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Abstract. This paper investigates the problem of fault detection and isolation for a
class of high-order dynamic systems with actuator fault. Firstly, fault detection observer
and fault decision mechanism are constructed to detect the fault in time. Secondly, a
series of fault isolation observers are designed to isolate the fault, and fault isolation
algorithms are given. Based on Lyapunov stability theory, the stability of dynamic ob-
servation errors is analyzed. Finally, the simulation results show the effectiveness of the
proposed techniques.
Keywords: High-order dynamic systems, Actuator faults, Fault detection, Fault isola-
tion

1. Introduction. Fault detection and isolation of linear systems have attracted attention
from control theory field in recent years. [1] studies sensor fault estimation and accommo-
dation for switched linear systems. In [2], an observer-based fault detection method and
a fault self-restore controller are proposed for linear systems to realize fault detection,
isolation, and self-restore. A new sensor fault detection and diagnosis method for non-
linear systems is presented based on a pseudo deviation separation estimation algorithm
and a Bayesian classification algorithm in [4]. In [5], an unknown input observer for a
class of nonlinear systems for fault diagnosis. The input powers of the above systems,
whether linear or nonlinear systems, are equal to 1. However, in practical applications,
some high-order dynamic systems have an input power larger than 1, and this assumption
may be unreasonable in some cases.

In recent years, many scholars have made in-depth research on the control problem of
high-order dynamic systems. [6] studies the finite-time stabilization problem of high-order
uncertain dynamic systems. [7] deals with the problem of distributed fault detection and
isolation in multi-agent systems with disturbed high-order dynamics subject to commu-
nication uncertainties and faults. However, in real applications, faults may occur in the
controlled systems and impose adverse effect on system performance. Thus, many effective
fault-tolerant control (FTC) approaches have been proposed to improve the reliability and
safety of the faulty systems in all situations [10-14]. With the development of FTC, the
models for fault detection and isolation (FDI) [8,11] are constructed to detect and isolate
the faults. However, these above works just focused on the systems where the systems
input powers are equal to one. For the high-order system, one of the possible difficulties of
fault diagnosis is that it is difficult to deal with the problem of additional items caused by
p > 1. So how to design the fault detection and isolation observer for high-order systems
and deal with the additional items is the goal of this paper.

In this paper, we investigate the fault detection and fault isolation problems of high-
order dynamic systems with known system input power, and propose an adaptive control
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method to ensure the system is stable. Then, by using Lyapunov stability theory, it is
proven that detection and isolation errors converge to the origin. Compared with the
existing works in literature, the contributions in our work are generalized in the following
aspects.
1) Different from the results in [9] where the assumption coefficient about system un-

certainty must meet the conditions which are given that it should be larger than one, the
control scheme in this paper removes this known condition. For practical application, the
assumptions of this paper are more reasonable, and the theoretical results of this paper
have more extensive practical value.
2) Unlike some of the existing literature where the methods of fault detection and

isolation are only suitable for the system with system input powers equal to one, the
method proposed in this paper is more reasonable, considering some of the system input
power of high-order system is greater than one.
3) To solve the problem that the additional items caused by p > 1 are difficult to deal

with, this paper introduces an auxiliary function to reduce the computational complexity.
The rest of this paper is organized as follows. In Section 2, the system formulation

is introduced and the description of FLS is presented. In Section 3, main results are
presented, which includes fault detection and fault isolation. Section 4 gives simulation
results. These simulation results prove the effectiveness of the technique proposed in this
paper. Finally, Section 5 draws the conclusion.

2. Problem Statement and Description of Fuzzy Logic System.

2.1. Problem statement. Let us consider the following high-order dynamic systems: ẋ = Axp +Bup +Bdd(t) + f(x)
y = Cx
k = Cxp

(1)

where x = [x1, x2, . . . , xn]
T ∈ Rn, y and up = [up

1, u
p
2, . . . , u

p
m]

T ∈ Rm respectively denote
system’s state, output and input; p ∈ R > 0 is the input power of the system, which
is known bounded positive odd number; the unknown nonlinear term d(t) is dynamic

disturbances; f(x) = [f1, f2, . . . , fn]
T are unknown smooth nonlinear functions; k is an

auxiliary function to be designed later; the time-independent matrices A, B, Bd and C
are known matrices with appropriate dimension.

Remark 2.1. In (1), the positivity of k is used as an auxiliary function. The purpose of
the auxiliary function is to ensure that the subtracted term containing the parameter L
can be combined like terms with the formula in (8).

In practical applications, control system components such as actuators may fail. In this
paper, actuator fault has the following form,

uf
i (t) = ρi(t)ui(t), i = 1, 2, . . . ,m (2)

where unknown function ρi denotes the retained control rate, and t ≥ tf is unknown fault
occurrence time.
Control objective is to design an active FTC scheme so that the system (1) will be

stable in all cases. Under normal conditions, the control law u(t) is designed to ensure
that the system (1) is stable. In the case of faulty, fault detection and isolation observer
is designed to ensure system (1) is stable.
To design the observer, the following assumptions are given.

Assumption 2.1. The known matrix B is full rank and [A,C] is observable.

Assumption 2.2. The function d(t) is unknown nonlinear function, but bounded, such
that ∥d(t)∥ ≤ d̄, where d̄ is known normal constant.
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Assumption 2.3. There exist known constants ρ̄i (i = 1, 2, . . . ,m) satisfying that |ρi(t)| ≤
ρ̄1, where known real constants ρ̄1 > 0.

Lemma 2.1. For α ∈ Rna, β ∈ Rnb, M ∈ Rna×nb and arbitrary matrices X ∈ Rna×na,

Y ∈ Rna×nb, Z ∈ Rnb×nb, if there exists

[
X Y
Y T Z

]
> 0, then we have

−2αTMβ ≤
[
α
β

]T [
X Y −M

Y T −MT Z

] [
α
β

]
2.2. Description of fuzzy logic system. Fuzzy logic system includes four parts: the
knowledge base, the fuzzifier, the fuzzy inference engine working on fuzzy rules and de-
fuzzifier. Its knowledge base contains a series of fuzzy if-then rules that can be expressed
in the following form:

Rl: if x1 is Al
1 and x2 is Al

2 . . . and xn is Al
n, then y is Bl, l = 1, 2, . . . ,M (3)

where x = [x1, x2, . . . , xn]
T ∈ U ⊂ Rn and y are respectively the input and output

of the fuzzy logic system; Fuzzy sets Al
i and Bl are related to fuzzy function µAl

i
=

exp

(
−
(

xi−ali
bli

)2)
and µBl

(
yl
)
= 1; M is the number of fuzzy rules. Applying singleton

function, center average defuzzification and product inference, define ȳl = maxy∈RµBl ,
the fuzzy logic system can be expressed as

y(x) =
M∑
l=1

ȳl

(
n∏

i=1

µAl
i
(xi)

)/
M∑
l=1

(
n∏

i=1

µAl
i
(xi)

)
Define the fuzzy basis functions:

ξl(x) =
n∏

i=1

µAl
i
(xi)

/
M∑
l=1

(
n∏

i=1

µAl
i
(xi)

)
and define θT =

[
ȳ1, ȳ2, . . . , ȳM

]
= [θ1, θ2, . . . , θM ] and ξ =

[
ξ1, ξ2, . . . , ξM

]T
, then the

fuzzy logic system can be expressed as

y(x) = θT ξ(x) (4)

Lemma 2.2. f(x) is a continuous function defined on a closed set Ω. Then, for any real
constant ε > 0, there exists a fuzzy logic system such as supx∈Ω

∣∣f(x)− θT ξ(x)
∣∣ ≤ ε.

By Lemma 2.2, the FLS (4) can approximate any smooth function on a compact set
to any degree of accuracy. In this paper, fuzzy logic system is used to approximate un-

known continuous function fi(x), i = 1, 2, . . . , n as f̂i

(
x̂i, θ̂fi

)
= θ̂Tfiξfi (x̂i), where x̂,

θ̂fi are the estimates of x, θ∗fi , respectively. Let us define the optimal parameter vectors

θ∗fi = argminθfi∈Ωfi

[
supx∈U,x̂∈Û

∣∣∣fi(xi)− f̂i (x̂i)
∣∣∣], where Ωfi , U and Û are closed sets with

respect to θ̂fi , x and x̂. The minimum approximation errors can be defined as

εfi = f(xi)− θ∗fi
T ξfi (x̂i)

δfi = f(xi)− θ̂Tfiξfi (x̂i) (5)

Assumption 2.4. There exist unknown constants ε∗fi > 0 and δ∗fi > 0, known constants

Mεfi
> 0, Mδfi

> 0 and Mθfi
> 0, |εfi| ≤ ε∗fi,

∣∣ε∗fi∣∣ ≤ Mεfi
, |δfi| ≤ δ∗fi,

∣∣δ∗fi∣∣ ≤ Mδfi
and∥∥θ∗fi∥∥ ≤ Mθfi

.
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3. Main Results.

3.1. Fault detection. To detect the fault occurring in the system, the following fault
detection observer is designed as

˙̂x = Ax̂p +Bup + f̂ (x̂) + L
(
k − k̂

)
+ sgn

(
2eTDP

)
M̂εf

ŷ = Cx̂

k̂ = Cx̂p

(6)

where f̂ =
[
f̂1, f̂2, . . . , f̂n

]T
, M̂εf =

[
M̂εf1

, M̂εf2
, . . . , M̂εfn

]
, f̂i = θ̂Tfiξfi (x̂i) and M̂εfi

are

the estimates of θ∗fi
T ξfi (x̂i) and Mεfi

, respectively; eD = [eD1 , eD2 , . . . , eDn ]
T is the fault

detection observer error; L is the observer gain matrix with appropriate dimensions for
the sth observer which is chosen to ensure that A−LC is Hurwitz; P i (i = 1, 2, . . . , n) rep-
resents the ith column of matrix P , sgn

(
2eTDP

)
= diag

{
sgn

(
2eTDP

1
)
, . . . , sgn

(
2eTDP

n
)}

.
Define

eD = x− x̂

f̃ =
[
f̃1, . . . , f̃n

]T
(7)

where f̃i = fi − f̂i, i = 1, . . . , n. From (1) and (6), the error dynamic is obtained

ėD = (A− LC)eDp +Bdd+ f̃ − sgn
(
2eTDP

)
M̂εf

= (A− LC)eDp +Bdd+ θ̃T ξf (x̂) + εf − sgn
(
2eTDP

)
M̂εf (8)

where eDp =
[
eDp1

, eDp2
, . . . , eDpn

]T
, eDpi

= xp
i − x̂p

i (i = 1, . . . , n), θ∗f
T = diag

{
θ∗f1

T , θ∗f2
T ,

. . . , θ∗fn
T
}
, ξf (x̂) = [ξf1 (x̂1) , ξf2 (x̂2) , . . . , ξfn (x̂n)]

T , εf = [εf1 , εf2 , . . . , εfn ]
T , θ̃f =

[
θ̃f1 ,

θ̃f2 , . . . , θ̃fn

]T
, θ̃fl = θ∗fl − θ̂fl , l = 1, . . . , n.

Define the following Lyapunov function V1 = eTDPeD, differentiating V1 with respect to
time t, we have

V̇1 = eTD
[
P (A− LC) + (A− LC)TP

]
eDp + 2eTDPBdd+ 2eTDP

(
θ̃T ξf (x̂) + εf

)
− 2eTDP sgn

(
2eTDP

)
M̂εf (9)

From Assumption 2.4, we have

2eTDP
(
θ̃T ξf (x̂) + εf

)
≤ 2eTDP

(
θ̃T ξf (x̂) +Mεf

)
(10)

where Mεf =
[
Mεf1

,Mεf2
, . . . ,Mεfn

]T
. Substituting (10) into (9), we further have

V̇1 ≤ eTD
[
P (A− LC) + (A− LC)TP

]
eDp + 2eTDPBdd+ 2eTDP θ̃T ξf (x̂)

+
∣∣2eTDP ∣∣Mεf − 2eTDP sgn

(
2eTDP

)
M̂εf

≤ eTD
[
P (A− LC) + (A− LC)TP

]
eDp + 2eTDPBdd+ 2eTDP θ̃T ξf (x̂)

+ 2eTDP sgn
(
2eTDP

)
M̃εf (11)

where M̃εf =
[
M̃εf1

, M̃εf2
, . . . , M̃εfn

]
, M̃εfi

= Mεfi
− M̂εfi

, i = 1, . . . , n.

Since Young’s inequality, it follows that for any positive constant r > 0, one has

2eTDPBdd ≤ reTDPBdB
T
d PeD +

1

r
∥d∥2 ≤ reTDPBdB

T
d PeD +

1

r

(
d̄
)2

(12)

Substituting (12) into (11) and from Lemma 2.1, one has
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V̇1 ≤
[

eD
eDp

]T [ X + rPBdB
T
d P Y + P (A− LC)

Y T + (A− LC)TP Z

] [
eD
eDp

]
+

1

r

(
d̄
)2

+ 2eTDP θ̃Tf ξf + 2eTDP sgn
(
2eTDP

)
M̃εf (13)

Obviously, if matrix X, Y, Z,Q > 0 and P = P T > 0 are choosing such that

[
X Y
Y T Z

]
> 0 and [

X + rPBdB
T
d P Y + P (A− LC)

Y T + (A− LC)TP Z

]
< −Q (14)

then we have

V̇1 ≤ −
[

eD
eDp

]T
Q

[
eD
eDp

]
+

1

r

(
d̄
)2

+ 2eTDP θ̃Tf ξf + 2eTDP sgn
(
2eTDP

)
M̃εf (15)

Choose adaptive laws as follows:

˙̂
θf = 2η1e

T
DPξf − ηθθ̂f (16)

˙̂εf = 2η2e
T
DP sgn

(
2eTDP

)
− ηεM̂εf (17)

where η1 > 0, ηθ > 0, η2 > 0, ηε > 0 are design parameters.
Define

VD = V1 +
1

2η1
θ̃Tf θ̃f +

1

2η2
M̃2

εf
(18)

Differentiating VD with respect to time t leads to

V̇D ≤ −
[

eD
eDp

]T
Q

[
eD
eDp

]
+

1

r

(
d̄
)2

+ θ̃Tf

(
2eTDPξf −

1

η1

˙̂
θf

)
+ M̃εf

(
2eTDP sgn

(
2eTDP

)
− 1

η2

˙̂
M εf

)
(19)

Substituting (16) and (17) into (19), we have

V̇D ≤ −
[

eD
eDp

]T
Q

[
eD
eDp

]
+

1

r

(
d̄
)2

+
ηθ
η1
θ̃Tf θ̂f +

ηε
η2
M̃εfM̂εf (20)

Since
ηθ
η1
θ̃Tf θ̂f ≤ ηθ

η1
θ̃Tf

(
θ∗f − θ̃f

)
≤ − ηθ

2η1
θ̃Tf θ̃f +

ηθ
2η1

M2
θf

ηε
η2
M̃εfM̂εf ≤ ηε

η2
M̃εf

(
Mεf − M̃εf

)
≤ − ηε

2η2
M̃2

εf
+

ηε
2η2

M2
εf

(21)

Then (20) can be rewritten as

V̇D ≤ − λmin(Q)

2λmax(P )
eTDPeD − ηθ

2η1
θ̃Tf θ̃f −

ηε
2η2

M̃2
εf
+

ηθ
2η1

M2
θf
+

ηε
2η2

M2
εf
+

1

r

(
d̄
)2

≤ −c1VD + µ1 (22)

where c1 = min
{

λmin(Q)
2λmax(P )

, ηθ
2η1

, ηε
2η2

}
, µ1 =

ηθ
2η1

M2
θf
+ ηε

2η2

(
Mεf

)2
+ 1

r

(
d̄
)2
.

Theorem 3.1. Considering system (1) and observer (6) under Assumptions 2.1-2.4, and
the adaptive laws (16) and (17), if there exist matrices X, Y, Z > 0, P = P T > 0, Q > 0

and positive constants r satisfying

[
X Y
Y T Z

]
> 0 and[

X + rPBdB
T
d P Y + P (A− LC)

Y T + (A− LC)TP Z

]
< −Q (23)
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then the observer error is asymptotically stable and all signals in the closed-loop systems
are bounded.

Proof: Since d
dt
(V (t)eD

c1t) ≤ eD
c1tµ1, we have

0 ≤ VD(t) ≤
µ1

c1
+

[
VD(0)−

µ1

c1

]
eD

−c1t ≤ µ1

c1
+ VD(0) = αD

Hence, it can be known that the observer error is asymptotically stable. In addition,
according to the definition of VD(t) defined in (18), θ̂f , M̂εf are bounded. Therefore, it
means that all the signals in the closed-loop system are bounded and we have ∥eD∥ ≤√
αD/λmin(P ),

∥∥∥θ̃f∥∥∥ ≤
√
2η1αD,

∥∥∥M̃εf

∥∥∥ ≤
√
2η2αD.

The proof is completed.
According to Theorem 3.1, the following fault detection residuals are defined as

J(t) = ∥y(t)− ŷ(t)∥
In the case of no fault, we have

J(t) ≤ ∥CeD∥ ≤ ∥C∥
√

αD/λmin(P )

Further, the following mechanism is used for fault detection{
J(t) ≤ TD no fault occurred;

J(t) > TD fault has occurred
(24)

where threshold value TD = ∥C∥
√
αD/λmin(P ).

3.2. Fault isolation. Because the system has m actuators and it is assumed that only
one actuator becomes faulty at one time, we have m possible faulty cases in total. When
the sth (1 ≤ s ≤ m) actuator is faulty, the faulty system can be described as ẋs = Axp

s +Bup − bsρ
p
su

p
s +Bdd(t) + fs(xs)

ys = Cxs

ks = Cxp
s

(25)

where xs = [xs1 , xs2 , . . . , xsn ]
T , B = [b1, b2, . . . , bm], bs ∈ Rn×1, fs(xs) = [fs1 , fs2 , . . . , fsn ]

T ,
ρs represents the failure of the sth actuator, us is the control input under normal condi-
tions, s = 1, 2, . . . ,m.
When a fault has been detected, the fault isolation algorithm is activated. Now, design

the following m fault isolation observers:
˙̂xs = Ax̂p

s + L
(
ks − k̂s

)
+Bup − blµlρ̄

p
l |ul|p + f̂s (x̂s) + sgn

(
2eTI P

)
M̂εfs

ŷs = Cx̂s

k̂s = Cx̂p
s

(26)

where x̂s and ŷs are the state and output of the sth observer, respectively; f̂s (x̂s) =[
f̂s1 , f̂s2 , . . . , f̂sn

]T
, M̂εfs

=
[
M̂εfs1

, M̂εfs2
, . . . , M̂εfsn

]T
and M̂εfsi

is the estimate of Mεfsi
,

i = 1, . . . , n, µs = −eTI Pbs, ρ̄s = ρ1 represents the upper bound on the gain failure
of the lth actuator, l = 1, . . . ,m; L is the observer gain matrix and the appropriate
dimension is chosen such that A − LC is Hurwitz; eI = [eI1 , eI2 , . . . , eIn ], eIi = xsi − x̂si ,
eIp =

[
eIp1 , eIp2 , . . . , eIpn

]
, eIpi = xp

si
− x̂p

si
, eyI = ys − ŷs.

In the following, l is used to denote the practical faulty case, namely, the faulty actuator
is actuator l.
For s = l, the error dynamics between (25) and (26) is

ėI = (A− LC)eIp − bs (ρ
p
su

p
s − µsρ̄

p
s|us|p) + Bdd(t) + f̃I − sgn

(
2eTI P

)
M̂εfs

(27)
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and for s ̸= l, we have

ėI = (A− LC)eIp − (bsρ
p
su

p
s − blµlρ̄

p
l |ul|p) + Bdd(t) + f̃I − sgn

(
2eTI P

)
M̂εfs

(28)

where f̃I =
[
f̃I1 , . . . , f̃In

]T
, f̃Ii = fIi − f̂Ii , i = 1, . . . , n.

1) For s = l, from (27), we have

ėI = (A− LC)eIp − bs (ρ
p
su

p
s − µsρ̄

p
s|us|p) +Bdd(t) + f̃I − sgn

(
2eTI P

)
M̂εfs

Similar to the previous subsection, differentiating V2 = eTI PeI with respect to time t, one
has

V̇2 = eTI
[
(A− LC)TP + P (A− LC)

]
eIp + 2eTI P

(
Bdd+ f̃

)
+2eTI Pbs (−ρpsu

p
s + µsρ̄

p
s|us|p)− 2eTI P sgn

(
2eTI P

)
M̂εf (29)

From the definition of µs and Assumption 2.3, it yields

2eTI Pbs (−ρpsu
p
s + µsρ̄

p
s|us|p) ≤ 2eTI Pbsρ

p
su

p
s − sgn

(
2eTI Pbs

)
ρ̄ps|us|p ≤ 0 (30)

Substituting (30) into (29), we have

V̇2 = eTI
[
(A− LC)TP + P (A− LC)

]
eIp + 2eTI P

(
Bdd+ f̃I

)
− 2eTI P sgn

(
2eTI P

)
M̂εfs

(31)

Similar to (10) and (12) in the previous subsection, we have

2eTI P
(
f − f̂s

)
≤ 2eTI P

[
θ∗fs

T ξfs (x̂s)− θ̂fsξfs (x̂s) + εfs

]
≤ 2eTI P

(
θ̃Tfsξfs (x̂s) +Mεfs

)
2eTI PBdd ≤ reTI PBdB

T
d PeI +

1

r

(
d̄
)2

where Mεfs
=
[
Mεfs1

,Mεfs2
, . . . ,Mεfsi

]T
, θ̃fs =

[
θ̃fs1 , . . . , θ̃fsn

]T
, θ̃fsl = θ∗fsl

− θ̂fsl , θ̂fsl is

the estimate of θ∗fsl
, l = 1, . . . , n.

Further, we have

V̇2 ≤
[

eI
eIp

]T [
X + rPBdB

T
d P Y + P (A− LC)

Y T + (A− LC)TP Z

] [
eI
eIp

]
+

1

r

(
d̄
)2

+ 2eTI P θ̃Tfsξfs + 2eTI P sgn
(
2eTI P

)
M̃εfs

(32)

where M̃εfs
=
[
M̃εfs1

, M̃εfs2
, . . . , M̃εfsn

]
, M̃εfsi

= Mεfsi
− M̂εfsi

, i = 1, . . . , n.

Similar to (15), it yields

V̇2 ≤ −
[

eI
eIp

]T
Q

[
eI
eIp

]
+

1

r

(
d̄
)2

+ 2eTI P θ̃Tfsξfs + 2eTI P sgn
(
2eTI P

)
M̃εfs

(33)

Choose adaptive laws as follows:

˙̂
θfs = 2η3e

T
DPξfs − ηθs θ̂fs (34)

˙̂εfs = 2η4e
T
DP sgn

(
2eTDP

)
− ηεsM̂εfs

(35)

where η3 > 0, ηθs > 0, η4 > 0, ηεs > 0 are design parameters.
Define VI = V2 +

1
2η3

θ̃Tfs θ̃fs +
1

2η4
M̃2

εfs
, differentiating VI with respect to time t and from

(33)-(35) lead to

V̇I ≤ − λmin(Q)

2λmax(P )
eTI PeI −

ηθs
2η3

θ̃Tfs θ̃fs −
ηεs
2η4

M̃2
εfs

+
ηθs
2η3

M2
θfs

+
ηεs
2η4

M2
εfs

+
1

r

(
d̄
)2
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≤ −c2VI + µ2 (36)

where c2 = min
{

λmin(Q)
2λmax(P )

,
ηθs
2η3

, ηεs
2η4

}
, µ2 =

ηθs
2η3

M2
θfs

+ ηεs
2η4

(
Mεfs

)2
+ 1

r

(
d̄
)2
.

Then, one has d
dt
(V (t)eI

c2t) ≤ eI
c2tµ2. Further

0 ≤ VI(t) ≤
µ2

c2
+

[
VI(0)−

µ2

c2

]
eI

−c2t ≤ µ2

c2
+ VI(0) = αI (37)

Therefore, if the appropriate matrices X, Y , Z, Q and positive definite symmetric

matrix P are chosen such that

[
X Y T

Y Z

]
> 0 holds and (38) holds, the adaptive law

can guarantee that VI(t) is bounded, that is, the closed-loop system is semi-globally
uniformly asymptotically bounded. That is, all signals of the closed-loop system remain
within the compact set Ω1 defined below:

ΩeI :=


(
eI , θ̃fs , M̃εfs

)∣∣∣ ∥eI∥ ≤
√

αI/λmin(P ),∥∥∥θ̃fs∥∥∥ ≤
√
2η3αI ,

∥∥∥M̃εfs

∥∥∥ ≤
√
2η4αI


2) For s ̸= l, from the faulty (25) and the observer (26), one has

ėI = (A− LC)eIp − (blρ
p
l u

p
l − bsµsρ̄

p
s|us|p) + Bdd(t) + f̃I − sgn

(
2eTI P

)
M̂εfs

V̇I = eTI
[
(A− LC)TP + P (A− LC)

]
eIp + 2eTI P (−blρ

p
l u

p
l + bsµsρ̄

p
s|us|p)

− 2eTI P sgn
(
2eTI P

)
M̂εfs

since s ̸= l, ul ̸= us, ρl ̸= ρs, it is found that 2eTI P (−blρ
p
l u

p
l + bsµsρ̄

p
s|us|p) varies infinitely,

which further causes that all signals involved in the closed-loop systems do not converge
to the above-obtained results.
From 1) and 2), the conclusion is easily obtained.

Theorem 3.2. Consider system (1) and observer (26) under Assumptions 2.1-2.4, and
the adaptive laws (34) and (35), if there exist matrices X, Y, Z > 0, P = P T > 0, Q > 0

and positive constants r satisfying

[
X Y
Y T Z

]
> 0 and[

X + rPBdB
T
d P Y + P (A− LC)

Y T + (A− LC)TP Z

]
< −Q (38)

then, if the faulty actuator is actuator l, 1) for s = l, the closed-loop system is asymp-
totically stable, all closed-loop system signals converge to a small neighborhood of the
origin Ω1; 2) for s ̸= l, then all closed-loop system signals do not converge to a small
neighborhood of the origin Ω1.

Now, we denote the residuals between the real system and isolation estimators as fol-
lows:

Js(t) = ∥ŷs(t)− y(t)∥ = ∥CeI(t)∥ , 1 ≤ s ≤ m (39)

From Theorem 3.2, we know, if the faulty actuator is the lth one, namely, s = l, Js(t)
must converge to Ω1; if s ̸= l, Js(t) does not basically converge to Ω1. Therefore, the
isolation law for actuator fault can be designed as{

Js(t) ≤ TI , s = l ⇒ the lth actuator is faulty

Js(t) > TI , s ̸= l
(40)

where TI = ∥C∥
√

αI/λmin(P ) is a threshold.
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4. Simulation. To verify the effectiveness of the proposed method, the following example
is given

A =

[
0 1
−1 0

]
, B =

[
0
1

]
, Bd =

[
1
2

]
, C =

[
−4 1
−1 −3

]
(41)

In this simulation, d(t) = 0.01 sin t, f(x1) = x2
1 + 0.5 cos(x2), f(x2) = 0.5x1 − x1x

2
2.

According to the empirical values of references, the initial values and parameter values in
the simulation are selected as [x1(0), x2(0)]

T = [0.1,−0.1]T .
Assume that only one actuator fails at a time. Consider the following condition:

uf
1(t) = u1(t), uf

2(t) =

{
u2(t), t < 10
(1− 0.04 cos(t)), t ≥ 10

Firstly, the matrix inequality (23) and (38) is transformed into linear matrix inequality,
and then the matrix X, Y , Z, P , Q is solved by Matlab. The simulation results are shown
in Figures 1-4. In the case of no fault, the error convergence of the observers is shown in

Figure 1. The observer error xi − x̂i in the fault-free case

Figure 2. The observer error xi − x̂i in the faulty case
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Figure 3. Fault detection residual

Figure 4. Fault isolation residuals

Figure 1, indicating that the designed observer has a good performance. At t = 10 s, the
actuator of the second subsystem fails, as shown in Figures 2 and 3, the observer error
and detection residual deviates from the origin obviously after the failure occurs, while
that the isolation residual signals shows in Figure 4.

5. Conclusions. This paper studies the problem of fault detection and isolation for a
class of high-order nonlinear dynamic systems. We design a bank of observers to detect
and isolate the faults. Simulations show that the designed fault detection and isolation
algorithms have better dynamic performances in the presence of actuator faults. The
faults studies in this paper are mainly single gain faults, and other types of faults such as
bias faults are not considered. Therefore, for high-order nonlinear system, how to isolate
multiple types of faults is important and also is worthy of further research.
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