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Abstract. In many existing systems of leader-following formation, motor dynamics
and external disturbance are not considered. In this paper, the formation tracking prob-
lem is studied by a practical unified error transformation control approach for multi-agent
systems with motor dynamics and external disturbances. To simplify the controller de-
sign process, the potential functions are removed in this paper and an error function is
constructed by using the relative distance and angle. It is assumed that the parameters in
kinematics and dynamics of the robot and the motor are uncertain. Then a fuzzy adaptive
dynamic surface tracking control method is developed which ensures formation tracking,
maintaining connectivity and avoiding collisions for electrically driven unmanned non-
holonomic mobile robots. Finally, the stability of the closed-loop system is analyzed under
Lyapunov function theory sense.
Keywords: Motor dynamics, Fuzzy adaptive control, Distributed formation tracking,
Connectivity-maintaining, Collision-avoiding

1. Introduction. In recent years, the unmanned nonholonomic mobile multi-robot sys-
tem is a typical underactuated nonlinear system. General smooth feedback control law
is disabled for this system, especially influenced by other external factors such as load
change, resistance interference, and the friction of wheels against the ground, it is more
difficult to find a general and effective control method to achieve its motion control.
Therefore, the control problem of uncertain nonholonomic mobile multi-robot system has
attracted great attention in the control field [1,2]. Due to the rapid development of new
energy vehicles, cars driven by electricity are becoming more and more widely. Most of
formation systems have no regard for the dynamics deriving from electric motors which
need to implement the mobile robots in practice; however, the motor dynamics equation
is not considered in the above controller design process, and the kinematics and dynamics
equation of the robot is only considered. As we all know, motor dynamics is a significance
section for the nonholonomic mobile robots; for example, in the case of high-speed motion
and highly variable load, electric drive is particularly important. It can not only save re-
sources but also protect the environment. Therefore, we need to take the motor equation
into consideration in the design of the actual controller.

There are many methods of formation control, including leader-follower [3], behavior-
based method [4], virtual structure method [5], etc. Leader-follower method is the most
simply and effective method among these methods and has been widely applied in the
research process [6-9]. The potential function is a common method in formation controller
design, but when selecting the designing value to figure out the maintaining connectivity,
collision avoidance and trajectory tracking control for multi-agent systems, the potential
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function may lead to conflicts. [10] developed a connectivity maintaining and collision
avoidance formation tracking scheme which can overcome the drawback of using the po-
tential function, but ignoring motor dynamics as well. In [11], the problem of electric drive
for a single robot system is studied. As far as we know, at present, there are no available
results to study electrically driven robots with external disturbances for unmanned non-
holonomic mobile robots. All unknown parameters come from motor dynamics and the
external disturbances. We use fuzzy logic systems (FLS) in [12] to approximate unknown
functions. Compared to the previous research, this article mainly has the following two
contributions.
1) This paper proposes a fuzzy adaptive formation control algorithm for unmanned

nonholonomic mobile robots incorporating motor dynamics and the external disturbances;
compared with the related works [13-15], this paper removes the related conflicts raised
by any potential functions; by this way the trajectory tracking of formation, connectivity-
maintaining and collision avoiding can be effectively achieved.
2) In this article, to simplify the multi-agent systems control design process, we employ

the DSC technique to structure an error function by the information of relative distance
and angle, and then all signals tend to be stable from the closed-loop system by the
Lyapunov stability theorem.
The rest of this paper is organized as follows. In Section 2, the kinematic and dynamic

model are introduced and the problem is formulated. In Section 3, a unified error trans-
formation approach and fuzzy logic system are presented. Control design is discussed in
Section 4. Finally, Section 5 concludes this paper.

2. Problem Statement and Preliminaries.

2.1. Model of electrically driven unmanned nonholonomic mobile robots. We
consider a pair of leader-follower formation, which contains one leader and N followers,
leader is labeled as 0, and followers are labeled as i = 1, . . . , N ; the dynamics and kine-
matics of the ith unmanned nonholonomic robots are denoted as follows:

q̇i = Pi (qi) vi,

v̇i = M−1
i [NK T ii − Ai (q̇i) vi −Divi − Fid],

i̇i = L−1
i (ui −Raiii − NKEvi − uid), (1)

with i = 1, . . . , N and the position of center for the mobile robot’s two wheels can be
represented by (xi, yi), the heading angle of the center of the robot’s two wheels can be
represented by θi, qi = [xi, yi, θi] ∈ R3 : (xi, yi) is the state of the center of the robot’s two
wheels, vi = [vi,1, vi,2] ∈ R2; vi,1, vi,2 are the angular velocities of the mobile robot wheels,
independently and Fid is a vector of disturbances including unmodeled dynamics. KT , KE

are the motor constants, ii = [ii,1, ii,2] ∈ R2 is the electric current of the ith robot, ui is

the input voltage of the ith robot and ui = Raiii + Lii̇i + KE θ̇im, the resistance is Rai,
and the inductance is Li.

Assumption 2.1. [15] The matrices Mi, Ai (q̇i) and Di are unknown in the dynamics
of (1), but the parameters ri and Ri are known and the system matrix Mi is symmetric
and positive definite. The disturbances Fid, uid are bounded as ∥Fid∥ ≤ F̄id, ∥uid∥ ≤ ūid,
F̄id > 0, ūid > 0 are constants and Ḟid, u̇id are existing where i = 1, . . . , N .

2.2. Problem statement and formation model. The distance li,j is from the ith
robot to the jth robot and the relative angle ϕi,j for the ith robot to the jth robot are
represented as follows:

li,j =

√
(xj − xi)

2 + (yj − yi)
2,

ϕi,j = arctan 2 (yj − yi, xj − xi) . (2)
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The formation model can be represented as

l̇i,j = λ1vj,1 + λ2vj,2 − λ3vi,1 − λ4vi,2,

ϕ̇i,j = l−1
i,j (λ5vj,1 + λ6vj,2 − λ7vi,1 − λ8vi,2), (3)

with i = 1, . . . , N , j = 0, . . . , N , i ̸= j.
A directed graph G , (ν, ε), ν , {1, 2, . . . ,M} is introduced to represent the com-

munications of robots which have unequal communication ranges. If li,j < Lmax where
i = 1, . . . , N , j = 0, . . . , N , i ̸= j, the ith mobile robot and the jth mobile robot are neigh-
bors. The set of neighbour nodes for the ith mobile robot is Ni(t) = {j |li,j(t) < Lmax}.
ε ⊆ ν × ν denotes the collection of edges and (j, i) ∈ ε is that the ith mobile robot
can receive signal from the jth mobile robot but not send messages back; the detailed
introduction can be found in [14].

Assumption 2.2. [14] G(t) is a single direction graph. vL ≤ v̄L and ωL ≤ ω̄L which are
reasonable only for the ith robots satisfying 0 ∈ Ni(0), i = 1, . . . , N .

The purpose of this paper is designing a controller Fi for the ith robot under graph which
is from the ith mobile robot to the jth mobile robot to achieve three objectives:

i) when t ≥ 0, if Lmin < li,j(0) < Lmax, get Lmin < li,j(t) < Lmax;
ii) when t ≥ 0, if li,j(0) ≥ Lmax, get Lmin < li,j(t);
iii) limt→∞ |li,j(t)− li,j,d| ≤ ζ1 and limt→∞ |ϕi,j(t)− ϕi,j,d| ≤ ζ2

i = 1, . . . , N , j = 0, . . . , N , i ̸= j. ζ1 > 0, ζ2 > 0 are the positive small constants that
can be made arbitrarily, li,j,d is the desired relative distance from the ith robot to the jth
robot, and ϕi,j,d is the desired angle for the ith robot.

Assumption 2.3. [14] Lmin < li,j,d < Lmax is the range of li,j,d and −π ≤ ϕi,j,d < π is
the range of ϕi,j,d, i = 1, . . . , N , j = 0, . . . , N , i ̸= j.

Remark 2.1. Compared to the previous related works for unmanned nonholonomic mobile
robot systems, this article designs a novel error function of formation trajectory tracking
incorporating motor dynamics to resolve formation trajectory tracking issues, avoid colli-
sion meanwhile maintaining connectivity.

3. Main Results.

3.1. A unified error transformation approach. In this part, we propose a unified
error transformation approach incorporating motor dynamics for multi-agent systems to
achieve distributed formation control issues. We apply the following transformation error

si,j = ln

(
δi,j + pi,j,1

δi,j(1− pi,j,1)

)
, (4)

with pi,j,1 = (li,j − li,j,d)/(Lmax − li,j,d), i = 1, . . . , N , j = 0, . . . , N , i ̸= j, and δi,j =
(li,j − Lmin)/(Lmax − li,j,d). Design the error surfaces additional motor dynamics for the
formation controller as follows:

Zi,1 =
M∑

j=0,j ̸=i

ai,jη
T
i,jηi,j, Zi,2 = θi − θi,v,

Zi,3 = zi − ᾱi, Zi,4 = ii − īi, Ei,1 = ᾱi − αi,v, Ei,2 = īi − ii,v, (5)

where i = 1, . . . , N , j = 0, . . . , N , i ̸= j. The Zi,1 denote the errors of the distance

and bearing angle, ηi,j = [si,j, pi,j,2]
T , pi,j,2 = ϕi,j − ϕi,j,d, Zi,2 denote the errors of the

heading angle to solve underactuated problems, Zi,3 = [Zi,3,1, Zi,3,2]
T , Zi,4 = [Zi,4,1, Zi,4,2]

T ,

Ei,1 = [Ei,1,1, Ei,1,2]
T , Ei,2 = [Ei,2,1, Ei,2,2]

T are the boundary layer errors, and ai,j is the
weight of information transfer between the ith robot and jth robot given by



1420 S. DONG AND Y. LI

ai,j =

{
āi,j, li,j(0) < Lmax,

ai,j, li,j(0) ≥ Lmax,

āi,j =

{
1, li,j(t) < Lmax for t ≥ 0,

0, otherwise,

ai,j =

{
1, li,j(t) < Lp for t ≥ 0,

0, otherwise,
(6)

with design constants Lp denoting the distance of preparing to avoid collision, and Lmin <

Lp < Lmax. The virtual control laws are denoted by αi,v = [αi,v,1, αi,v,2]
T and ii,v =

[ii,v,1, ii,v,2]
T which will become ᾱi = [ᾱi,1, ᾱi,2]

T , īi =
[̄
ii,1, īi,2

]T
when they pass the

first-order low-pass filters, satisfying ιiαi,l
˙̄αi,v,l + ᾱi,v,l = αi,v,l, ιiii,l

˙̄ii,v,l + īi,v,l = ii,v,l,
ᾱi,v,l(0) = αi,v,l(0) and īi,v,l(0) = ii,v,l(0), the small constants ιiαi,l > 0 and ιiii,l > 0
(i = 1, 2). Virtual heading angles θi,v are designed as follows:

θ̇i,v =
ri
2Ri

(αi,v,1 − αi,v,2) + ki,2 (θi − θi,v) , (7)

where ki,2 > 0 is designed small constant. Here, the relative angles are within bounds
Zi,2, pi,j,2 ∈ [−π, π) which is closer to the real angle problem in practice.

Remark 3.1. By using nonlinearly error transformation approach, we need to prove the
boundedness of Zi,1 to guarantee connectivity maintenance and collision avoidance of mo-
bile robots, Zi,1 will be proved in Theorem 4.1. The Zi,2 is employed to define the heading
angles of robots for formation trajectory tracking. The Zi,3, Zi,4 and Ei,1, Ei,2 are the
boundary layer errors and they are designed by the technique of dynamic surface. When
all errors converge to a neighborhood of the origin, the goals will be achieved.

3.2. Fuzzy logic system. Defining a continuous function f(x) on a compact set Ω, with
ε > 0, there exists the fuzzy logic system such as

f(x) = W ∗TΘi + γi. (8)

4. Control Design. The controller of the ith robot for networked electrically driven
unmanned nonholonomic mobile system (1) is designed as

αi,v = X̄−1
i,1 (ki,1ηi +Xi,2) , (9)

u = Ri (NK T )
−1
(
−ki,3Zi,3 − Ξ̂i

(
ϑi

∣∣∣Ŵi

))
− Γ̂i

(
ϑi

∣∣∣K̂i

)
− ki,4Zi,4, (10)

with i = 1, . . . , N , j = 0, . . . , N , i ̸= j, ki,m > 0, m = 1, 2, 3, 4, are parameters designed

by designer, X̄−1
i,1 = XT

i,1

(
Xi,1X

T
i,1

)−1
, ηi =

[
ηTi,hi,1

, . . . , ηTi,hi,Bi

]T
, Xi,1 and Xi,2 are known

constants and X̄−1
i,1 in (9) is well defined in [14] where bi = 1, . . . , Bi, the subscripts

hi,1, . . . , hi,Bi
present the elements of the set hi = {hi,1, . . . , hi,Bi

} = {j|ai,j ̸= 0}.
Adaptive laws of Ŵi,l, K̂i,l are chosen as follows:

˙̂
Wi,l = ξi,lZi,3,lΘi,l − ξi,lσiW Ŵi,l,

˙̂
Ki,l = ξi,lZi,4,lΘi,l − ξi,lσiKK̂i,l, (11)

where l = 1, 2, ξi,l > 0 are tuning gains and the σi is an adjustable parameter.
Construct the Lyapunov function as follows:

V = V1 + V2 + (1/2)
M∑
i=1

[
2∑

m=1

E2
i,1,m + E2

i,2,m + tr
(
W̃ T

i ξiW̃i

)
+ tr

(
K̃T

i ξiK̃i

)]
, (12)

where V1 = (1/2)
∑M

i=1 Zi,1 + Z2
i,2, V2 = (1/2)

∑M
i=1 Z

T
i,3MiZi,3 + ZT

i,4LiZi,4, V̄2 = V1 + V2,
ξi = diag [ξi,1, ξi,2].
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Theorem 4.1. For networked electrically driven unmanned nonholonomic mobile robots
(1), under Assumptions 2.1-2.3, for constant κ, V (0) ≤ κ which denotes the initial val-
ue of Lyapunov function is bounded, the proposed controller (9)-(11) can achieve three
objectives as follows:

(i) when t ≥ 0, if Lmin < li,j(0) < Lmax, get Lmin < li,j(t) < Lmax;
(ii) when t ≥ 0, if li,j(0) ≥ Lmax, get Lmin < li,j(t) for t ≥ 0;
(iii) limt→∞ |li,j(t)− li,j,d| ≤ ζ1 and limt→∞ |ϕi,j(t)− ϕi,j,d| ≤ ζ2

where i = 1, . . . , N , j = 0, . . . , N , i ̸= j. The positive constants ζ1 > 0, ζ2 > 0 are which
can be made arbitrarily small, li,j,d is the desired distance from the ith robot to the jth
robot, and ϕi,j,d is the desired angle for the ith robot.

Proof: Combining (3) and (5) yields

Żi,1 = 2ηTi,j {−Xi,1 (Zi,3 + Ei,1 + αi,v) + Xi,2} , (13)

Żi,2 = 0.5riR
−1
i (Zi,3,1 + Ei,1,1 + αi,v,1 − Zi,3,2 − Zi,1,2 − αi,v,2)− θ̇i,v. (14)

From (1), (3) and (5) yield

MiŻi,3 = NK T ii − Ai (q̇i) vi −Divi −Mi ˙̄αi − Fid, (15)

LiŻi,4 = ui −Raiii − NKEvi − Li
˙̄i− uid. (16)

Step 1: Choosing the following Lyapunov function V1 = (1/2)
∑M

i=1

(
Zi,1 + Z2

i,2

)
, sub-

stituting (7) and (9) into (13) and (14), the time derivative of V1 becomes

V̇1 =
M∑
i=1

[
−ki,1Zi,1 − ki,2Z

2
i,2 − ηTi Xi,1 (Zi,3 + Ei,1) + R̄iZi,2 (Zi,3,1 + Ei,1,1

− Zi,3,2 − Ei,1,2)
]
, (17)

where R̄i = 0.5BiriR
−1
i .

Step 2: Consider V̄2 = V1 + V2, combining (3) and (5) yields (15), (16) and (17), and
the time derivative of V̄2 is

˙̄V2 =
M∑
i=1

[
− ki,1Zi,1 − ki,2Z

2
i,2 − ηTi Xi,1 (Zi,3 + Ei,1)

+ R̄iZi,2 (Zi,3,1 + Ei,1,2 − Zi,3,2 − Ei,1,2)

+ZT
i,3 (NK T ii − Ai (q̇i) vi −Divi −Mi ˙̄αi − Fid)

+ ZT
i,4

(
ui −Raiii − NKEvi − Li

˙̄i− uid

)]
. (18)

Note that

−ηTi Xi,1Zi,3 + R̄iZi,2 (Zi,3,1 − Zi,3,2) = ZT
i,3Ψi, (19)

where Ψi = [Ψi,1,Ψi,2]
T = −XT

i,1ηi + R̄iZi,2

[
1
−1

]
. Using Young’s inequality and (19),

substitute (10) into (18) to get

˙̄V2 ≤

[
M∑
i=1

−ki,1Zi,1 − ki,2Z
2
i,2 − ki,3Z

T
i,3Zi,3 − ki,4Z

T
i,4Zi,4 − ηTi Xi,1Ei,1

+ R̄iZi,2 (Ei,1,1 − Ei,1,2) +
χiΞ + χiΓ

2
+ ZT

i,3

(
Ξi (ϑi)− Ξ̂i

(
ϑi

∣∣∣Ŵi

))
+ZT

i,4

(
Γi (ϑi)− Γ̂i

(
ϑi

∣∣∣K̂i

))]
, (20)
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where χi = χiΞ+χiΓ, χi > 0 is a constant, Ξi (ϑi) = Ψi−Ai (q̇i) vi−Divi−Hi ˙̄αi+
F̄ 2
idZi,3

2χiΞ
,

Γi (ϑi) = −NKEvi − Li
˙̄i +

ū2
idZi,4

2χiΓ
, we will use FLSs to estimate the unknown nonlinear

function using Ξi (ϑi) = Ξ̂i

(
ϑi

∣∣∣Ŵi

)
+ W̃ T

i Θi + γiΞ, Γi (ϑi) = Γ̂i

(
ϑi

∣∣∣K̂i

)
+ K̃T

i Θi + γiΓ :

Rq 7→ R2, with W̃i = W ∗
i − Ŵi, K̃i = K∗

i − K̂i, i = 1, . . . , N , ϑi ∈ κvi ⊂ Rq are the input
vectors of the function approximators.
Step 3: The time derivative of V along (11) and (20) is

V̇ ≤

[
M∑
i=1

−ki,1Zi,1 − ki,2Z
2
i,2 − ki,3Z

T
i,3Zi,3 − ki,4Z

T
i,4Zi,4 − ηTi Xi,1Ei,1

+ R̄iZi,2 (Ei,1,1 − Ei,1,2) +
χi

2
+ ∥Zi,3∥ γ̄iΞ + ∥Zi,4∥ γ̄iΓ

+
2∑

m=1

(
−
E2

i,1,m

ιiαi,m

− Ei,1,mΠi,1,m

)
+

2∑
m=1

(
−
E2

i,2,m

ιiii,m
− Ei,2,mΠi,2,m

)

+σiW tr
(
W̃ T

i Ŵi

)
+ σiKtr

(
K̃T

i K̂i

)]
, (21)

where Πi,1,m, Πi,2,m are continuous functions which are related to the derivative of the
virtual controllers αi,v, ii,v, respectively.
Then, by using −ηTi Xi,1Ei,1 + R̄iZi,2 (Ei,1,1 − Ei,1,2) = Ψi,1Ei,1,1 +Ψi,2Ei,1,2, we can get

V̇ ≤
M∑
i=1

[
−ki,1Zi,1 − ki,2Z

2
i,2 − ki,3Z

T
i,3Zi,3 − ki,4Z

T
i,4Zi,4

−
2∑

m=1

(
−
E2

i,1,m

ιiαi,m

−
E2

i,1,mΠ̄
2
i,1,m

2χiΞ

)
−

2∑
m=1

(
−
E2

i,2,m

ιiii,m
−

E2
i,2,mΠ

2
i,2,m

2χiΓ

)

+
ZT

i,3Zi,3

2
+

ZT
i,4Zi,4

2
+

γ̄2
iΞ

2
+

γ̄2
iΓ

2
+ σiW tr

(
W̃ T

i Ŵi

)
+ σiKtr

(
K̃T

i K̂i

)
+

3

2
χi

]
, (22)

where Π̄i,1,m = Πi,1,m + Ψi,m. Consider the sets O :=
{
qT0 q0 + q̇T0 q̇0 ≤ 2κ

}
and ℓ :={∑M

j=1 Zj,1 + Z2
j,2 + ZT

j,3Zj,3 + ZT
j,4Zj,4 + Ej,1,m + Ej,2,m

}
, where i = 1, . . . , N , m = 1, 2.

Here, ℓ×O, is compact in R6M+6 and thus there exist constants gi,1,m > 0 and gi,2,m > 0
such that Π̄i,1,m < gi,1,m and Πi,2,m < gi,2,m on ℓ × O. The ki,3 =

1
2
+ k∗

i,3, ki,4 =
1
2
+ k∗

i,4,
1

ιiαi,m
=

g2i,1,m
2χiΞ

, 1
ιiii,m

=
g2i,2,m
2χiΓ

with positive constants k∗
i,3, k

∗
i,4, ιiαi,m and ιiii,m yields

V̇ ≤

[
M∑
i=1

− ki,1Zi,1 − ki,2Z
2
i,2 − k∗

i,3Z
T
i,3Zi,3 − k∗

i,4Z
T
i,4Zi,4 −

σiW

2

∥∥∥W̃i

∥∥∥2
F
− σiK

2

∥∥∥K̃i

∥∥∥2
F

−
2∑

m=1

(
ι∗iαi,m

E2
i,1,m +

(
1−

Π̄2
i,1,m

g2i,1,m

)
E2

i,1,mg
2
i,1,m

2χiΓ

)

−
2∑

m=1

(
ι∗iii,mE

2
i,2,m +

(
1−

Π̄2
i,2,m

g2i,2,m

)
E2

i,2,mg
2
i,2,m

2χiΓ

)]
+ χ̄, (23)

where χ̄ =
∑M

i=1

(
3χi

2
+

σiW W̄ 2
i

2
+

σiKK̄2
i

2

γ̄2
iΞ

2
+

γ̄2
iΓ

2

)
. When V = κ, Π̄i,1,m < gi,1,m, Πi,2,m <

gi,2,m is satisfied, it holds that

V̇ ≤ −CV + χ̄, (24)
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where C is chosen as min < 0 < C ≤ min
[
2ki,1, 2ki,2,

2k∗i,3
Mi,M

,
2k∗i,4
Li,M

, σiW ξi, σiKξi, 2ι
∗
iαi,m

,

2ι∗iii,m

]
. Mi,M , Li,M are the maximum eigenvalues of Mi, Li, respectively. By this inequal-

ity, we can know that V̇ < 0 on V = κ when C > χ̄
κ
. So, Zi,1 is bounded. And by

Assumption 2.3 and (9), −δi,j < pi,j,1(t) < 1 to get Lmin < li,j(t) < Lmax for all t ≥ 0.
Goal (i) is fully proven. The proof of goal (ii) is the same as the proof of goal (i).

From V̇ ≤ −CV + χ̄, Z1 = [Z1,1, . . . , ZM,1]
T exponentially converges to the compact set

Ω =
{
Z1

∣∣∥Z1∥ ≤ 2χ̄
C

}
, we can adjust C to make Ω to be arbitrarily small, and then ηi,j

will be smaller arbitrarily. So limt→∞ |li,j(t)− li,j,d| ≤ ζ1 and limt→∞ |ϕi,j(t)− ϕi,j,d| ≤ ζ2
can be achieved. Goal (iii) is fully proven.

5. Conclusions. This paper has studied the formation trajectory tracking problem by
a practical unified error transformation control approach for multi-agent systems with
motor dynamics and external disturbances. The potential functions have been removed
in this paper to simplify the controller design process by employing an error function using
the relative distance and angle. Although the parameters in kinematics and dynamics of
the mobile robot and the motor are uncertain, it is not effective for the design of the
controller. Finally, the stability of the closed-loop system has been analyzed by Lyapunov
theory. Input saturation can be further considered in future controller designs.
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