
ICIC Express Letters ICIC International c⃝2023 ISSN 1881-803X
Volume 17, Number 4, April 2023 pp. 439–448

ACCELERATED NOVEL LOCAL TEXTURE FEATURE
EXTRACTION ON A GPU

Omkar Ajay Masur1, Ashwath Rao Badanidiyoor1

Naravi Gopalakrishna Kini1 and Vidya Harekala Chandrashekara2

1Department of Computer Science & Engineering
2Department of Mathematics

Manipal Institute of Technology
Manipal Academy of Higher Education
Manipal, Karnataka State 576104, India

omkar.masur@learner.manipal.edu; { ashwath.rao; ng.kini; vidya.rao }@manipal.edu

Received June 2022; accepted September 2022

Abstract. Texture features benefit object detection, object recognition, content-based
image retrieval, and other tasks. Recently, two new local texture descriptors, Threshold
Local Binary AND Pattern and Local Adjacent Neighborhood Average Difference Pattern,
have been proposed. Graphical Processing Units (GPUs) are instrumental in speeding up
many computationally intensive tasks. We have accelerated these texture feature extrac-
tors on a graphical processing unit by proposing parallel implementations of the algorithm
in this work. Compute Unified Device Architecture (CUDA) has been used to implement
the parallel GPU algorithms. We have also optimized the parallelization by leveraging
memory hierarchy in a GPU. The results show that we can use GPUs to achieve a
speedup of more than 20.
Keywords: Computer vision, CUDA, Feature extraction, LANADP, TLBAP

1. Introduction. Computer vision aims to describe the world through images by re-
constructing and simplifying properties of objects such as shape, illumination and color
so that computers can easily identify patterns in them. To do so, various algorithms in-
volving mathematical backgrounds are used. Such techniques open up new possibilities
in computer science. Some interesting applications in a plethora of fields include “Plant
Recognition” in agriculture [1], detection of a severe case of traumatic bleeding in patients
[2], identification of oral squamous cell carcinoma [3], and also in the field of space science
where one can train models in the segmentation of remotely sensed images [4]. In all these
tasks, texture features play a significant role.

Texture analysis is one of the most important techniques in computer vision and image
analysis. The first task in texture analysis is texture feature extraction. Image texture is
a function of spatial variation in pixel intensity. The texture can identify local structures
in an image and recognize tactile and optical patterns. Hence, they are helpful in im-
age classification, content-based image retrieval, industrial inspection, and medical image
analysis. There are four main texture analysis methods: statistical, structural, model-
based, and transform-based [5]. Local Binary Pattern (LBP) [6], Threshold Local Binary
AND Pattern (TLBAP) [7], and Local Adjacent Neighborhood Average Difference Pat-
tern (LANADP) [7] are statistical textural image descriptors. They can describe the local
spatial structure and the local contrast of the image.

LBP is a visual descriptor proposed in [6]. It considers a center pixel and neighbors
(usually 8 in a 3 × 3 window) around it. Using them, it constructs a binary number of
1-byte length by comparing the center pixel with the values of the pixel around it. This

DOI: 10.24507/icicel.17.04.439

439

440 O. A. MASUR, A. R. BADANIDIYOOR, N. G. KINI AND V. H. CHANDRASHEKARA

process is described in [6]. The bit is given 1 if higher or equal, and 0 if lower. Once this
process is done for all the pixels in the window, an intermediate matrix is calculated. This
intermediate matrix is convolved with a weight matrix. This weight matrix signifies how
much weight each neighbor is allotted. The 1-byte number, which is thus obtained upon
convolving the intermediate matrix with the weight matrix, is the feature value of those
pixels.

Figure 1. Example of LBP

1.1. Algorithm overview. LBP extension was proposed in [7] called Threshold Local
Binary AND Pattern (TLBAP). It considers a Threshold value (th) ranging from 0 and
1 as an input to the algorithm. It identifies the highest intensity pixel in a particular
window, usually of 3× 3 size, and multiplies this by the threshold. Let us call this value
obtained as th2. th2 is compared with all the neighbors around the center using the
same technique as LBP. The resultant feature vector is called Threshold Local Binary
Pattern (TLBP). TLBP is logically ANDed with LBP to get an intermediate matrix
Threshold Local Binary AND Pattern. This intermediate matrix is convolved with the

Figure 2. Example of TLBAP: (A) LBP on 13; (B) Highest value in
neighborhood of 13 is 17 and multiply 17 by threshold 0.9 = 15.3; (C) LBP
on 15.3; (D) AND Result of A, C

ICIC EXPRESS LETTERS, VOL.17, NO.4, 2023 441

Figure 3. Example of LANADP

weight matrix to get a 1-byte number, which is the pixel’s feature value. This process
is described in Figure 2. Another extension of the LBP algorithm is the Local Adjacent
Neighborhood Average Difference Pattern (LANADP). The proposed method explores the
relationship of neighboring pixels with their adjacent neighbors in vertical, horizontal, and
diagonal directions [7]. Yet again, upon doing all the calculations as explained in [7], the
intermediate matrix is calculated, which is convolved with the weight matrix to get the
feature value of the pixel. The calculations of the average are done in a cyclic order, and
this order is depicted in subfigure (i) in Figure 3. Referring to (ii) from Figure 3, while
computing the bit-value for pixel 1 (value), an average of pixels 3 and 2 (avg1) and pixels
7 and 8 (avg2) is considered. Similarly, if we are supposed to calculate the bit-value for
pixel 2, the average of pixels 3 and 4, and that of pixels 1 and 8 is considered. The value of
the bit is 1 if (avg1 >= value and avg2 >= value) or (avg1 <= value and avg2 <= value)
else it is 0. The weight matrix is the same weight matrix used in TLBAP.

1.2. Overview of CUDA. We propose a parallel implementation of the LANADP al-
gorithm using Compute Unified Device Architecture (CUDA). We chose CUDA and not
another parallel programming platform such as OpenCL because CUDA is extraordinarily
userfriendly and, at the same time, can make use of some of the most potent graphical
processing units in the market by NVIDIA. At the same time, CUDA performs slightly
better in terms of kernel execution times [8, 9, 10]. CUDA language works on the principle
of the coexistence of a host (CPU) and one or more devices (GPUs). Each CUDA source
code contains both the host and device code. Host code is sequential as it runs on the
CPU. The device code is characterized by unique CUDA keywords called kernel code. The
execution of any CUDA program starts from the host. The kernel code is launched from
the host after allocating appropriate memory to variables in the GPU. When a kernel
function is launched, it is executed by a large number of threads collectively called a grid.
The grid of threads is organized in a two-level hierarchy. Every block has a unique Block
ID, and every thread has a unique Thread ID.

The data to be processed by the threads is first transferred from the host to the de-
vice Global Memory. The threads can access their data portion using their Thread ID
and Block ID. However, this Global Memory, although large in size, tends to have very
high access times, long latencies, and finite access bandwidth. There are other memories
available on a GPU which provide better performance. These memories can be written
to or read using various APIs developed in CUDA. The first one is the Constant memory,

442 O. A. MASUR, A. R. BADANIDIYOOR, N. G. KINI AND V. H. CHANDRASHEKARA

which, as the name suggests, is a read-only memory with short latency and high band-
width. The second type is the shared memory, which is shared by all threads belonging to
the same block. Shared memory, being an on-chip memory, is much faster to access than
the global memory. However, a pertinent problem while accessing it is synchronization,
i.e., ensuring no other thread overwrites the data computed by the other thread or tries
to access a piece of data that has not been computed or stored by another thread. Also,
shared memory is smaller in size, so care must be taken to load only the required data.
TLBAP and LANADP perform considerably well and provide high accuracy in Content-

Based Medical Image Retrieval (CBMIR) [11]. They can diagnose diseases like breast can-
cer, lung cancer, and tuberculosis. However, as observed through the algorithms described
previously, whose sequential algorithms and their respective time complexities have been
depicted in Section 3, they are all computationally expensive. If used for a large number
of images at once, which is generally the case in real-world applications, it would take
considerable time to train a machine learning or deep-learning model. As a result, we
propose a much faster parallel implementation of both TLBAP and LANADP in Section
3. We also propose an optimization of these parallel algorithms in Section 3.2. We show
the results of each algorithm upon CUDA implementation in Section 4. Finally, Section
5 concludes the paper.

2. Literature Review. There have been works by numerous researchers on the propos-
als, improvement, and optimization of feature extraction and image processing algorithms.
Experiments were conducted to compute the GLCM texture feature extraction method
on a Cell platform [12]. It is a paper published in 2012 that uses a now-defunct comput-
ing method. It, however, establishes the advantages of using a parallel algorithm over a
sequential one. [13] gives the details of parallelization of widely used feature detection
algorithms SIFT (Scale-Invariant Feature Transform) and SURF (Speeded Up Robust
Features) using the OpenCL and OpenGL programming languages. [14] gives an incite
into distributed processing of feature descriptors. Even though our work is on parallel
processing and not distributed processing per se, it is interesting to note that various
feature descriptors can be parallelized as Hadoop uses a data distribution strategy and
achieves considerable speedup while processing massive datasets.
Parallel implementation of the GLCM algorithm using CUDA was proposed in [15, 16].

While [15] focuses particularly on MRI images and how speedup varies with various ROIs,
[16] focuses on the parallel algorithm, mainly how speedup is achieved for varying val-
ues of θ. [17] is similar to our work, where the widely used feature extraction algorithm
LBP is parallelized and optimized for various image sizes. [7] introduces two novel texture
feature descriptors TLBAP and LANADP. [18, 19, 20] show positive results of parallel im-
plementations of various algorithms. [18, 20] are parallel implementations of local texture
features local tiridirectional pattern and local diagonal extrema pattern on a GPU using
CUDA. However, as far as TLBAP and LANADP, which are the focus of this paper, are
concerned, no other work on proposing a parallel implementation is done.

3. Methodology. A seminal paper introduces two novel local texture descriptors: Thre-
shold Local Binary AND Pattern and Local Adjacent Neighborhood Average Difference
Pattern. The sequential algorithm for TLBAP texture feature extraction is shown in [21],
developed as per the one proposed in [7]. It takes as input of an image, and a parameter
threshold between 0 and 1. It has two outer for loops in lines 8 and 9, which iterate over
all the non-border pixels of the input image. Lines 13 to 16 find the maximum in the 3×3
neighborhood. Upon finding the maximum, we multiply it with the input threshold value
in line 17. Using this value, we find the TLBAP feature value in lines 18 to 22 which is
stored in the output array. Since the for loops on lines 8 and 9 iterate over the non-border
pixels, the algorithm’s time complexity is Θ(n2).

ICIC EXPRESS LETTERS, VOL.17, NO.4, 2023 443

Algorithm 1, proposed by us, is the parallel version of sequential algorithm proposed
in [21]. It requires the same parameters as its sequential counterpart. The algorithm de-
termines TLBAP features and stores the determined features in the output array outF .
The implementation of the parallel TLBAP algorithm is run with runtime thread con-
figuration with a block size equal to 16 × 16, and 32 × 32. The grid size is equal to the
ceil of quotient when divided by the block size in the two directions. Line 1 defines the
weight matrix. During implementation in CUDA, it is stored in the constant memory to
ensure it is accessed efficiently. In lines 2 to 9 of the algorithm, we determine the center
pixel from the available center pixels the thread has to work on. Once the center pixel is
determined, we obtain the maximum value among the neighbors of the center pixel. In
lines 24 to 33, we obtain the TLBAP pattern. In line 34, we store the determined pattern
in the output array outF .

Algorithm 1 Parallel threshold local binary and pattern feature extraction
Input: img, height, width, th (between 0 and 1) # 0 < th <= 1

Weight matrix is loaded into constant memory as power2
Output: outF
1: power[3][3]← {{8, 4, 2}, {16, 0, 1}, {32, 64, 128}} # Weight matrix as shown in Figure 2

2: thidx x, thidx y ← thread index in the x and y direction within the block
3: blkidx x, blkidx y ← block index in the x and y direction within the grid
4: blkdim x, blkdim y ← number of threads in the x and y direction within the block
5: glob row id← thidx y + blkidx y ∗ blkdim y

6: glob col id← thidx x+ blkidx x ∗ blkdim x
7: if glob row id < height && glob col id < width then
8: if glob row id ! = 0 and glob col id ! = 0 and glob col id ! = width− 1 and glob row id ! = height− 1 then

9: max←inputImage[(glob row id− 1) ∗ width+ glob col id]
10: # Find maximum in the local 3×3 neighborhood
11: for i from glob row id− 1 to glob row id+ 1 do
12: for j from glob col id− 1 to glob col id+ 1 do

13: if img[i ∗ width+ j] > max then
14: max← img[i ∗ width+ j]
15: end if
16: end for

17: end for
18: th2← th ∗max
19: centrePx← img[glob row id ∗width+ glob col id] # determine feature value using calculated threshold
20: ans← 0

21: power i← 0 # Used for iterating over weight matrix
22: for i from glob row id− 1 to glob row id+ 1 do
23: power j ← 0 # Used for iterating over weight matrix

24: for j from glob col id− 1 to glob col id+ 1 do
25: if img[i ∗ width+ j] > centrePx and img[i ∗ width+ j] > th2 then
26: ans← ans+ power2[power i][power j]
27: end if

28: power j+ = 1
29: end for
30: power i+ = 1
31: end for

32: outF [(glob row id− 1) ∗ (width− 2) + (glob col id− 1)]← ans
33: end if
34: end if

The sequential algorithm for LANADP was proposed in [21]. We give the algorithm
an image as the input. The output LANADP features are stored in the variable lanadp-
Features . Lines 8 and 9 in the algorithm are nested for loops that iterate over the image’s
non-border elements. Lines 10 to 18 compute the LANADP feature value for pixel, which
is stored in the output array on line 18. Just like TLBAP sequential algorithm, the time
complexity of this algorithm is Θ(n2) as the for loops iterate over all the non-bordering
pixels.

The parallel version of the sequential LANADP Algorithm is proposed in Algorithm
2. Lines 1 to 12 are helper functions. CIRCULARINDEX takes as input an index i, and
returns the circular index corresponding to the index. It is assumed that the circular

444 O. A. MASUR, A. R. BADANIDIYOOR, N. G. KINI AND V. H. CHANDRASHEKARA

Algorithm 2 An algorithm for parallel LANADP feature extraction
1: function circularIndex(i)
2: if i < 1 then
3: return 8 + i

4: else if i > 8 then
5: return (i%9) + 1
6: else
7: return i

8: end if
9: end function
10: function getGlobalID(row, col, width) # width is the width of the image
11: return row ∗ width+ col

12: end function
Input: img, height, width
Output: outF
13: power[9]← {0, 1, 2, 4, 8, 16, 32, 64, 128} # Flattened weight matrix

14: thidx x, thidx y ← thread index in the x and y direction within the block
15: blkidx x, blkidx y ← block index in the x and y direction within the grid
16: blkdim x, blkdim y ← number of threads in the x and y direction within the block

17: glob row id← thidx y + blkidx y ∗ blkdim y
18: glob col id← thidx x+ blkidx x ∗ blkdim x
19: if glob row id < height && glob col id < width then
20: if glob row id ! = 0 and glob col id ! = 0 and glob col id ! = width− 1 and glob row id ! = height− 1 then

21: int mapping[9]
22: mapping[1]← img[getGlobalID(glob row id, glob col id+ 1, width)]
23: mapping[2]← img[getGlobalID(glob row id− 1, glob col id+ 1, width)]
24: mapping[3]← img[getGlobalID(glob row id− 1, glob col id, width)]

25: mapping[4]← img[getGlobalID(glob row id− 1, glob col id− 1, width)]
26: mapping[5]← img[getGlobalID(glob row id, glob col id− 1, width)]
27: mapping[6]← img[getGlobalID(glob row id+ 1, glob col id− 1, width)]
28: mapping[7]← img[getGlobalID(glob row id+ 1, glob col id, width)]

29: mapping[8]← img[getGlobalID(glob row id+ 1, glob col id+ 1, width)]
30: ans← 0
31: for i from 1 to 8 do
32: avg 1← ((mapping[circularIndex(i+ 1)] +mapping[circularIndex(i+ 2)]))/2

33: avg 2← ((mapping[circularIndex(i− 1)] +mapping[circularIndex(i− 2)]))/2
34: if (avg 1 >= value and avg 2 >= value) or (avg 1 <= value and avg 2 <= value) then
35: ans = ans+ power2[i]

36: end if
37: end for
38: outF [(glob row id− 1) ∗ (width− 2) + (glob col id− 1)]← ans
39: end if

40: end if

array is of length 9. GETGLOBALID takes as inputs row, column, and the total width
and returns the Global ID corresponding to the parameters. These helper functions are
stored on the device during CUDA implementation. The algorithm is run on a runtime
configuration of grid sizes of 16× 16 and 32× 32. Inputs to the algorithm are the image
matrix and dimensions of the image in the form of height and width. The output of the
algorithm is the LANADP feature. Line 13 defines the flattened form of the weight matrix.
It is done so for ease of access later in the algorithm. It is stored in the constant memory
during implementation in CUDA. In lines 14 to 21, we determine the center pixel from
the available center pixels the thread has to work on. Once the center pixel is determined,
we obtain the neighbors of the center pixel and store it in 1D array mapping. In lines 34
to 40, we obtain the LANADP pattern and store in the output array outF in line 40.
Without the use of shared memory, there is no need for synchronization. Individual

threads perform the computation directly and store the result in the output buffer. The
computation performed is precisely the same in both shared memory and without the
shared memory method. The only difference is in the type of memory from which the
threads read the data during computation.

3.1. Input images. The amount of computation involved in extracting TLBAP and
LANADP is directly proportional to the number of non-border pixels in the input image.
The number of non-border pixels in an input image of size H ×W is (H − 2)× (W − 2).

ICIC EXPRESS LETTERS, VOL.17, NO.4, 2023 445

Figure 4. Input image of size 256× 256

Figure 5. Input image of size 512× 512

Figure 6. Input image of size 1024× 1024

Hence, we have considered input images of varying sizes in our experiments. We have
considered input medical images of sizes 256×256, 512×512, and 1024×1024. The input
images are shown in Figures 4, 5 and 6.

3.2. Optimization using shared memory. CGMA is a good metric for measuring the
efficiency of the kernel function. A high CGMA ratio is desirable. In the above algorithms,
to increase CGMA, the number of operations per access to global memory needs to be
increased or the number of accesses to the global memory needs to be reduced. The
number of operations involved in both the TLBAP algorithm and LANADP algorithm
is fixed; hence, only decreasing accesses to global memory is needed. Instead of kernels
accessing data from global memory an alternative memory named shared memory can
be used to store input data. Each thread can first copy the necessary image data from
global memory to shared memory. Once all threads carry out this, they can access image
data from shared memory. This will reduce memory access time and will achieve better
CGMA and speedup. Algorithm 3 is used by each thread to load the image into the shared
memory.

Once the appropriate part of the image is loaded by all threads in the block, the
individual threads perform the appropriate computation using Algorithm 1 or Algorithm
2, with the difference being instead of accessing the data through the global memory, the
data is accessed using the shared memory, into which data was loaded using Algorithm 3.
The result is stored in the output buffer. The time complexity of either of the algorithms
does not change as the data is loaded into the shared memory in Θ(1) time.

We have implemented both TLBAP and LANADP algorithms using CUDA C version
10.2. We have taken readings on a GPU on a server with a 2-Dual Core Intel Xeon
processor powered with 48GB Memory. The GPU is NVIDIA GeForce GTX with 1392
MHz Core, 768 CUDA Cores, Pascal Architecture and 7Gb/s Memory speed. Also, we

446 O. A. MASUR, A. R. BADANIDIYOOR, N. G. KINI AND V. H. CHANDRASHEKARA

Algorithm 3 Algorithm for storing data in shared memory
1: function getGlobalID(row, col, width) # width is the width of the image
2: return row ∗ width+ col
3: end function

Input: img, height, width
Output: sharedDat
4: thidx x, thidx y ← thread index in the x and y direction within the block
5: blkidx x, blkidx y ← block index in the x and y direction within the grid

6: blkdim x, blkdim y ← number of threads in the x and y direction within the block
7: glob row id← thidx y + blkidx y ∗ blkdim y
8: glob col id← thidx x+ blkidx x ∗ blkdim x
9: sharedDat[NUMBER OF THREADS + 2][NUMBER OF THREADS + 2]

10: glob row id← glob row id+ 1
11: glob col id← glob col id+ 1
12: local row ← thidx y
13: local col← thidx x

14: shared row ← thidx y + 1
15: shared col← thidx x+ 1 # Variables to access data within shared memory
16: sharedDat[shared row][shared col]← img[getGlobalID(glob row id, glob col id, cols)]

17: if local row == 0 then
18: sharedDat[shared row − 1][shared col]← img[getGlobalID(glob row id− 1, glob col id, cols)]
19: if locals col == 0 then
20: sharedDat[shared row − 1][shared col− 1]← img[getGlobalID(glob row id− 1, glob col id− 1, cols)]

21: end if
22: if local col == blkdim x− 1 then
23: sharedDat[shared row − 1][shared col+ 1]← img[getGlobalID(glob row id− 1, glob col id+ 1, cols)]
24: end if

25: end if
26: if local row == blkdim y − 1 then
27: sharedDat[shared row + 1][shared col]← img[getGlobalID(glob row id+ 1, glob col id, cols)]
28: if local col == 0 then

29: sharedDat[shared row + 1][shared col− 1]← img[getGlobalID(glob row id+ 1, glob col id− 1, cols)]
30: end if
31: if local col == blkdim x− 1 then
32: sharedDat[shared row + 1][shared col+ 1]← img[getGlobalID(glob row id+ 1, glob col id+ 1, cols)]

33: end if
34: end if
35: if local col == 0 then

36: sharedDat[shared row][shared col− 1]← img[getGlobalID(glob row id, glob col id− 1, cols)]
37: end if
38: if local col = blkdim x− 1 then
39: sharedDat[shared row][shared col+ 1]← img[getGlobalID(glob row id, glob col id+ 1, cols)]

40: end if

have implemented optimization of the algorithms using shared memory. The results are
presented in Section 4.

4. Results. Tables 1 and 2 show the readings for experiments conducted on TLBAP
sequential and parallel algorithms proposed. As observed from them, the sequential exe-
cution time increases with the increase in the size of the image. A considerable speedup
is achieved on the proposed parallel algorithms compared with the sequential algorithms
for the exact image size. We have also tested the shared memory implementation of the
algorithm on the exact image sizes and the same grid sizes of 16×16 and 32×32. Shared

Table 1. TLBAP results

Image size

Computation time (ms)

Sequential
Parallel

Without shared memory With shared memory
16× 16 32× 32 16× 16 32× 32

256× 256 10.110870 4.250779 4.404883 1.937791 1.978193
512× 512 38.947736 16.874831 17.565300 7.375525 7.583423
1024× 1024 142.142200 62.278262 60.771245 28.955355 30.359479

ICIC EXPRESS LETTERS, VOL.17, NO.4, 2023 447

Table 2. LANADP results

Image size

Computation time (ms)

Sequential
Parallel

Without shared memory With shared memory
16× 16 32× 32 16× 16 32× 32

256× 256 18.052515 1.162166 1.217686 0.678101 0.788468
512× 512 77.558890 4.259022 4.596100 2.562525 3.100219
1024× 1024 277.199182 16.304927 17.311025 9.658553 12.147245

Table 3. Speedup of TLBAP and LANADP

Image size

Speed up (sequential time/parallel time)
TLBAP LANADP

Non-shared
memory

Shared
memory

Non-shared
memory

Shared
memory

256× 256 2.3785922 5.217729 15.533508 26.6221624
512× 512 2.3080371 5.2806730 18.2104929 30.2665886
1024× 1024 2.28237262 4.909012 17.000945 28.6998665

memory is faster to access, and hence it significantly boosts performance compared to the
non-shared memory implementation.

Table 3 shows the speedup, i.e., sequential time
parallel time

for both the non-shared memory imple-

mentation and the shared memory implementation on the 16 × 16 grid size. Comparing
only one is sufficient since, as observed, both the 16×16 and 32×32 grid sizes give almost
the same time.

The time complexity of the parallel algorithms proposed is Θ(1) per active thread. This
is significantly better than the original time complexity. This is also evident from the
timings obtained, as shown in Section 4. We achieve a speedup of over 2 for TLBAP and
over 18 for LANADP. In order to increase the CGMA ratio, we have also optimized these
parallel algorithms using shared memory. The time complexity of the optimized algorithm
does not change from the parallel version. The results justify the usage of shared memory,
proving that the algorithm indeed runs faster. Speedup of over 5 is obtained for the
TLBAP using the optimized version, and over 28 for LANADP optimized version. The
observed speedup proves that our proposed novel approach to computing TLBAP and
LANADP features is more efficient than the naive sequential implementation. Hence,
it could easily be used to train classification models like those proposed in [11] more
efficiently.

5. Discussion and Conclusion. Graphical processing units have become almost nec-
essary in today’s computationally intensive applications such as machine learning, and
image processing. It is essential for developers and researchers working in such fields to
adapt to this change and develop algorithms suitable for processing on a GPU. As a re-
sult, we propose parallel implementations of two texture descriptors, namely LANADP
and TLBAP. Using them and leveraging memory optimizations, we achieve speedups of
more than 20, compared to sequential counterparts. It is proven that based on compar-
isons with CPU, the calculation of TLBAP and LANADP is feasible and much more
efficient. We can also develop parallel algorithms for multiple other local texture feature
descriptor algorithms namely Local Gradient Hexa Pattern, Local Directional Gradient
Pattern, Local Quadruple Pattern, Centre Symmetric Quadruple Pattern using similar
approaches. This would make real world applications like machine learning and deep
learning faster and more efficient.

448 O. A. MASUR, A. R. BADANIDIYOOR, N. G. KINI AND V. H. CHANDRASHEKARA

REFERENCES

[1] C. Yang, Plant leaf recognition by integrating shape and texture features, Pattern Recognition,
vol.112, 107809, https://www.sciencedirect.com/science/article/pii/S0031320320306129, 2021.

[2] L. Yang et al., Traumatic bleeding detection based on fusion of 3D shape and local texture features,
J. Clin. Med. Img., vol.5, no.15, pp.1-12, 2021.

[3] Z. Yang, J. Shang, C. Liu, J. Zhang and Y. Liang, Identification of oral squamous cell carcinoma
in optical coherence tomography images based on texture features, Journal of Innovative Optical
Health Sciences, vol.14, no.1, 2140001, 2021.

[4] S. G. A. Usha and S. Vasuki, Significance of texture features in the segmentation of remotely
sensed images, Optik, vol.249, 168241, https://www.sciencedirect.com/science/article/pii/S003040
2621017666, 2022.

[5] L. Armi and S. F. Ershad, Texture image analysis and texture classification methods – A review,
CoRR, http://arxiv.org/abs/1904.06554, 2019.

[6] D.-C. He and L. Wang, Texture features based on texture spectrum, Pattern Recognition, vol.24,
no.5, pp.391-399, https://www.sciencedirect.com/science/article/pii/0031320391900527, 1991.

[7] R. Biswas, S. Roy and D. Purkayastha, An efficient content-based medical image indexing and
retrieval using local texture feature descriptors, International Journal of Multimedia Information
Retrieval, vol.8, no.12, 2019.

[8] A. Asaduzzaman, A. Trent, S. Osborne, C. Aldershof and F. N. Sibai, Impact of CUDA and OpenCL
on parallel and distributed computing, 2021 8th International Conference on Electrical and Elec-
tronics Engineering (ICEEE), pp.238-242, 2021.

[9] T. Imankulov, B. Daribayev and S. Mukhambetzhanov, Comparative analysis of parallel algorithms
for solving oil recovery problem using CUDA and OpenCL, International Journal of Nonlinear
Analysis and Applications, vol.12, no.1, pp.351-364, 2021.

[10] J. Fang, A. L. Varbanescu and H. J. Sips, A comprehensive performance comparison of CUDA and
OpenCL, 2011 International Conference on Parallel Processing, pp.216-225, 2011.

[11] M. Rashad, S. Nooh, I. Afifi and M. Abdelfatah, Effective of modern techniques on content-based
medical image retrieval: A survey, International Journal of Computer Science and Mobile Comput-
ing, vol.11, 2022.

[12] A. Shahbahrami, T. Pham and K. Bertels, Parallel implementation of gray level co-occurrence ma-
trices and haralick texture features on cell architecture, The Journal of Supercomputing, vol.59,
pp.1455-1477, 2012.

[13] S. H. Kang, S.-J. Lee and I. K. Park, Parallelization and optimization of feature detection algorithms
on embedded GPU, International Workshop on Advanced Image Technology, vol.108, pp.164-167,
2014.

[14] A. K. Sabarad, M. H. Kankudti, S. Meena and M. Husain, Color and texture feature extraction using
Apache Hadoop framework, 2015 International Conference on Computing Communication Control
and Automation, pp.585-588, 2015.

[15] H.-Y. Tsai, H. Zhang, C.-L. Hung and G. Min, GPU-accelerated features extraction from magnetic
resonance images, IEEE Access, vol.5, pp.22634-22646, 2017.

[16] H. Hong, L. Zheng and S. Pan, Computation of gray level co-occurrence matrix based on CUDA and
optimization for medical computer vision application, IEEE Access, vol.6, pp.67762-67770, 2018.

[17] A. R. Badanidiyoor and G. K. Naravi, θ(1) time complexity parallel local binary pattern feature
extractor on a graphical processing unit, ICIC Express Letters, vol.13, no.9, pp.867-874, 2019.

[18] B. A. Rao, G. N. Kini, P. K. Aithal, K. Vaishnavi and U. N. Kamath, Parallel local tridirectional
feature extraction using GPU, in Proceedings of the International Conference on Paradigms of Com-
munication, Computing and Data Sciences, M. Dua, A. K. Jain, A. Yadav, N. Kumar and P. Siarry
(eds.), Singapore, Springer Singapore, 2022.

[19] C. R. Karthik, A. G. Shanbhag, B. A. Rao, P. K. Aithal and G. N. Kini, Parallelization of cocktail
sort with MPI and CUDA, in Proceedings of the International Conference on Paradigms of Com-
munication, Computing and Data Sciences, M. Dua, A. K. Jain, A. Yadav, N. Kumar and P. Siarry
(eds.), Singapore, Springer Singapore, 2022.

[20] B. A. Rao and N. G. Kini, Parallelization of local diagonal extrema pattern using a graphical pro-
cessing unit and its optimization, in Recent Trends in Mathematical Modeling and High Performance
Computing, V. K. Singh, Y. D. Sergeyev and A. Fischer (eds.), Cham, Springer International Pub-
lishing, 2021.

[21] B. Rao and N. Kini, Algorithms for extracting various local texture features, Journal of Physics:
Conference Series, vol.2161, no.1, 2022.

