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Abstract. As revealed from the Global Tuberculosis (TB) Control Report of 2020, from
2013 to 2019, there was an increase of 69% in TB cases from 331,703 to an expected
total of 845,000 cases in Indonesia. Conventional Microscopy (CM) and Fluorescence
Microscopy (FM) are the two major sputum smears microscopy techniques used to di-
agnose tuberculosis. FM is a more costly diagnostic approach in view of the high price
of the microscopy machine and its maintenance. For this, CM in developing countries
might become a more suitable application. This study presents a new method for Acid-
Fast Bacilli (AFB) quantification based on color space RGB channels in conventional
microscopy images. Artefact subtraction into host image was proposed to identify the
AFB using some thresholding methods. The experimental results have been confirmed by
pathologists and specialists from the Medical Faculty of Padjadjaran University. The sys-
tem performance has succeeded in increasing the average accuracy rate of the reference
by 10.56% for a total of 228 test images on the dataset of the Public Health Laboratory
in Morelia (PHLM).
Keywords: Mycobacterium tuberculosis, Acid-fast bacilli, Color space, Microscopy
artefact, Sputum smear

1. Introduction. The bacteriological test of Ziehl-Neelsen (ZN) stained microscopy is
important for Tuberculosis (TB) identification and World Health Organization (WHO)
recommends that it should examine 300 view fields to improve its sensitivity [1,2]. Unfor-
tunately, as it is still completely manual, WHO procedure takes a long time to diagnose
TB based on the International Union Against Tuberculosis and Lung Disease (IUATLD)
grading scale [3-5]. Thus, sputum smear analysis remains the most widely used procedure
in developing countries due to its lower cost. Acid-Fast Bacilli (AFB) detection of my-
cobacterium tuberculosis on sputum samples based on image processing has been studied
for over a decade. It progressed from geometric shape-based to colour-based AFB detec-
tion [6-8]. Apart from the data gathered, the concern in prior research was the hetero-
geneity of the data collected. The thickness of the ZN staining, number of artefacts, and
sputum smear size all influenced the sputum sample data.

The researchers have widely used ZN Sputum smear Microscopy image Database
(ZNSM-iDB) [2] to evaluate multiple approaches for identifying AFB to date. The ZNSM-
iDB scanned images from 30 FoVs where 15 FoVs were actually from positive smear
samples and others were from the negative ones. The results of AFB detection utilizing
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watershed included the sensitivity of 93.3% and specificity of 87%. Another research [9]
used a dataset from the Laboratory of the Instituto Nacional de Pesquisas da Amazonia
(INPA) to detect AFB in two steps. The first stage used Fast Non-Local Means (FNLM)
to increase image quality, while the second one used a Convolutional Neural Network
(CNN) for AFB classification. The results for all 120 datasets achieved 78.4% precision.
The previous research by Dı́az-Huerta et al. in 2019 used a different dataset from [2,9,10].
This dataset created 200 images of sputum samples in five image size variations from the
Public Health Laboratory in Morelia (PHLM), Mexico. This research proposed K-means
and Bayes methods to detect the AFB, resulting in the highest accuracy of 98.66% on the
size of 2513× 2073 pixels and achieved the average accuracy of 47.22% for all image size
variations. According to the result from research before, the PHLM dataset [10] provides
the best image quality compared to ZNSM-iDB and INPA-lab datasets. Therefore, in this
study, we proposed a method to optimize the average accuracy of AFB detection for all
image size variations using the PHLM dataset. This paper proposes a novel approach for
AFB detection and quantification based on colour thresholding and object contouring.
The MTB had a distinctive colour after given ZN staining on the sputum sample, namely
reddish degradation. We use this condition to filter objects based on reddish degradation
by filtering the host image on the red channel. From the results of host image filtering
on the red channel, many non-AFB objects are detected. Then we detect the contours
of each object and reduce each object outside the AFB size, or called artefacts. We call
this method artefact segmentation, which has never been done in previous studies and
has succeeded in calculating the number of AFB on a large scale from previous studies.
The organization of the paper is as follows. Section 2 describes the material and meth-

ods used in this study, including the database resource, the proposed system, and the AFB
quantification algorithm. In Section 3, the result and discussion are briefly for each step
details including results of color space-channels filtering, color histogram thresholding,
object contouring, artefact segmentation and subtraction, and then validating. Section 4
concludes the paper.

2. Material and Methods.

2.1. Data collection and proposed system. The input image in this work uses the
PHLM dataset [10], which provided over 200 images from 30 bacilloscopies called the
host image. Because MTB had a distinctive colour after being given ZN staining on the
sputum sample, namely reddish degradation, the host image was filtered based on the
Red, Green, and Blue channels. Then, each layer was segmented based on the histogram
colour range for each RGB channel. Several thresholding algorithms, such as Otsu, Mean,
and li, were tested to detect the MTB object of each RGB layer and count the number
of objects, as shown in Figure 1.

Figure 1. Block diagram of AFB detection and quantification system
based on artefact segmentation



ICIC EXPRESS LETTERS, VOL.17, NO.3, 2023 369

2.2. AFB quantification algorithm. Borderline on every object is a limitation or seg-
mentation between objects, so the number of detected objects and AFBs can be calculated
using the object labelling method. The steps starting from AFB objects detection to AFB
objects labelling in this study are presented as follows:

Input: Sputum sample images, I(x,y)
Output: Segmented AFB objects, S(x,y)
Step 1 Filter I(x,y) from RGB channels to each channel, then select the best chan-

nel that shows the most obvious artefact based on their color
Step 2 Implement the color histogram to set the threshold value (th) using Equation

(1)
Step 3 O(x, y): contour of each detected object
Step 4 Set the th of contour region (thCR), then apply to segmenting the artefacts

A(x, y)
Step 5 Post-processing on A(x, y) using Otsu-th, Adaptive-th, Mean-th, and Li-th

based on Equation (2) to Equation (5). Then select the best th method
Step 6 S(x, y) = O(x, y)−A(x, y)
Step 7 Object contouring on S(x, y), and give the label for each contoured-object
Step 8 Sum all objects labelled as the number of detected AFB objects

a) Color histogram method. b(x, y) is the thresholded image, I(x, y) is the host image,
and th is the thresholding value [7,11].

b(x, y) =

{
1, if I(x, y) > th
0, if I(x, y) < th

(1)

b) Otsu thresholding method. σ2
w is Otsu threshold value, w0 and w1 are the weights

between two classes segmented by a threshold t. σ0 and σ1 are variances of the two
classes [12-15].

σ2
w(t) = w0(t)σ

2
0(t) + w1(t)σ

2
1(t) (2)

c) Adaptive thresholding method. Ixy is adaptive thresholded image, (x, y) is a pixel point,
fxy is sum of all pixel value of an image [16].

Ixy = fxy + Ix−1,y + Ix,y−1 − Ix−1,y−1 (3)

d) Mean thresholding method. Mean thresholding (M) is a local threshold by calculating
the mean of the intensity distribution [16] as evaluated using Equation (4):

M =
max(pixel value) + min(pixel value)

2
(4)

e) Li thresholding method (θ(t)) is given in Equation (5), where hj is the histogram of
the region, µ1 is the intensity constraint of image, N1 and N2 are the smallest pixel’s
value in the two regions, and fi is the observed image [17].

θ(t) =
∑
j<t

hj(j − µ1(t))
2 +

∑
j≥t

hj(j − µ2(t))
2, µ1(t) =

∑
fi<t fi

N1

, µ2(t) =

∑
fi≥t fi

N2

(5)

f) The accuracy (Acc) of proposed method is evaluated using Equation (6), where Cs is
the number of AFB objects counted by proposed algorithm and Cv is the validation
number of AFB objects counted by the pathologists [18,19].

%Acc =

[
1− |Cs − Cv|

Cv

]
(6)
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3. Results and Discussion.

3.1. Color space-channels filtering. In this study, AFB detection and quantifying
used the PHLM dataset. As shown in Figure 2, the first step was to filter the host image
from the RGB channels to each channel.

(a) (b)

(c) (d)

Figure 2. (a) Original image or host; (b) a-image in red channel;
(c) a-image in green channel; (d) a-image in blue channel

3.2. Color histogram thresholding. From Figure 2, the most visible objects in Human
System Integration (HSI) are in Figure 2(b) (Red-ch). Thus, the next step to be used to
detect AFB objects was Red-ch. This work used a color-threshold method using Equation
(1) to separate the sputum sample image objects from the background. The color of the
AFB object in the sputum sample image that has been given ZN staining was reddish
degradation, while the other objects were relatively blue. The host image on Red-ch was
filtered with th > 150 as seen in Figure 3.

(a) (b)

Figure 3. Red-ch filtering result: (a) Without colour thresholding;
(b) with th > 150
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3.3. Object contouring. After obtaining Red-ch from the host image “R 800 600R imag
en3.jpg” on the PHLM dataset, as shown in Figure 3, yellow background and two other
objects were in the color purple and green. Then, what was to be done was the process
of contouring the object on Red-ch. The goal was to define the features and shape of
the detected object. The contoured object results in each object are shown in Figure 4.
In Figure 4(c), the background and object colors have been reversed to make it easier
visually. Thus, the large objects, namely artefacts, were on yellow color and small objects
identified as AFB are on green one.

(a) (b) (c)

Figure 4. (a) Original image; (b) Red-ch with th > 150; (c) the results of
the contoured object in the image-b

Borderline on each object is a limitation or segmentation between objects; then the
number of detected objects and the number of AFBs can be quantified using the object
labelling method. The contour image as shown in Figure 4(c) shows that the artefact
object is larger than the AFB. Then, the next step is the segmentation of the artefact
object.

3.4. Artefact segmentation. The test results of the artefact segmentation process are
shown in Figure 5 by taking the threshold of contour region thCR > 50 and thCR >
80. Based on Figure 5, thCR value was the main parameter that affected the artefact
segmentation results. However, the differences in the artefact contour region made the
thCR value in this experiment unstable for each image. This limitation is one of the points
that must be developed in further research.

thCR > 50 thCR > 80

Figure 5. Effect of thCR value on artefact segmentation

3.5. Artefact substraction. If looking at the artefact segmentation results based on the
thCR value in Figure 5, the segmentation artefact images had a different colour degrada-
tion. Thus, the artefact segmentation image was corrected or smoothed before entering the
artefact subtraction process using the thresholding (th) method, i.e., Otsu-th, Adaptive-
th, Mean-th, and Li-th as shown in Figure 6. As shown in Figure 6, the most generated
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Figure 6. Comparison of thmethods for artefacts segmentation in sputum
sample images

(a) (b)

Figure 7. (a) Original image; (b) AFB detection results from the artefact
segmentation method

artefact segmentation was the Adaptive-th and Mean-th methods. However, there were
still many segmented AFB objects in the Adaptive-th method. Thus, the next Mean-th
method was used for artefact segmentation.

3.6. AFB detection validation testing using the color space and thresholding
algorithm. The AFB results of MTB objects detection in the sputum sample image are
shown in Figure 7(b). Furthermore, the testing results in Table 1 were carried out on
228 test images from the PHLM dataset consisting of image size variations and different
background colours. The cited experiment [10] provided relatively low accuracy (< 75%)
except for image size 2513×2073 pixels. We present the average accuracy for all image size
variations in this experiment in Table 1, and the experimental results have been validated
by the pathologist from the Medical Faculty, Padjadjaran University.
From Table 1, it can be seen that [10] and our proposed method achieve an average

accuracy of 57.50% and 68.06%, respectively. The proposed method could provide better
detection results on image data with low resolution. The use of low resolution could
reduce the computational load because the processed file had a smaller size. However, it
still needs further research to improve the level of accuracy at low resolutions.
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Table 1. Testing result of AFB object detection based on image size vari-
ations on the PHLM dataset

Image size Resolution Accuracy (%)
(pixels) (Av.) [10] Proposed method

2513× 2073 238 kB 98.66 90.09
1920× 1080 141 kB 70.56 77.96
1280× 960 95 kB 59.34 70.21
800× 600 47 kB 36.49 65.76
640× 480 33 kB 22.47 36.32

The average 57.50 68.06

4. Conclusions. We have developed an automated system for identifying and quanti-
fying the number of Acid-Fast Bacilli (AFB) contained in a ZN-stained sputum sample
image. The proposed system consists of two stages; the first stage using a colour seg-
mentation method based on the red channel colour space and the second one using the
artefact segmentation and subtraction in the host image to get only AFB objects and this
stage was successfully implemented using mean thresholding.

The experimental results have been confirmed by pathologists and specialists from the
Medical Faculty of Padjadjaran University. The system performance has succeeded in
increasing the average accuracy rate of the reference approach 10.56% for a total of 228
test images on the Public Health Laboratory in Morelia (PHLM) dataset. Each image
was segmented within approximately 7 seconds using the method on [10]. Meanwhile, this
experiment successfully counted AFB approximately within 4 seconds for each image.
However, the artefact contour region differences made the thCR value in this experiment
unstable for each image. Hence, this limitation is one of the points that must be developed
in further research.
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