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Abstract. One of the vital purposes of health-related studies is to enhance people’s liv-
ing conditions and well-being. Solutions for smart homes could offer occupants preventive
care based on the identification of regular activities. Recent advancements and develop-
ments in sensor technology have raised the demand for intelligent household products
and services. The rising volume of data necessitates the development of the deep learn-
ing domain for the automated identification of human motions. Moreover, networks with
long short-term memory have been used to represent spatio-temporal sequences recorded
by smart home sensors. This study proposed ResNeXt-based models that learn to identify
human behaviors in smart homes to increase detection capability. Experiment findings
generated on a publicly available benchmark dataset known as CASAS data demonstrate
that ResNeXt-based techniques surpass conventional DL approaches, achieving improved
outcomes compared to the existing research. ResNeXt outperformed the benchmark ap-
proach by an average of 84.81%, 93.57%, and 90.38% for the CASAS Cairo, CASAS
Milan, and CASAS Kyoto3 datasets, respectively.
Keywords: Human activity recognition, Deep learning, Smart home sensor, Spatio-
temporal sequence
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1. Introduction. Technological breakthroughs in sensing devices, especially in energy
usage, affordability, and interoperability, have accelerated the creation of intelligent set-
tings, such as smart homes. With an increasing number of new buildings containing smart
sensors and actuators, concentrate on enhancing the quality of life, health, and well-being
of the elderly and handicapped in smart homes [1, 2]. In addition, smart homes could
offer various other incredible opportunities, including energy management and security
systems. To deliver both automatic and personalized experiences, a smart home must be
able to comprehend the occupants’ everyday tasks.
Utilizing sensor traces, smart homes could be used to identify human behaviors such as

food preparation, eating, resting, and bathroom usage without being intrusive [3]. Various
sensors (movement, opening door, or heat) incorporated into the home’s surroundings or
items gather these traces [4]. Event-triggered sensors record human behaviors in smart
home automation systems. This technique produces irregularly sampled and sparse data,
unlike video-based action recognition. Consequently, we must continually face obstacles
in pattern recognition and temporal sequence analysis [5]. This results in designing and
implementing systematic machine learning (ML) algorithms to acquire knowledge from
data and deliver accurate human behavior predictions [6, 7].
It has been commonplace to perceive the human activity recognition (HAR) challenge

as a categorization issue in recent years. Several classification techniques, including Naive
Bayes (NB) [8], random forest (RF) [9], k-nearest neighbor (k-NN) [10], and support
vector machine (SVM) [11], have been applied. Most contemporary ML algorithms result
in static models that are not required to evolve and adapt to a constantly changing
environment.
Recently, there has been a significant focus on deep learning (DL) approaches for HAR

situations [6, 12, 13], which can learn different, non-linear interpretations of raw data
through many hidden layers [14]. This enables the DL system to extract and manipulate
features without previous knowledge. Deep neural network (DNN), convolutional neural
network (CNN), recurrent neural network (RNN), and long short-term memory (LSTM)
are the most widely exploited deep learning (DL) approaches in HAR [15, 16].
This paper proposes ResNeXt, a deep residual neural network for improving HAR in

smart home circumstances. In contrast to earlier DL techniques for video and wearable-
based HAR, this study contextualizes the issue in the smart home environment, where
a typical house is supplied with several sensors, and the collected data is massive and
structurally dense. Applying widely dispersed Center for Advanced Studies in Adaptive
Systems (CASAS) standard datasets [17], the proposed HAR technique’s dependability is
examined in a smart home context. Although the CASAS datasets are frequently utilized
and studied by researchers employing supervised ML algorithms, there is, to the greatest
of the authors’ awareness, a lack of HAR papers on the utilization of DL techniques
that consider temporal data. The efficacy of the proposed residual network has been
evaluated and compared against commonly used one-dimensional CNN and traditional
LSTM methods in the field of HAR.
The remainder of this article is structured in the following manner. Section 2 presents

recent related literature. Section 3 outlines the specifics of the deep learning models im-
plemented in this study. Section 4 displays our experimental outcomes. Lastly, Section 5
offers a conclusion of our findings and potential future directions.

2. Related Works. The process of HAR using sensors involves utilizing a system of
interconnected sensors and devices to observe and monitor an individual’s actions [18].
The sensors produce a sequence of changes in state or characteristic values over time.
Different types of sensors, such as touch detectors, RFID, accelerometers, motion sensors,
noise sensors, and radar can be directly placed on a person, objects, or in the environment.
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As a result, sensor-based techniques can be classified into three main categories: Wearable
[19], Sensor on Objects [20], and Ambient sensors [21].

In order to address privacy concerns related to the use of cameras in our personal
spaces, sensor-based systems have become more prevalent in tracking our daily activities
[22]. With the development of intelligent technology and the Internet of Things (IoT),
sensor-based smart homes have become a feasible and practical option. However, in order
to fully utilize the potential of these systems, there is a need to further develop human
motion analytics.

With the development of ML in recent years, many excellent ML classification algo-
rithms have emerged, the most representative of which is the DNN algorithm. Especially
in the field of image classification, DL methods, such as VGG [23] network, Google Incep-
tion [24] network, and ResNet [25] network, have powerful automatic feature extraction
capabilities [26], which have been completely completed in some fields beyond traditional
ML and statistical methods and shallow artificial neural network methods, it can even
identify targets that are difficult to distinguish with the naked eye, surpassing humans.
In addition, many large companies have also adopted the DL method as one of their core
competencies [27, 28, 29].

Liciotti et al. [30] conducted research on movement recognition using various LSTM
architectures and found that LSTM outperforms traditional HAR methods in terms of
classification accuracy without the need for manual feature engineering, as LSTM can cre-
ate features that represent temporal patterns. Singh et al. [31] compared LSTM’s perfor-
mance to other conventional machine learning methods such as NB, hidden Markov mod-
el (HMM), hidden semi-Markov model, and conditional random fields and found LSTM
to be superior. Similarly, Alshammari et al. [32] demonstrated that LSTM outperforms
other machine learning methods such as AdaBoost, HMM, multi-layer perceptron, and
structured perceptron. LSTM also showed better performance compared to decision trees,
SVM, stochastic gradient descent of linear SVM, logistic regression, and regression func-
tions. However, to effectively utilize LSTM, an appropriate time frame needs to be es-
tablished to balance long-term and short-term temporal relationships, which has been
addressed by some studies. For instance, Park et al. [33] used a topology with multiple
LSTM layers, residual connections, and an attention component to mitigate the issue of
gradient vanishing and identify significant events in time series. Medina-Quero et al. [34]
combined the LSTM with a fuzzy window to instantly interpret the HAR, enabling them to
adjust their time frames duration dynamically and handle various time scales. However,
these improvements’ accuracy falls below 96%, so consideration of their activity-based
classifiers combination and further enhancement is necessary.

3. Methodology. As illustrated in Figure 1, the HAR methodology based on smart
home sensors employed in this study consists of five fundamental steps: data acquisition,
pre-processing, data generation, model training, and classification.

3.1. Data acquisition. Washington State University provided the CASAS datasets dur-
ing the data gathering procedure [17]. The intelligent apartment utilized for the CASAS
smart home project consisted of three units with three bedrooms, one bathroom, one
kitchen, and one living room/dining area. Each unit was connected with various sensors
and actuators (e.g., motion sensors, temperature sensors, and door sensors) for monitoring
the surroundings and giving details to residents. Among all accessible CASAS datasets,
three annotated datasets with the names Milan, Cairo, and Kyoto3 were chosen. These
three datasets were chosen to provide simple instances of operations for the following sce-
narios: 1) solely residents as a baseline (Kyoto3), 2) a more sophisticated dataset in which
a pet can bring more noise (Milan), and 3) a complicated situation with two residents
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Figure 1. The HAR methodology based on smart home sensors used in
this work

Table 1. Details of the three datasets used in this work

Detail Cairo Milan Kyoto3
Number of residents 2 & pet 1 & pet 3
Number of sensors 27 33 86
Number of activities 13 15 12
Number of days 56 92 64

(Cairo). See Table 1 for specifics on how the three chosen datasets differ depending on
the layout of the dwelling and the number of residents.

3.2. Data pre-processing. From the sequence of sensor activations, the dataset is seg-
mented into event sequences as part of the pre-processing phase. Every sequence relates to
a specific action, and the occurrence timestamp order is maintained within the sequences.
The encoded occurrence sequences are subsequently utilized inputs for the pre-trained
embeddings.
In order to capture all possible sensor activations, we create a collection of sensor ac-

tivations and classify them into categories, assigning a distinct value to each one. By
converting the sensor activations into categorical values, the model can learn about the
frequency of a sequence of activations. This also allows the model to consider the rela-
tionship between two consecutive activations. These categories comprise the vocabulary
used to represent a smart home comprehensively.
As in natural language processing for words in sentences, each sensor activation in

sequences is converted into an index to be utilized as an entry to a neural network. The
index begins at 1, with 0 allocated for sequence padding. This ordinal encoding represents
the frequency of sensor activation. Depending on the sensor activation frequency, a series
of words such as [M004ON M005OFF M007OFF M004OFF M007ON M005ON M004OFF
M007ON M005ON M004OFF] becomes the sequence of indexes [1 4 8 2 1 2 7 1 8 7 3 2].
Figure 2 depicts the process of stream segmentation and encoding.

3.3. Data generation. For this task, data samples are taken and used as training data.
The signals are divided into temporal windows, which are then used to build a model
and test its effectiveness. The standard method for testing involves dividing the data into
training and testing sets, known as cross-validation. There are different ways to split the
data, such as using k-fold cross-validation. This step helps to assess how well the learning
algorithm can adapt to new information. In this HAR methodology, we use 5-fold cross-
validation during this phase.
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Figure 2. Stream segmentation and encoding

3.4. ResNeXt model. The proposed ResNeXt network is an end-to-end DL network
based on convolutional blocks and multi-kernel residual blocks of the deep residual layout.
Figure 3 depicts this proposed model’s general design.

Figure 3. The ResNeXt network architecture

The MK block, illustrated in Figure 3, incorporates the cross-layer connection design
concept of ResNet while also combining elements of the VGG and Inception networks.
This structure addresses the limitations of the VGG network, which experiences degra-
dation when too deep, by utilizing the ResNet cross-layer connection structure. In the
proposed ResNeXt, a transformation set replaces the Inception network’s transformation
structure. Since each aggregated topology is identical, the network requires fewer ad-
justments to hyperparameters when dealing with different datasets, resulting in increased
robustness.

This work uses the convolutional block to extract low-level characteristics from raw
sensor data. This block consists of four layers, as shown in Figure 3: 1D-convolutional
(Conv1D), batch normalization (BN), rectified linear unit (ReLU), and max-pooling (MP)
layers. Multiple convolutional kernels that can be learned obtain particular characteristics
in the Conv1D, and each kernel generates a feature map. The BN layer was selected to
maintain and accelerate the training process, and the ReLU layer was applied to enhancing
the expressiveness of the model. The MP layer was applied to compacting the feature map
while preserving its most vital components.
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The Multi-Kernel Blocks (MK) have three components with convolutional kernels of
different sizes: 1 × 3, 1 × 5, and 1 × 7. Each module employs 1 × 1 convolutions before
employing these kernels to reduce the proposed network’s overall complexity and several
parameters. Utilizing Global Average Pooling algorithm and flattened layers, the averages
of each feature map were transformed into a 1D vector in the classification block (GAP).
The outcome of the utterly connected layer was translated into probabilistic reasoning
utilizing the softmax function. The network’s losses were computed using the cross-entropy
loss function, frequently employed in classification issues.

3.5. Performance measurement criteria. Researchers analyze HAR solutions using
measures including Accuracy, Precision, Recall, and F1-score, considering HAR is a multi-
class identification issue. Four characteristics of activity class Ci determine these mea-
surements: true positive TP(Ci), true negative TN (Ci), false positive FP(Ci), and false
negative FN (Ci). The F1-score estimates the accuracy of a model on a dataset. At row
i and column j, an element Cij of the confusion matrix specifies the number of cases for
which the actual class is i and the signified class is j. The F1-score is a technique for com-
bining the Precision and Recall of a model, and it is specified as the cumulative average
of the Precision and Recall of the model. It should not be overlooked that most housing
databases are class-imbalanced. In other words, specific actions have more instances than
others and constitute the majority. In an unbalanced dataset, a minority class is more
difficult to forecast since, by definition, there are fewer instances of this class. This implies
that it is more difficult for a model to learn the properties of instances from this class and
to distinguish them from examples from the majority class. Consequently, it would be
more acceptable to employ measures weighted by the dataset’s class experience, including
balanced Accuracy, weighted Precision, weighted Recall, and weighted F1-score.
In 5-fold cross-validation, four standard assessment measures, Accuracy, Precision, re-

call, and F1-score, are generated to assess the effectiveness of the proposed DL model.
Following are the mathematical formulae for the four measures:

Accuracy =

∑n
i=1TP(Ci)∑n
i=1

∑n
j=1Cij

(1)

Precision =
1

n

n∑
i=1

Precision(Ci) (2)

Recall =
1

n

n∑
i=1

Recall(Ci) (3)

F1-score =
Precision ×Recall

Precision +Recall
(4)

where,

Recall(Ci) =
TP(Ci)

TP(Ci) + FN (Ci)
(5)

Precision(Ci) =
TP(Ci)

TP(Ci) + FP(Ci)
(6)

4. Research Experiments and Findings. In this part, we provide the experimen-
tal data designed to directly assess two evaluation DL models (CNN and LSTM) and
the proposed ResNeXt model for the identification of human motions in a smart home
environment.
Five-fold cross-validation was utilized to assess the three models employed in this study.

The experiment findings show that the proposed ResNeXt model performed satisfactorily



ICIC EXPRESS LETTERS, VOL.17, NO.12, 2023 1381

Table 2. Recognition effectiveness of DL models using the Cairo dataset

Model Parameter
Recognition effectiveness

Accuracy Loss F1-score
CNN 8,268,359 83.08%(±2.00%) 1.43(±0.23) 82.55%(±1.80%)
LSTM 93,703 83.59%(±2.98%) 0.79(±0.06) 82.93%(±2.71%)

ResNeXt 89,871 84.81%(±2.86%) 0.64(±0.10) 83.49%(±2.14%)

Table 3. Recognition effectiveness of DL models using the Milan dataset

Model Parameter
Recognition effectiveness

Accuracy Loss F1-score
CNN 8,465,674 83.40%(±0.50%) 1.60(±0.38) 82.45%(±1.67%)
LSTM 251,402 92.55%(±0.70%) 0.45(±0.03) 90.09%(±3.80%)

ResNeXt 247,634 93.57%(±0.55%) 0.32(±0.06) 92.11%(±2.15%)

Table 4. Recognition effectiveness of DL models using the Kyoto3 dataset

Model Parameter
Recognition effectiveness

Accuracy Loss F1-score
CNN 8,346,501 85.67%(±1.21%) 1.54(±0.20) 85.95%(±3.21%)
LSTM 156,293 89.92%(±2.54%) 0.92(±0.04) 88.51%(±2.77%)

ResNeXt 152,461 90.38%(±1.28%) 0.54(±0.34) 89.47%(±1.52%)

with the highest accuracies based on sensor data from three different datasets, as indicated
in Tables 2, 3, and 4.

The results of the experiment indicate that the ResNeXt model has fewer parameters
compared to other models like CNN and LSTM. This is significant for the proposed
ResNeXt model since it can be a less complex and lightweight option for recognizing
human movements in smart home systems.

5. Conclusion and Future Works. This study investigated human movement detec-
tion using smart home sensor data and DL techniques. ResNeXt is a deep residual network
proposed to enhance HAR effectiveness. To assess the DL models, including ResNeXt,
three CASAS datasets were included (Cairo, Milan, and Kyoto3). Based on experimental
findings, ResNeXt surpasses CNN and LSTM models in terms of accuracy and F1-score.
ResNeXt employing smart home sensors achieved the best interpretation, with accuracy
scores of 84.81%, 93.57%, and 90.38% for the CASAS Cairo, CASAS Milan, and CASAS
Kyoto3 datasets, respectively. Future research is suggested to generalize the model to
function well in multi-user households.
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