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Abstract. Strategic form game (SFG) has been used widely to model inter-related de-
cision making. Generally, researchers work on a particular game, specified by certain
actions and corresponding payoffs. In real world, the situation can be much more com-
plex, and a particular game may not be enough. Furthermore, the actions and payoffs are
not known a priori. Here, we consider a more realistic environment, where payoffs are
to be optimally computed from given resources and be used by agent for making decision.
We are interested in wider spectrum of outcomes in games, where payoffs can vary within
a trend such that the agents’ strategies remain unchanged. The results show that there
exist certain ranges of resources that agents do not change their strategies. Hence, agents
receive fair payoffs. Furthermore, taking into account additional computations that nor-
mally take place in real world environments does not affect the acceptable computation
time for agent payoffs.
Keywords: Fair payoff, Non-cooperative game, Payoff trends

1. Introduction. Multiagent system (MAS) is a very interesting area of research in ar-
tificial intelligence. MAS offers extensive potential for creating a decision support system
in real world business domains, including supply chains, logistics, pricing, etc. Agents in
these systems can be modeled as representatives of decision making units, e.g., persons,
and companies. This helps us understand complex situations and make better decisions.
As an underpinning mechanism of MAS, game theory (GT) [1] provides a solid basis to
study agents’ behaviors when their decisions are inter-related to each other, i.e., an age-
nt’s decision will affect other agents’ decisions. GT can be divided into cooperative game
and non-cooperative game. While the former allows for communications and negotiations
among agents, the latter enforces agents to make decisions on their own. In reality, non-
cooperative game has been studied extensively because it suits real world business very
well. The most widely known, studied and adopted is strategic form game (SFG), where
a set of actions and their associated payoffs are assigned to agents. The particular actions
that agents finally decide to take and payoffs that they finally achieve are the outcome.
The challenge in SFG research is to find whether the outcome is in the equilibrium [2],
i.e., a stable state that agents will reach their optimal actions such that none of them can
deviate and be better off.

Although SFG has been successfully used for making decisions in real world, there
are important limits that prohibit us from potentially benefiting even much more with
MAS and GT. While game theory assumes existing certain payoffs, we have to collect
data and compute them quickly for payoffs in real world. Furthermore, there are a lot
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of uncontrollable factors that affect directly to the value of payoffs. Lastly, we need to
analyze many “what-if” scenarios by hands, limited only to a handful of cases, while the
possibilities can be millions cases more.
This research investigates such a setting, namely, Bakery Game [3], where a certain

amount of resources are given to the agents, with the same technology matrix and price
function but different amounts of resource. We investigate how much the resources can
vary so that the agents’ actions remain unchanged and their payoffs are affected minimally.

2. Literature Review. Having been used for modeling complex decision making for
decades, STF has been extended [4] to be a little more flexible for managing modern
organazation. Pricing strategy is a very challanging and important task in business.
Agents are used to dynamically plan for pricing [5] interchangably. They observe the
results of their on-line sales and adapt accordingly. Agents can be used to monitor other
competitors that play their pricing strategies from on-line systems [6]. The observed data
will be forwarded to further analysis. Game theory can also be used to model pricing
strategy for port container facilitator [7].
With similar ideas, the following works have deployed agents in supply chain manage-

ment. To extensively understand complex decision making in supplying chain, the TAC
supply chain management (TAC/SCM) [8] game provides a platform for experimenting
strategies and consequential results. Bullwhip effect is a well known situation that occurs
randomly but severely. Agents [9] are used to intellectually make decision by means of
simulation. In modern business model, seeking cooperation among competitors in the
same business sectors has also been studied. Strategic agents help seek social welfare [10]
for conflicting parties. Li and Zhang [11] suggest a new model under which the ship-
ping forwarders have admitted an opportunity to purchase shipping capacity from each
other. Dobson and Chakraborty [12] model collaboration possibility amongst producers
controlling the supply of essential complementary components that go into the assembly
of competitively produced composite finished goods. Schleich et al. [13] assess collabora-
tive performance on inventory adjustment among firms in business network. It is found
that more collaboration can help increase their performance. Yan et al. [14] propose a
solution that the manufacturer and e-tailer can agree to introduce the marketplace chan-
nel by considering dual upstream disadvantages. Allender et al. [15] enable targeted, or
“personalized”, pricing strategies by strategically obfuscate their prices so that direct in-
terpersonal comparisons are more difficult. Liu et al. [16] offer fairness-efficiency solution
for both stakeholders for urban renewal in China. Wu et al. [17] deal with the problem of
allocation retrofit task and incentive among multiple stakeholders in China’s energy sup-
pliers. They are satisfied with stable and efficient strategies of incentive/task allocation.
Game theory can be used to help increase the channel profits of participants in green
supply chains [18], where participants are motivated to act promptly. For supply chains
in niche markets, game theory can be used to help reach equilibrium [19].
As we can see here, making decision for modern business has been increasingly using

agents and game theory.

3. Bakery Game. Bakery game is an extension of linear production game (LPG) [20].
LPG illustrates a cooperative situation under superadditive environment where agents
combine their resources to produce good and distribute the profit among themselves.
The set of m agents is denoted by A = {a1, a2, . . . , am}. Resources, denoted by R =
{r1, r2, . . . , rn}, are distributed to agents. Goods, denoted by G = {g1, g2, . . . , go}, are
produced by combining resources of agents because each unit of resources cannot be sold
by itself. The linear technology matrix, denoted by L = [αi,j ]n×o, where αi,j ∈ Z

+, 1 ≤
i ≤ n and 1 ≤ j ≤ o, defines units of each resource required for producing a unit of good.
The price vector, denoted by P = [pj ]1×o, specifies the unit price of each good. Lastly, the
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number for resources given to each agent is defined by vector B = [βi,k]n×m. Once agents
form a coalition, S ⊆ A, the bundle resource ith is defined by bi =

∑
1≤k≤m

βi,k. The
coalition S can use all these resources to produce any vector x = 〈x1, x2, . . . , xo〉 of goods
under these constraints: α1,1x1+α1,2x2+ · · ·+αo,1xo ≤ b1, α2,1x1+α2,2x2+ · · ·+αo,2xo ≤
b2, . . . , αm,1x1 + αm,2x2 + · · ·+ αo,mxo ≤ bm and x1, x2, . . . , xo ≥ 0.

3.1. Dynamic of prices. The first price function is given as d1 = 190−25p1, where d1 is
the demand and p1 is the price of g1, respectively. We change the relation by focusing on
how the changes of demand affect the price as the following: 25p1 = 190−d1, p1 =

190−d1
25

,
and p1 = (7.6− 0.04d1). Similarly, the second price function is given as d2 = 250− 50p2,
where d2 is the demand and p2 is the price for g2, respectively. We change the relation by
focusing on how the changes of demand affect the price as the following: 50p2 = 250−d2,
p2 = 250−d2

50
, and p2 = (5 − 0.02d2). The dynamic behaviours of prices are shown in

Figure 1(a), by increasing the number of goods one by one, both prices drop constantly.
Note that the highest price of p1 is 7.56 and the highest price of p2 is 4.98. When the
number of x1 is 190, the price of p1 becomes 0. When the number of x2 is 250, the price
of p2 becomes 0. Therefore, it is commonly known to each agent that over supply can be
harmful.

(a) Increasing number of goods lowers their prices (b) Optimal plans of producing both goods indi-
vidually

(c) Optimal plan for producing both goods combinedly

Figure 1. Dynamics of combined prices

3.2. Dynamics of combined prices and profits. Bakery game also brings in more
complexity. While the price of each good drops constantly, the profits of both goods
behave differently from prices. When the production is within requirements, x1 ≤ D1 and
x2 ≤ D2, the products will be sold out. This implies that the profits of producing either
g1, denoted by z1, and g2, denoted by z2, alone, are x1 +25p1 ≤ 190 and x2 +50p2 ≤ 250,
respectively. Figure 1(b) shows such behaviors, rising to their peaks and drop because
of over supply. When g1 = 95 and p1 = 3.8, good g1’s maximal profit, z1, is 95. When
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g2 = 125 and p2 = 2.5, good g2’s maximal profit, z2, is 312.5. Both p1 and p2 drop to 0
when g1 = 190 and g2 = 250, respectively. Since an agent can produce both goods at the
same time, the objective function is to maximize profit z = p1x1 + p2x2. The objective of
all agents is to maximize their profit:

z = (7.6− 0.04x1)x1 + (5− 0.02x2)x2. (1)

As shown in Figure 1(c), the maximal profit of 673.5 can be achieved. This figure is
the global profit for all agents in the same market.

3.3. Cost and net profit. In reality, cooperating incurs costs, e.g., transportation cost.
The cooperation cost among agents is specified by the matrix C = [ck,l]m×m, which assigns
a cooperation cost between each pair (ak, al) of agents such that ck,l ∈ Z

+ if k 6= l, or
ck,l ∈ {0} if k = l. We assume that all of the resources of agents are pooled at one location,
which can be the location of any agent in the coalition. The total cost for cooperation
incurred by a coalition will be taken to be the sum of the pairwise cooperation costs
between the agent at whose location coalition resources are pooled, and the other members
of coalition. For a coalition, there is at least one agent, ak, such that

∑m

k′=1
ckk′ ≤

∑m

l′=1
cll′

for all al ∈ S. We shall call a coalition member ak who yields the minimal cooperation
cost for the coalition a coalition center. Agents in the coalition S have to find a vector
x to maximize the revenue accruing to a coalition. Let PS =

∑o

l=1
plxl be the maximal

revenue the coalition can generate. Let CS =
∑

l∈S ckl be the minimal cooperation cost for
the coalition (obtained by selecting the optimal coalition center). Obviously, the ultimate
objective of agents in the coalition is to maximize profit, i.e., the coalition value υS, where

υS = PS − CS. (2)

This incurring cost decreases the net profit or the coalition value and makes the envi-
ronment of the game becoming non-superadditive.

4. Experiments, Results and Discussions. In this section, we explore further to see
the behavior of payoffs for agents in the aforementioned bakery game.

4.1. Design of experiment. Bakery game of non-cooperative agents forces agents not
trying to produce too many goods. However, we need to assure we provide enough re-
sources for all possible ranges of goods to be produced. Therefore, agents will have enough
resources to maximize profits. This will allow us to see all possible outcomes of the games
within certain trends. Trends allow us to observe certain outcomes consistently. Note
that the price functions and other figures provided there and in other relations are merely
a representation of similar situations in many environments. The principles studies in this
work can be applied in those circumstances without loss of generality. In our experiments,
we deliberately cover millions of cases but we choose only the extreme and obvious cases
that satisfies our purposes for presenting in this research. Therefore, our setting must
satisfy a number of requirements. i) The number of resources provided to agents must
favor both products evenly. ii) The number of resources provided to agents must favor
product p1. iii) The number of resources provided to agents must favor product p2.

4.2. Resources and trends setting. In this research, we generate number of resources,
increasing one by one, and capture only extreme and obvious cases to present the behavior
of agents. As shown in Table 1, we provide 10 units of r1 and 20 units of r2 that will favor
both products evenly. We provide 17 units of r1 and 5 units of r2 that will favor product
p1 as required. Lastly, we provide 3 units of r1 and 35 units of r2 that will favor product
p2. Therefore, the ranges of resources are r1 = {3, 10, 17} and r2 = {5, 20, 35}. The
intervals of r1 and r2 are 7 and 15, respectively. Then we arrange them as combinations
of five trends and three agents. The combinations are shown in Table 1. Note that Trend
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Table 1. Resources provided to agents

Trends
Changes

T-1 → T-2 T-1 → T-4
T-1 T-2 T-3 T-4 T-5 No. % No. %

Resources

a1
r1 10 3 17 3 17 −7 −70 −7 70
r2 20 35 5 5 35 15 75 −15 −75

a2
r1 10 10 10 10 10 0 0 0 0
r2 20 20 20 20 20 0 0 0 0

a3
r1 10 17 3 17 3 7 70 7 70
r2 20 5 35 35 5 −15 −75 15 75

T-1 is the reference of Trend T-2 and Trend T-4. While Trend T-3 and Trend T-5 are
the reverse of Trend T-2 and Trend T-5, respectively.

4.3. Games and strategies setting. As it was shown in [3] that the grand coalition’s
value is the same for all trends, it is the best strategy for all agents. The coalition value
of a2 in all trends varies despite the same number of resources in all trends because of
number of goods produced by other agents. Also, there is a diagonal similarity between
Trend T-2, Trend T-3 and Trend T-4, Trend T-5. Based on the given resources in each
game, there can be many possible plans for producing goods for each agent. Each of
these plans can be considered a strategy of each agent in each game. Since there are so
many possibilities, we consider only three strategies for each agent in each game. The first
strategy is to produce only g1. The second strategy is to optimally produce both g1 and
g2. The third strategy is to produce only g2. Hence, there are strategies {s1,1, s1,2, s1,3},
{s2,1, s2,2, s2,3} and {s3,1, s3,2, s3,3} for agents a1, a2 and a3, respectively. For each strategic
profile, the optimal plan for each agent will be computed and the actual payoff will also be
calculated taking account of the total amount of goods and respective unit prices. Note
that the actual payoff for each agent may be less than its expected value. Given a strategic
profile, the payoffs for all agents are the payoff vector (v1, v2, v3). There are twenty-seven
strategic profiles for each game. Strategic profile (s1,1, s2,1, s3,1), indicating that agent a1
plays s1,1, a2 plays s2,1, a3 plays s3,1, is associated with payoff vector (v1, v2, v3), indicating
that payoffs for agents a1, a2 and a3 are v1, v2 and v3, respectively.

4.4. Trend T-1 result and discussion. Given resources in trend T-1, we deliberately
compute for the best plan for each agent as a sole seller and compute for agents’ payoff
in strategic form game. Figure 2 shows both agents’ expected profits as sole sellers in
the market and agents’ payoffs as players in game of trend T-1. As a sole seller in the
market, a1, a2, a3 expect to produce 18 units of g1, 17 units of g2 and receive profit of
203.6. Since they are all in the market, we have to carefully consider the outcome of the
game. Let us consider agent a3. Assuming, agent a1 plays s1,1 and agent a2 plays s2,1,
agent a3’s best strategy is s3,1, receiving the highest payoff 115. This remains the same
when agent a2 plays s2,2 or s2,3. If a1 plays s1,2, strategy s3,1 remains the best choice for
a3, no matter what a2 plays. In other words, agent a3 always plays s3,1. By similarly
analyzing the situation, the strategic profile (s1,1, s2,1, s3,1) is the outcome and is also in
NE. Their actual payoffs drop to 115 each.

4.5. Trend T-2 result and discussion. In trend T-2, the results are different from
trend T-1, as shown in Figure 3. In case of sole seller, a1 expects to receive profit of 105
by producing only 15 units of g1, a2 expects to receive profit of 165 by producing only 25
units of g1, and a3 expects to receive profit of 47.88 by producing only 16 units of g2. In
case of game trend T-2, we carefully analyze and receive the same outcome (s1,1, s2,1, s3,1).
However, the payoff vector is (86.4, 144, 34.56).
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Figure 2. Agents’ expected profits as sole sellers in the market (left) and
agents’ payoffs as players in game (right) of trend T-1

Figure 3. Agents’ expected profits as sole sellers in the market (left) and
agents’ payoffs as players in game (right) of trend T-2

Table 2. Comparison of trend T-1 and trend T-2

Goods Sole seller Game
g1 Changes g2 Changes Profit Changes Payoff Changes

T-1 T-2 Amt % T-1 T-2 Amt % T-1 T-2 Amt % T-1 T-2 Amt %
18 8 −10 −55.56 17 7 −10 −58.82 203.06 92 −110.8 −55 155 86.4 −68.6 −44
18 13 −5 −27.78 17 12 −5 −29.41 203.06 149 −53.9 −27 155 144 −11 −7.1
18 0 −18 −100 17 16 −1 −5.88 203.06 48 −155.18 −76 155 34.56 −120 −78

4.6. Comparison of trend T-1 and trend T-2. The results of trend T-1 and trend
T-2 are carefully computed and compared, as shown in Table 2. From trend T-1 to trend
T-2, the number of a1’s resource r1 decreases by 70%, but the number of a1’s resource
r2 increases by 75%. By considering as a sole seller, the number of g1 decreases by 56%,
28%, and 100% for a1, a2 and a3, respectively. The number of g2 decreases by 58.824%,
29.412%, and 5.8824% for a1, a2 and a3, respectively. However, if we consider the situation
from game theory perspective, we have different views. In trend T-1, the best plan is to
produce only product g1 for 25 units. In trend T-2, the best plan is to produce only
product g1 for 15 units, in which the number of products is reduced by 40%. Given
the best plan, if a1 is the only seller in the market, it will be able to make profit of up
to 165$ in trend T-1, but the profit will be decreased to 105$ in trend T-2, or profit
decreases by 36.36%. However, we consider a game composed of three agents, a1, a2,
a3, whose outcome is in NE. Agent a1’s payoff decreases from 115$ in trend T-1 to 86$
in trend T-2, or payoff decreases by 25.22%. In trend T-1, agent a1’s payoff decreases
from 165$ in the noncompetitive market to 115$ in the competitive market, or payoff
decreases by 30.30%. In trend T-2, considering a1’s payoff, profit decreases from 105$
in the noncompetitive market, to 86$ in the competitive market, or payoff decreases by
22.09%. Since the potential to produce good of a1 in trend T-1 under noncompetitive
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market decreases by 36.36% and decreases by 25.22% in competitive market, agent a1’s
payoff decreases 30.30% in trend T-1. However, it decreases merely 22.09% in trend T-2,
or a1’s payoff is 8.21% higher.

4.7. Trend T-3 result and discussion. In trend T-3, the results are reverse version of
trend T-2, as shown in Figure 4. In case of sole seller, a3 expects to receive profit of 105
by producing only 15 units of g1, a2 expects to receive profit of 165 by producing only 25
units of g1, and a1 expects to receive profit of 74.88 by producing only 16 units of g2. In
case of game trend T-3, we carefully analyze and receive the same outcome (s1,1, s2,1, s3,1).
However, the payoff vector is (34.56, 144, 86.4).

Figure 4. Agents’ expected profits as sole sellers in the market (left) and
agents’ payoffs as players in game (right) of trend T-3

4.8. Trend T-4 result and discussion. In trend T-4, the results are different from
trend T-1, trend T-2 and trend T-3, as shown in Figure 5. In case of sole seller, a1 expects
to receive profit of 70.5 by producing only 16 units of g2, a2 expects to receive profit of 200
by producing only 50 units of g2, and a3 expects to receive profit of 339.24 by producing 11
units of g1 and 74 units of g2. In case of game trend T-4, we carefully analyze and receive
the same outcome (s1,1, s2,1, s3,1). However, the payoff vector is (27.84, 116, 199.52).

Figure 5. Agents’ expected profits as sole sellers in the market (left) and
agents’ payoffs as players in game (right) of trend T-4

4.9. Comparison of trend T-1 and trend T-4. The results of trend T-1 and trend
T-4 are carefully computed and compared, as shown in Table 3. From trend T-1 to trend
T-4, the number of a1’s resource r1 increases by 70%, but the number of a1’s resources
r2 decreases by 75%. By considering as a sole seller alone, the number of g1 decreases
by 100%, increases by 139%, and decreases by 39% for a1, a2 and a3, respectively. The
number of g2 decreases by 5.8824%, decreases by 88.235%, and increases by 335.29%
for a1, a2 and a3, respectively. However, if we consider the situation from game theory
perspective, we have different views. In trend T-4, the best plan is to produce only product
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Table 3. Comparison of trend T-1 and trend T-4

Goods Sole seller Game
g1 Changes g2 Changes Profit Changes Payoff Changes

T-1 T-4 Amt % T-1 T-4 Amt % T-1 T-4 Amt % T-1 T-4 Amt %
18 0 −18 −100 17 16 −1 −5.88 203.06 71 −132.56 −65 155 27.84 −127 −82
18 43 25 138.9 17 2 −15 −88.24 203.06 149 −53.9 −27 155 116 −39 −25
18 11 −7 −38.89 17 74 57 335.29 203.06 339 136.18 67.1 155 199.52 44.52 29

g1 for 6 units. In trend T-1, the best plan is to produce only product g1 for 25 units, in
which the number of products increases by 76%. Given the best plan, if a1 is the only
seller in the market, it will be able to make profit of up to 42$ in trend T-4. However, the
profit will be increased to 165$ in trend T-1, or profit increases by 74.55%. However, we
consider a game of agents a1, a2, a3 whose outcome is in NE, agent a1’s payoff increases
from 28$ in trend T-4 to 115$ in trend T-1, or payoff increases by 75.65%. In trend
T-4, considering agent a1’s payoff decreases from 42$ in the noncompetitive market to
28$ in the competitive market, or payoff decreases by 50%. In trend T-1, considering a1’s
payoff, profit decreases from 165$ in the noncompetitive market to 115$ in the competitive
market, or payoff decreases by 30.30%. Since the potential to produce good of agent a1
in trend T-4 under noncompetitive market decreases by 74.55% and decreases by 75.65%
in competitive market, agent a1’s payoff decreases 30.30% in trend T-4. However, it
decreases merely 30.30% in trend T-4 or agent a1’s payoff is 19.70% higher.

4.10. Trend T-5 results and discussion. In trend T-5, the results are reverse version
of trend T-4, as shown in Figure 6. In case of sole seller, a3 expects to receive profit of
70.5 by producing only 15 units of g2, a2 expects to receive profit of 200 by producing
only 50 units of g2, and a1 expects to receive profit of 339.24 by producing 11 units of g1
and 74 units of g2. In case of game trend T-4, we carefully analyze and receive the same
outcome (s1,1, s2,1, s3,1). However, the payoff vector is (199.52, 116, 27.84).

Figure 6. Agents’ expected profits as sole sellers in the market (left) and
agents’ payoffs as players in game (right) of trend T-5

5. Conclusion. We study non-cooperative bakery game. A wide range of amount of
resources is divided into 5 trends. T-1 is used as a reference. Trends (T-2, T-3) and (T-
4, T-5) are diagonally similar. Given certain technology matrix and price functions, we
find that within our settings agents’ strategies remain unchanged even though resources
vary up to 75%. Furthermore, agents’ payoffs change relatively small. In the future, this
research can be extended to consider more complex situations with more details. While a
small number of agents and actions are used in this research, there should be more agents
and actions involved. Furthermore, there could be algorithms working on other aspects,
including efficiency, etc.
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