

where λ1 =
5
λ2 + λ̄2 and λ2 =

¯̇
λ
λ
.

By employing the Young’s inequality, we can get

−z1θ
T
1 φ1 (x̂1) ≤

1

2
z21 +

1

2
∥θ1∥2 (20)
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Substituting (20) into (19) yields

V̇1 ≤ −
(
ϑ0 −

1

2

)
∥e∥2 + 1

2

(
z21 + z22

)
+

1

2

n∑
i=1

θ̃Ti θ̃i +
1

2
χ2
2

+ z1

[
1

λ
α1 +

1

2
λ̂1z1 + λ̂2z1 + θ̂T1 φ1 (x̂1)

]
+

1

γ1
θ̃T1

(
˙̂
θ1 − γ1z1φ1 (x̂1)

)
− 1

τ1
λ̃1

(
˙̂
λ1 −

1

2
τ1z

2
1

)
− 1

τ2
λ̃2

(
˙̂
λ2 − τ2z

2
1

)
+D0 +

1

2
ε210 + ∥θ1∥2 (21)

According to Definition 2.1, α1 is a virtual control function, constructed as follows:

α1 = N (ςi)ᾱ1 (22)

The auxiliary controller ᾱ1 is designed in (24), and define ς̇i as

ς̇i = z1ᾱ1 (23)

ᾱ1 = c1z1 + λ̂1z1 + λ̂2z1 +
1

2
z1 + θ̂T1 φ1 (x̂1) (24)

where c1 > 0 is design parameters.
Substituting (22)-(24) into (21) yields

V̇1 ≤ −
(
ϑ0 −

1

2

)
∥e∥2 + c1z

2
1 +

1

2

(
z22 + χ2

2 +
n∑

i=1

θ̃Ti θ̃i

)
+D0 +

1

2
ε210 + ∥θ1∥2

+

(
1

λ
N (ςi) + 1

)
ς̇i +

1

γ1
θ̃T1

(
˙̂
θ1 − γ1z1φ1 (x̂1)

)
−

2∑
k=1

(
1

τk
λ̃k

(
˙̂
λk −

1

2
τkz

2
k

))
(25)

Then, we can design the parameter adaptive laws
˙̂
θ1,

˙̂
λ1,

˙̂
λ2

˙̂
θ1 = γ1z1φ1(x̂1)− σ1θ̂1 (26)

˙̂
λ1 =

1

2
τ1z

2
1 − σ̄1λ̂1 (27)

˙̂
λ2 = τ2z

2
1 − σ̄2λ̂2 (28)

where σ̄1 > 0 and σ̄2 > 0 are design parameters.
Substituting (26)-(28) into (25) yields

V̇1 ≤ −ϑ1∥e∥2 + c1z
2
1 +

1

2

(
z22 + χ2

2 +
n∑

i=1

θ̃Ti θ̃i

)
+

(
1

λ
N (ςi) + 1

)
ς̇i

+
σ1

γ1
θ̃T1 θ̂1 +

2∑
k=1

σ̄k

τk
λ̃kλ̂k +D1 (29)

where ϑ1 = ϑ0 − 1
2
and D1 = D0 + ∥θ1∥2 + 1

2
ε210.

Step i (i ∈ [2, n]): From zi in (14), we have

żi = ˙̂xi − v̇i = zi+1 + χi+1 + αi + θ̂Ti φi

(
ˆ̄xi

)
− v̇i (30)

Choosing the Lyapunov candidate function as Vi = Vi−1+
1
2
z2i +

1
2γi

θ̃Ti θ̃i+χ2
i , according

to (30), it can be obtained that Vi along the time derivative satisfies

V̇i = V̇i−1 + zi
[
zi+1 + χi+1 + αi + θTi φi

(
ˆ̄xi

)
− v̇i

]
+

1

γ1
θ̃Ti

(
−ziγ1φi

(
ˆ̄xi

)
− ˙̂

θi

)
+χi (v̇i − α̇i−1) (31)
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where Ni(·) is a known continuous function on the bounded closed-loop set Ωi =:
{(

ei, zi,

θ̃i, χi, λ̃1, λ̃2

)∣∣∣ (eTi Piei + z2i + θ̃Ti θ̃i + χ2
i + λ̃2

1 + λ̃2
2

)
≤ 2ξ

}
with ξ > 0. There exists a

constant Ni with |Ni(·)| ≤ Ni on Ωi.
By employing the Young’s inequality, we can get

zi
(
χi + θTi φi

(
ˆ̄xi

))
− χi

(
1

wi

χi + α̇i−1

)
≤ z2i +

1

2
χ2
i +

1

2
∥θi∥2 −

(
1

wi

−N2
i

)
χ2
i (32)

Substituting (32) into (31) yields

V̇i ≤ V̇i−1 + zi [zi + zi+1 + αi − v̇i] +
1

γ1
θ̃Ti

(
−ziγ1φi

(
ˆ̄xi

)
− ˙̂

θi

)
−
(

1

wi

−N2
i − 1

2

)
χ2
i

+
1

2
∥θi∥2 (33)

Design the virtual control function αi and the parameter adaptive law of
˙̂
θi as follows:

αi = − (−zi−1 + cizi + zi − v̇i) (34)

˙̂
θi = −γ1ziφi

(
ˆ̄xi

)
− σ1θ̂i (35)

where αi = u, i = n.
According to (34) and (35), we can rewrite (33) as

V̇i ≤ −ϑ1∥e∥2 +
i∑

k=1

ckz
2
k +

1

2
z2i+1 +

1

2

n∑
i=1

θ̃Ti θ̃i −
1

2

i∑
k=2

(
1

wk

−N2
k − 1

2

)
χ2
k

+

(
1

λ
N (ςi) + 1

)
ς̇i +

σ1

γ1

i∑
k=1

θ̃Tk θ̂k +
2∑

k=1

σ̄k

τk
λ̃kλ̂k +Di (36)

where Di = Di−1 +
1
2
∥θi∥2.

By employing the Young’s inequality, we can get

σ1

γ1

n∑
i=1

θ̃Ti θ̂i +
2∑

k=1

σ̄k

τk
λ̃kλ̂k

≤ −
n∑

i=1,...,n
k=1,2

(
σ1

2γi

∥∥∥θ̃i∥∥∥2 + σ̄1

2τk

∥∥∥λ̃k

∥∥∥2)+
n∑

i=1,...,n
k=1,2

(
σ1

2γi
∥θi∥2 +

σ̄1

2τk
∥λk∥2

)
(37)

Substituting (37) into (36) yields

V̇n ≤ −ϑ1∥e∥2 −
n∑

i=1

ciz
2
i −

(
σ1

2γ1
− 1

2

) n∑
i=1

∥∥∥θ̃i∥∥∥2 − 1

2

n∑
i=2

(
1

wi

−N2
i

)
χ2
i

+

(
1

λ
N (ςi) + 1

)
ς̇i −

σ̄1

2τ1

∥∥∥λ̃1

∥∥∥2 − σ̄2

2τ2

∥∥∥λ̃2

∥∥∥2 +Dn (38)

where Dn = D′
n +

σ1

2γ1

∑n
i=1 ∥θi∥

2 + σ̄1

2τ1
∥λ1∥2 + σ̄1

2τ1
∥λ2∥2.

Theorem 4.1. According to Assumption 2.1 for the system (1), the controller (34), the
fuzzy adaptive state observer (9), the virtual control functions (22) and (34), and the
parameter adaptive laws (26)-(28), and (35), the proposed control method can ensure that
the observe and tracking errors converge to a small neighborhood of the origin, and all the
signals in closed-loop system are bounded.
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Proof: Let

C = min

{
ϑ1, ci,

σ1

2γ1
,
1

2

(
1

wi

−N2
i

)
,
σ̄1

2τ1
,
σ̄2

2τ2

}
, i = 1, . . . , n (39)

Then, (38) can be rewritten as

V̇ ≤ −CV +Dn +

(
1

λ
N (ςi) + 1

)
ς̇i (40)

According to Lemma 2.1, we known that V (t), ςi(t) and
∫ t

0

(
1
λ
N (ςi) + 1

)
ς̇dl are bounded

on [0, t]. Define D̄1 = maxt∈[0,t]
(
1
λ
N (ςi) + 1

)
ς̇i. Integrating (40) over [0, t], one has

0 ≤ V (t) ≤ D

C
+

[
V (0)− D

C

]
e−Ct (41)

where D = Dn + D1 + D̄1 and based on the above formula, we can get that ei, zi, λ̃i,
θ̃i can be shown that all signals in the closed-loop system are bounded. In addition, the
state observer errors satisfy that limt→∞∥ei∥ =

√
D/(Cλmin(P )), i = 1, . . . , n.

5. Simulation Results. An example is simulated to validate the effectiveness of the
proposed novel robust adaptive fuzzy output feedback control scheme against deception
attacks.

Example 5.1. Let us consider the following second-order nonlinear system

ẋ1 = x2 − x4
1e

−x4
1 − x1 (42)

ẋ2 = u+ sin(x2) sin(x1)− 4x1x2 (43)

x̃1(t) = x1(t) + δs(x1(t), t) (44)

The attack signal given with δs(xi(t), t) =
(
− 1.3 + 0.5 cos(t)2

)
x(1) from t = 0 s. The

initial states are x(0) = [1, 0.9]T . The parameters are chosen as c1 = 20, c2 = 70, k1 = 9,
k2 = 7, γ1 = 0.02, σ1 = σ̄1 = σ̄2 = 0.001, τ1 = 1, τ2 = 0.3. And the Nussbaum-type

function is chosen as N (ςi) = eθ̂
2
1 sin

(
θ̂1

)
.

According to the adaptive control scheme designed in Section 3, the control laws and
parameter adaptation laws are given as follows:

α1 = N (ςi)
(
c1z1 + λ̂1z1 + λ̂2z1 + 0.5z1 + θ̂T1 φ1 (x̂1)

)
(45)

u = z1 − c2z2 − z2 + v̇2 (46)

with
˙̂
θ1 = γ1z1φ1 (x̂1)− σ1θ̂1 (47)

˙̂
λ1 =

1

2
τ1z

2
1 − σ̄1λ̂1 (48)

˙̂
λ2 = τ2z

2
1 − σ̄2λ̂2 (49)

˙̂
θ2 = −γ1z2φ2

(
ˆ̄x2

)
− σ1θ̂2 (50)

The state variables and the control input are plotted in Figures 1 and 2, respectively.
Figures 1 and 2 show the boundedness of the signals of the closed-loop system, which
demonstrate the validity of the algorithm.
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Figure 1. The system states

Figure 2. The control input

6. Conclusions. In this paper, a novel robust adaptive fuzzy output feedback control
scheme has been developed for a class of nonlinear CPSs under deception attacks. Nuss-
baum function is introduced to keep the controller free of the time-varying gain caused by
deception attacks. Combined with backstepping technique, an observer-based controller is
constructed successfully. Based on Lyapunov stability theory, it is proved that all closed-
loop signals are SGUUB.
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