
ICIC Express Letters ICIC International c⃝2023 ISSN 1881-803X
Volume 17, Number 4, April 2023 pp. 427–437

LEARNING PEER RECOMMENDATION
BASED ON HETEROGENEOUS INFORMATION NETWORK
REPRESENTATION LEARNING AND DEEP LEARNING

Zhaoyu Shou∗, Zhixuan Shi, Hui Wen, Jinghua Liu and Huibing Zhang

School of Information and Communication
Guilin University of Electronic Technology

No. 1, Jinji Road, Guilin 541004, P. R. China
{ 19022303055; 20022303188 }@mails.guet.edu.cn; {huiwen; zhanghuibing }@guet.edu.cn

∗Corresponding author: guilinshou@guet.edu.cn

Received May 2022; accepted July 2022

Abstract. This study proposes a learning peer recommendation algorithm based on het-
erogeneous information network representation learning and deep learning to better guide
and motivate students to complete online learning courses and improve learning quali-
ty. Firstly, we integrate different objects (e.g., students, teachers, videos, exercises, and
knowledge points) and various relations into a heterogeneous information network to re-
tain semantic and structural information more comprehensively. Secondly, we propose a
model that combines Multi-Layer Perceptron (MLP) with network representation learn-
ing to explore the correlations between students’ preferences and auxiliary information in
the network and solve the problems of the limited expressiveness of dot product and the
weakness in capturing low-rank relations. Finally, the experimental results on the real
datasets show the method is advanced and effective.
Keywords: Online learning, Learning peer recommendation, Heterogeneous informa-
tion networks, Network representation learning, Deep learning

1. Introduction. With the development of online education, problems such as insuffi-
cient course completion rates and poor learning effects have become increasingly promi-
nent. This is due to the fact that teachers and students are separated in space and time.
When encountering problems, students cannot communicate with each other in real time,
which may result in feelings of loneliness and helplessness [1,2]. Learning peer recommen-
dation can effectively alleviate the above phenomenon [3-5]. Potts et al. [6] developed
the RiPPLE platform for helping target learners find suitable learning peers based on
their learning logs. Hu et al. [2] presented the Learning Peer Recommendation (LPR)
framework, which depicts the complex relationships among learners, learning content,
and interaction behaviors with the help of a dynamic interaction tripartite graph and
utilizes Convolutional Neural Network (CNN) to adjust the weight of interaction behav-
iors to make learning peer recommendations. However, the aforementioned studies extract
only a portion of the interaction information in the online learning process for modeling
purposes and fail to take account of the heterogeneity of the various types of objects
and the complex interactions among these objects. Heterogeneous information networks
offer an effective method to integrate heterogeneous information with diverse types and
complex interactions, which opens up a lot of potential for data mining [7]. Xu et al. [8]
applied a heterogeneous information network to making scholar-friend recommendations.
However, this study relies on explicit path reachability and cannot fully mine the latent
structural features of nodes in the network. Shi et al. [9] used a meta-path based ran-
dom walk strategy for node embedding and integrated the embedding information into a
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matrix factorization model. It is worth noting that the matrix factorization model sim-
ply uses the dot product and cannot learn the complex mapping mechanism. Karnyoto
et al. [10] adopted a heterogeneous graph neural network to detect fake news related to
COVID-19. Wang et al. [11] presented a disentangled heterogeneous graph attention net-
work for top-N recommendation, which learned disentangled user/item representations
from different aspects in a heterogeneous information network. Although these meth-
ods can learn more complex and accurate network representations and are suitable for
large-scale application scenarios, they have high time and space complexity and require
expensive hardware support. The structure of MLP is simple, and it has non-linearity and
high-capacity characteristics that can learn better latent representation [12].
To overcome the above limitations, we propose a learning peer recommendation al-

gorithm based on heterogeneous information network representation learning and deep
learning (named as LPRRD). The main contributions of this study are as follows. First,
we construct a heterogeneous information network that integrates different types of objects
(e.g., students, teachers, videos, exercises, and knowledge points) and relations between
objects into a unified framework and retains semantic and structural information. Second,
we propose a model combining MLP with network representation learning to solve the
problems of the limited expressiveness of dot product and the weakness in capturing low-
rank relations, so as to mine the correlations between students’ preferences and auxiliary
information in the network.
The rest of this paper is organized as follows. Section 2 introduces the relevant defini-

tions. Section 3 describes the proposed algorithm in detail. Section 4 reports experimental
results. Section 5 concludes this paper and gives future research directions.

2. Related Definitions. This section describes the relevant definitions used in this stu-
dy to illustrate the algorithm in this paper more clearly.

Definition 2.1. Heterogeneous information network. A heterogeneous information
network is defined as a directed graph G = (V,E) with an object type mapping function ϕ:
V → A and a link type mapping function ψ: E → R, where the types of objects |A| > 1
(or the types of relations |R| > 1). each object v ∈ V belongs to a particular object type
ϕ(v) ∈ A and each link e ∈ E belongs to a particular relation type ψ(e) ∈ R [7].
Figure 1 shows the heterogeneous information network on an online learning platform,

which contains five different types of objects (e.g., students, teachers, videos, exercises and
knowledge points) and sixteen types of relations. Ri denotes a particular type of relation
between two different types of objects (R−1

i represents the inverse relation of Ri). The
figure depicts different relations R1, R

−1
1 , R2, R

−1
2 , R3, R

−1
3 , R4, R

−1
4 , R5, R

−1
5 , R6, R

−1
6 ,

R7, R
−1
7 , R8 and R−1

8 , which denote do, done, examine, examined-by, answer, answered-
by, record, recorded-by, include, included-in, watch, watched-by, question, questioned-by,
discuss and discussed-by, respectively.

Definition 2.2. Network schema. The network schema TG = (A,R) is the meta struc-
ture of a heterogeneous information network G = (V,E), which consists of a set of object
types A = {A} and a set of relation types R = {R} [7]. Figure 2 illustrates the network
schema of the heterogeneous information network on the online learning platform, which
specifies the types of objects and relations.

Definition 2.3. Meta-Path. A meta-path P = A1
R1−→ A2

R2−→ · · · Rl−→ Al+1 is a path
defined based on a network schema TG = (A,R) [7]. P describes a composite relation
R = R1 ◦R2 ◦ · · · ◦Rl between object types A1, A2, . . . , Al+1. In addition, a concrete path
following the object and relation requirement of meta-paths is called a path instance, and
different meta-paths have different semantic meanings.
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Figure 1. A heterogeneous information network on an online learning platform

Figure 2. An example of network schema on an online learning platform

3. Methodology. On the basis of the above definitions, the proposed method LPRRD
consists of the following three steps. First, we construct a heterogeneous information
network on an online learning platform and use a heterogeneous information network rep-
resentation learning method to learn student embeddings. Second, we integrate the node
embeddings into representation learning and matching function learning framework for
implicit feedback prediction. Third, we define the objective function for model learning,
so that the LPRRD model can achieve the best performance and generate a learning peer
recommendation list for each student.

3.1. Heterogeneous information network representation learning.

3.1.1. Meta-path based random walk. Given a heterogeneous information network G =

(V,E) and a meta-path MP = A1
R1−→ · · · Rt−1−→ At

Rt−→ · · · Rl−→ Al+1, in order to capture
the complex semantic meanings of meta-paths in this network, we adopt a meta-path
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based random walk method to generate node sequences. The walking path is generated
according to the following distribution:

P (nt+1 = x | nt = u,MP ) =


1

|NAt+1(u)|
, (u, x) ∈ E and ϕ(x) = At+1

0, otherwise
(1)

where nt is the t-th node in the walk, u has the type of At and NAt+1(u) is the first-
order neighbor set for node u with the At+1 type. Each walk will follow the pattern of a
meta-path repetitively until it reaches the pre-defined length.

3.1.2. Node type constraint. Since the purpose of this study is to recommend learning
peers, we only focus on meta-paths with student type as head and tail nodes. Once a
node sequence has been generated, we remove the nodes with a type different from the
student type. Taking the meta-path SES as an example, the semantic meaning is the
students’ test behavior. According to Formula (1), we can generate a sampled sequence
“s1 → e1 → s2 → e2 → s3 → e1 → s4”, then remove the nodes with a type different from
the student type, and finally obtain a homogeneous node sequence “s1 → s2 → s3 → s4”.

3.1.3. Optimization objective. We construct the neighborhood Nu for student u based on
co-occurrence in fixed-length windows. Following node2vec [13], the following objective
function can be optimized by learning the representations of student nodes:

maxf
∑
u∈v

log Pr (Nu | f(u)) (2)

where f : V → Rd represents a function mapping each node to the d dimensional feature
space, Nu ⊂ V represents the neighborhood of node u.

3.1.4. Node representation fusion. Given a set of representations
{
e
(l)
u

}|P |

l=1
, where P rep-

resents the set of meta-paths, and e
(l)
u is the representation for the target student u over

the l-th meta-path. In order to model each student’s personalized preferences over each
meta-path, we assign each student a weight vector on the meta-paths and use a person-
alized non-linear fusion function g(·) to enhance the fusion ability.

g
({

e(l)u

})
= σ

 |P |∑
l=1

w(l)
u σ

(
M(l)e(l)u + b(l)

) (3)

where w
(l)
u is the preference weight of the target student u over the l-th meta-path, M(l) ∈

RD×d and b(l) ∈ RD×d are the transformation matrix and bias vector of the l-th meta-
path, respectively. The node representation for candidate student v is calculated in the
same manner. 

e
(U)
u ← g

({
e
(l)
u

})
e
(V )
v ← g

({
e
(l)
v

}) (4)

where e
(U)
u and e

(V )
v are the final representations for target student u and candidate

students v, respectively.

3.2. Implicit feedback prediction. After obtaining final representations
{
e
(U)
u

}
u∈U

and
{
e
(V )
v

}
v∈V

, we incorporate them into matrix factorization as below:

r̂u,v = pT
uqv + α · e(U)T

u · γ(V )
v + β · e(V )

v · γ(U)T

u (5)
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where pu ∈ RD×d and qv ∈ RD×d denote the latent factors corresponding to target student

u and candidate students v, γ
(U)T

u and γ
(V )
v are the target student-specific and candidate

student-specific latent factors to pair with e
(V )
v and e

(U)
u , respectively, and α and β are

the tuning parameters to integrate the three terms.
Learning peer recommendation can be viewed as a matching problem that matches suit-

able candidate students for target students. The matrix factorization model uses the dot
product to aggregate the latent factors in Formula (5), which leads to limited expressive-
ness. To solve the above problems, we introduce the representation learning and matching
function learning model [12] to reconstruct Formula (5). The representation learning is to
map target students and candidate students to the same representation space and learn
the low-dimensional latent features of both target students and candidate students. If the
similarity between students is higher in this space, it means that they match better. The
matching function learning focuses on the matching between the target students and the
candidate students, and the purpose is to map the interaction between students into the
complex matching function.

3.2.1. Representation learning. Taking the student-student interaction matrix Y as input,
the target student u is represented by the corresponding row yu∗ in Y , and the candi-
date student v is represented by the corresponding column y∗v in Y . We adopt MLP to
learn the latent feature representation for target students and candidate students. The
representation learning for target students can be defined as

a0 = WT
0 yu∗

a1 = a
(
WT

1 a0 + b1

)
...
pu = ax = a

(
WT

x ax−1 + bx

) (6)

where Wx, bx, and ax denote the weight matrix, bias vector, and activation for the x-th
layer’s perceptron, respectively. In addition, the activation function a(·) used in this study
is the ReLU function. The latent factors qv for candidate student v is calculated in the
same way. The matching function learning is defined as

ŷuv = σ
(
WT

out (pu ⊙ qv)
)

(7)

where Wout and σ(·) are the weight matrix and the sigmoid function, respectively.

3.2.2. Matching function learning. Since the initial representations for target students
and candidate students are very sparse and have high dimensions, it is difficult for the
model to directly learn the matching function. We adopt MLP to learn the matching
function and take the interaction matrix Y as input. To calculate the matching score, we
pass this joint representation into a fully connected layer that enables the model to assign
different weights to the features, and the matching function learning component can be
defined as 

pu = PTyu∗

qv = QTy∗v

a0 =

[
pu

qv

]
a1 = a

(
WT

1 a0 + b1

)
...
aY = a

(
WT

Y aY−1 + bY

)
ŷuv = σ

(
WT

outaY

)
(8)
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where P and Q are the parameter matrices of the linear embedding layer. The latent fac-
tors pu and qv are aggregated by a simple concatenation operation. Finally, the matching
score ŷuv is calculated using the MLP as the mapping function.

3.2.3. Model fusion based on representation learning and matching function learning. We
consider concatenating the learned representations and feeding them back into a fully
connected layer to fuse representation learning and matching function learning models.
Assuming that the prediction vectors of the representation learning component and the
matching function learning component are arl

Y and aml
Y , respectively, then the output of

the fusion model ŷuvfusion can be defined as

ŷuvfusion = σ

(
WT

out

[
arl
Y

aml
Y

])
(9)

3.2.4. Objective function of model fusion. Learning peer recommendation is an implicit
feedback recommendation problem. The implicit feedback of the interaction matrix of
target students and candidate students can be defined as

yuv =

{
1, if interaction (u, v) is observed

0, otherwise
(10)

Cross entropy can be used as the loss function, which can be expressed as (11):

ℓBCE = −
∑

(u,i)∈Y+∪Y−

yuv log ŷuv fusion + (1− yuv) log
(
1− ŷuvfusion

)
(11)

where Y+ denotes all the observed interactions in Y, and Y− represents the sampled
unobserved interactions.
The output of the standard matrix factorization model is replaced by the output of

the model fusion based on representation learning and matching function learning. The
predicted rating in the heterogeneous information network can be defined as

r̂u,v = ŷuvfusion + α · e(U)T

u · γ(V )
v + β · e(V )

v · γ(U)T

u (12)

3.3. Model learning. In this study, we blend personalized non-linear fusion function
g(·) into representation learning and matching function learning framework. The objective
function of the whole model can be defined as

L =
∑

⟨u,v,ru,v⟩

(ru,v − r̂u,v)2

+λ
∑
u

(
∥pu∥2 + ∥qv∥2 +

∥∥γ(U)
u

∥∥
2
+
∥∥γ(V )

v

∥∥
2
+
∥∥Θ(U)

∥∥
2
+
∥∥Θ(V )

∥∥
2

)
(13)

where λ is the regularization parameter, Θ(U) and Θ(V ) are parameters of g(·) for the
target students and the candidate students, respectively. In this study, we adopt SGD to
efficiently optimize the final objective, and the parameters will be updated as follows:

Θ
(U)
u,l ← Θ

(U)
u,l − η ·

(
−α (ru,v − r̂u,v) γ(V )

v
∂e

(U)
u

∂Θ
(U)
u,l

+ λΘΘ
(U)
u,l

)

Θ
(V )
v,l ← Θ

(V )
v,l − η ·

(
−β (ru,v − r̂u,v) γ(U)

u
∂e

(V )
v

∂Θ
(V )
v,l

+ λΘΘ
(V )
v,l

)

γ
(U)
u ← γ

(U)
u − η ·

(
−β (ru,v − r̂u,v) e(V )

v + λγγ
(U)
u

)
γ
(V )
v ← γ

(V )
v − η ·

(
−α (ru,v − r̂u,v) e(U)

u + λγγ
(V )
v

)
(14)



ICIC EXPRESS LETTERS, VOL.17, NO.4, 2023 433

where η is the learning rate, λΘ is the regularization for parameters Θ(U) and Θ(V ), and

λγ is the regularization for parameters γ
(U)
u and γ

(V )
v . In this study, we utilize the sigmoid

function for non-linear transformation, and we can take advantage of the properties of sig-
moid function for ease of derivative calculation. In addition, Θ denotes all the parameters

in the fusion function g(·), and ∂e
(V )
v

/
∂Θ

(V )
v,l can be defined as

∂ev
∂Θv,l

=


w

(l)
v σ (Zs)σ (Zf ) (1− σ (Zs)) (1− σ (Zf )) e

(l)
v , Θ = M

w
(l)
v σ (Zs)σ (Zf ) (1− σ (Zs)) (1− σ (Zf )) , Θ = b

σ (Zs)σ (Zf ) (1− σ (Zs)) , Θ = w

(15)

where Zs =
∑|P |

l=1w
(l)
v σ

(
M(l)e

(l)
v + b(l)

)
, Zf = M(l)e

(l)
v + b(l).

4. Experimental Evaluation.

4.1. Dataset of the experiment. We conducted our experiments on three real-world
datasets. In order to demonstrate the ability of our method on other heterogeneous in-
formation networks, we used two datasets, namely the DBLP1 and Aminer2 datasets.
Additionally, we used the Online dataset for learning peer recommendations. The DBLP
dataset is obtained from the DBLP original dataset, which extracts conference papers
published from 2015 to 2020 and guarantees that each paper is not written by a single
author. The network schema for the DBLP dataset [14] is shown in Figure 3, which cov-
ers author (A), paper (P), and conference venue (V), and two types of relations, namely
paper-venue and paper-author. The Aminer dataset is extracted directly from the Amin-
er original dataset, which selects papers published from 2010 to 2014, and each paper is
not written by a single author. Meanwhile, in order to make use of the text information,
we selected ten terms with the highest TF-IDF score from the title and abstract of each
paper. The network schema for the Aminer dataset [15] is illustrated in Figure 4, which
contains author (A), paper (P), venue (V), and term (T). The Online dataset consists of
historical behavior data generated by students in grades 2017, 2018, 2019, and 2020 in
the process of learning “Data Structure and Algorithm”. The network schema for this
dataset is shown in Figure 2, which includes student (S), teacher (T), video (V), exercises
(E), knowledge points (K) and their relations between each other. The relevant statistics
of three datasets are shown in Table 1.

Figure 3. Network schema
for DBLP

Figure 4. Network schema
for Aminer

1https://www.aminer.cn/citation
2https://www.aminer.cn/data/#Academic-Social-Network
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Table 1. Statistics of the experimental dataset

Datasets Objects Number Links Number

DBLP
papers 23,607 paper-venues 23,607
venues 1,796 paper-author 80,535
authors 4,524 − −

Aminer

papers 16,358 paper-venues 16,358
venues 3,765 paper-author 59,343
authors 3,925 paper-terms 81,790
terms 10,928 − −

Online

students 1,055 video-teacher 207
videos 207 student-exercises 427,478
teacher 1 student-videos 283,061
exercises 163 student-knowledge points 310,090

knowledge points 207 exercises-knowledge points 7,505
− − video-knowledge points 207
− − teacher-knowledge points 10,490

4.2. Evaluation metrics. There are two evaluation metrics used to evaluate perfor-
mance, namely precision and recall. These two metrics can be calculated as follows:

Precision =
|rec(u) ∩ real(u)|

|rec(u)|
(16)

Recall =
|rec(u) ∩ real(u)|
|real(u)|

(17)

where rec(u) represents the recommendation list for target student u, and real(u) repre-
sents the true learning peer set of target student u.

4.3. Parameter setting. In our experiment, each dataset is divided into a training set
and a test set, with the training set accounting for 80% and the test set accounting for
20%. We set the node embedding dimension to 64, the random walk path length to 5, the
window size to 10, and the learning rate to 0.001, the number of latent factors of target
students and candidate students to 64. On the basis of these settings, tuning parameters
α and β are set to 1 and 1, respectively.

4.4. Experimental results and analysis.

4.4.1. Experimental results. We conducted experiments on three different datasets using
LPRRD, scholar-friend recommendation (named as Metapath) [8], Matrix Factorization
(MF) [16], and Deep Matrix Factorization model (DMF) [17]. The experimental results
are shown in Figure 5, Figure 6, and Figure 7.
The results show that LPRRD outperforms other baseline methods in terms of precision

and recall. Figure 5 shows the recommendation performance of LPRRD and other baseline
methods on DBLP. Figure 5(a) shows the highest precision of LPRRD is up to 29.3%
when N is 1. Figure 5(b) illustrates that DMF has the worst performance while LPRRD
performs the best when N is 10. Figure 6 shows the recommendation performance of four
methods on Aminer. Figure 6(a) demonstrates that LPRRD has the highest precision
of 45.6%, which indicates that LPRRD has a 45.6% probability of recommending co-
authors in the Top-1 recommendation list. Figure 6(b) shows that the recall of LPRRD is
39.2% when N is 10, which indicates that there are 39.2% true co-authors in the Top-10
recommendation list. Figure 7 shows the recommendation performance of four methods
on Online. As shown in Figure 7(a), the highest precision of LPRRD reaches 28.3% when
N is 1, which is 4.4% higher than the second best method DMF. As can be seen from
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Figure 7(b), the highest recall of LPRRD reaches 29.9% when N is 10, which is 4.3%
higher than the second best method DMF.

(a) Precision (b) Recall

Figure 5. Precision and Recall of LPRRD and baseline methods on DBLP

(a) Precision (b) Recall

Figure 6. Precision and Recall of LPRRD and baseline methods on Aminer

(a) Precision (b) Recall

Figure 7. Precision and Recall of LPRRD and baseline methods on Online
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To sum up, the proposed algorithm LPRRD significantly outperforms other methods in
precision and recall on the three datasets. Compared with Metapath, LPRRD combines
MLP with network representation learning to solve the problems of the limited expressive-
ness of dot product and the weakness in capturing low-rank relations. The recommenda-
tion performance of DMF is inferior to that of LPRRD because it fails to take account of
the heterogeneity of the various types of objects (e.g., students, teachers, videos, exercises
and knowledge points) and the complex interactions among these objects. MF has the
worst performance because MF only considers the interaction behavior between students
and does not consider other behavior data in the learning process.

4.4.2. Complexity analysis. The complexity analysis of LPRRD should include two as-
pects. 1) Network representation learning. The complexity of deepwalk is O(τ · |V| · t ·
w · (d + d · log |V|)), where τ is the number of random walks, t is the length of random
walk, w is the size of neighbor, d is the embedding dimension and |V| is the number of
nodes in the network. Hence, the total complexity of network representation learning can
be described as O(|P | · τ · t · w · d · (|u| · log |U | + |V | · log |V |)), where the number of
selected meta-paths is |P |, the number of users and items is |U | and |V |, respectively. For
each triplet ⟨u, v, ru,v⟩, updating γ(U)

u and γ
(V )
v takes O(D) time, where D is the number

of latent factors. And updating Θ
(U)
u and Θ

(V )
v takes O(|P | ·D · d) to learn the transfor-

mation matrices M for all meta-paths. 2) Deep learning. Deep learning mainly includes
representation learning and matching function learning in this paper. When we calculate
the complexity, we only focus on the layers with computing power. The above two parts’
complexity includes space complexity and time complexity. The space complexity is ex-
pressed by the number of neural network layers and the number of parameters to be
optimized in the neural network, and time complexity can be expressed by the number
of multiplication and addition operations in neural networks. In order to unify the above
network representation learning complexity analysis, we only analyze the time complex-
ity. The complexity of representation learning is O(l1 · l2), where l1 and l2 are output
dimension of input layer and input dimension of hidden layer, respectively. And the com-
plexity of matching function learning is O(L1 · L2 + L2 · L3), where L1, L2 and L3 are
output dimension of first-layer, input dimension of second-layer, and output dimension of
third-layer, respectively. Finally, the complexity of model fusion is O(L4 ∗ 1), where L4
is output dimension of fourth-layer.

5. Conclusions. In order to improve students’ enthusiasm for online course learning, we
propose a learning peer recommendation algorithm based on heterogeneous information
network representation learning and deep learning. This algorithm constructs a hetero-
geneous network to integrate students, teachers, videos, exercises, knowledge points, and
their relations into a unified framework. In addition, we combine MLP with network rep-
resentation learning to solve the problems of the limited expressiveness of dot product and
the weakness in capturing low-rank relations. Experimental results show that LPRRD
outperforms other baseline methods in terms of precision and recall. Future research may
combine heterogeneous information networks and broad learning to discover more fine-
grained student preference patterns and greatly improve recommendation performance.
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