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Abstract. Interval type-2 membership functions (IT2MFs) generalize type-1 member-
ship functions and exhibit capabilities to represent and describe uncertainty. The mem-
bership functions’ types of IT2MFs could exhibit different forms and are usually elicited
from experts or extracted from empirical data. This study establishes a new procedure for
generating interval type-2 membership functions (AFSITMFs) utilizing axiomatic fuzzy
sets. AFSITMFs are determined by obtaining an interval-valued variance, fixed mean val-
ue of observed data, and the given weight information of linguistic terms. In AFSITMFs,
randomness derived from the observed data and imprecision originating from the human
subjective uncertainty are aggregated in a unified framework. Moreover, an AFSITMF-
based classification algorithm is designed by inducing understandable fuzzy descriptions,
and some experiments are conducted on publicly available data. The comparative analysis
underlines that AFSITMFs-based classification methods can characterize the classifica-
tion results with semantics.
Keywords: Interval type-2 fuzzy sets, Membership function, Semantic interpretation,
Axiomatic fuzzy sets (AFS)

1. Introduction. Data description provides a strategy for expressing a human under-
standable summarization of data. A more comprehensive description of a collection of
numeric data comes not only in the form of some numeric descriptors (mean, median,
etc.) but also calls for capturing the data’s semantics. Fuzzy models with linguistic terms
have significantly contributed to understandable knowledge being extracted from data.
Different types of fuzzy set-based methods have been introduced to reflect the underlying
rules residing with data, which involve interval sets, type-2 fuzzy sets, intuitionistic fuzzy
sets, bipolar fuzzy sets, shadowed sets, etc.

The concept of type-2 fuzzy sets (T2 FSs) was coined by Zadeh in 1975 [1]. T2 FSs
have been advocated to capture uncertainties in real-world applications especially control
systems [2]. The advances in T2 FSs have resulted in the emergence of new approach-
es for solving uncertainty problems. However, the effectiveness of T2 FSs in modeling
uncertainty comes at the expense of a significant computing overhead for embedding T2
FSs. Thus, interval type-2 fuzzy sets (IT2 FSs) are formed, in which the secondary mem-
berships are equal to 1. IT2 FSs have been reported intensively in the realm of image
processing, control systems, decision making, and pattern recognition [3-8].
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Although the theory of type-2 fuzzy sets provides a solution to enhance control systems’
performance, the effectiveness depends on their membership functions. Type-2 member-
ship functions are also required to be determined as an initial phase of fuzzy systems
applications. The footprint of uncertainty (FOU) of an IT2 FS makes it own more design
degrees of freedom than a type-1 fuzzy set [9]. Thus, it is essential to rationally design
T2MFs and IT2MFs for the specific context. A detailed review of interval type-2 member-
ship functions can be found in [10]. Recently, data-driven techniques offer an attractive
way to determine T2MFs and IT2MFs, in which the strategy of learning and self-tuning
parameters is a crucial way to achieve high performance in fuzzy control systems [11].
Data-driven approaches can take full advantage of the probability distribution of collect-
ed data. A Gaussian interval type-2 fuzzy neural network was designed by employing a
genetic learning algorithm to optimize the parameters [12]. Hosseini et al. established a
scheme to learn and tune Gaussian interval type-2 membership functions (IT2MFs) from
training data by combining genetic algorithms and cross-validation techniques [6].
This study aims to offer a new data-driven method of generating interval type-2 mem-

bership functions from the perspective of combining probability theory and fuzzy theory
and also design a classification algorithm with sound accuracy and underlying semantics.
The main contributions of this paper are highlighted as follows. 1) A method of gener-
ating membership function considering the weight information given by experts and the
probability density of observation data is provided. 2) A new classification algorithm is
designed to offer sound accuracy and semantics results.
The rest of this paper is organized as follows. Section 2 introduces the AFS and coher-

ence membership functions of fuzzy terms. Section 3 proposes how to construct new IT2
membership functions. Then simulation example is provided to show the performance of
the classification algorithm in Section 4. Finally, the conclusions are given in Section 5.

2. Related Studies. AFS framework establishes membership functions and correspond-
ing logic operations that are directly derived from the original data. In this section, we
introduce the related concepts of AFS theory.

2.1. AFS algebras. In [13, 14], Liu built a family of AFS algebras on information sys-
tems, in which each feature is scaled into different fuzzy concepts with corresponding
semantic explanations. Certain logical combinations of fuzzy concepts can characterize
the user preferences and object’s description with sound semantic description. For the
sake of simplicity, the following is introduced to illustrate EI algebras from the viewpoint
of semantic cognitive processes.
As mentioned above, any fuzzy concept can be formulated as

∑
t∈T
(∏

m∈At
m
)
, where

At ⊆ M , T denotes the indexing collection, and M is a non-empty set. Then all fuzzy
concepts compose the set EM ∗ as follows.

EM ∗ =

{∑
t∈T

( ∏
m∈At

m

)∣∣∣∣∣At ⊆ M, t ∈ T, T is a predefined indexing collection

}
. (1)

Two different logical expressions may share the same semantics. At this point, Liu in-
troduced the quotient set EM ∗/R by introducing semantic equivalence relation R on EM ∗

[15]. In addition, to characterize semantic operations “or” and “and”, Liu developed two
binary operations ∨ and ∧ on EM ∗/R and further put forward EI algebra (EM ∗/R,∨,∧).

Definition 2.1. [16] For any two elements
∑

s∈S
(∏

m∈As
m
)
,
∑

t∈T
(∏

m∈Bt
m
)
∈EM ∗, the

binary relation R between them is introduced below.
(∑

s∈S
(∏

m∈As
m
))
R
(∑

t∈T
(∏

m∈Bt
m
))

⇐⇒ (i) ∀As (s ∈ T ), ∃Bh (h ∈ T ) such that As ⊇ Bh; (ii) ∀Bt (t ∈ T ), ∃Ak (k ∈ S),
such that Bt ⊇ Ak.
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That means R is an equivalence relation. The quotient set EM ∗/R is denoted by EM ,
and each element of EM is a collection of all equivalence classes with the same semantics.

Theorem 2.1. [15] (EM ,∨,∧) forms a completely distributive lattice under the binary
compositions ∨ and ∧ defined as follows: for any

∑
s∈S
(∏

m∈As
m
)
,
∑

t∈T
(∏

m∈Bt
m
)
∈

EM, ∑
s∈S

( ∏
m∈As

m

)
∨
∑
t∈T

( ∏
m∈Bt

m

)
=
∑

u∈S⊔T

( ∏
m∈Cu

m

)
, (2)

∑
s∈S

( ∏
m∈As

m

)
∧
∑
t∈T

( ∏
m∈Bt

m

)
=

∑
s∈S,t∈T

( ∏
m∈As∪Bt

m

)
, (3)

where u ∈ S ⊔ T means that Cu = Au if u ∈ S, and Cu = Bu if u ∈ T .

The finest semantics description derived from M is denoted as
∏

m∈M m, and the coars-
est one is denoted as m1 +m2 + · · ·+m|M | from the view of the underlying semantics.

2.2. Coherence membership functions of fuzzy terms. Probability and fuzzy theo-
ries are complementary rather than competitive [17, 18], and their connection contributes
to practical problem-solving. Inspired by this, Liu and Pedrycz established a method of
generating coherence membership functions by combining the data distribution and the
fuzzy elements [19].

Definition 2.2. [16, 19] Let (Ω,F ,P) be a probability measure space, M be the collection
of simple concepts on Ω, F be all set of Borel sets in Ω, and ρm(y) be the weighting
function of y in regard to the simple concept m. The coherence membership function of
fuzzy term ξ =

∑
s∈S
(∏

m∈As
m
)
∈ EM can be determined as follows.

µξ(x) = sup
s∈S

∏
m∈As

∫
Aτ

s (x)
ρm(y)dP(y)∫

Ω
ρm(y)dP(y)

, ∀x ∈ Ω, (4)

where Ω = Rk, P(y) is a k-normal distribution and Aτ
s(x) = {y ∈ Ω | x ≽m y for any m ∈

As}.

In coherence membership functions, the weighting function ρm(y) describes the subjec-
tive preference with regard to the simple concept m, which also offers a dominance order
of different objects on m. The weighting function ρm : Ω → [0,+∞) satisfies the following
conditions 1) for any y ∈ Ω, ρm(y) = 0 ⇔ y �m y, i.e., y does not belong to m at all; 2)
ρm(y) ≥ ρm(z) ⇔ y ≽m z, for any y, z ∈ Ω [19]. ρm(y) can take different ways to reflect
subjective imprecision, and its determination depends on the semantics setting of m and
the data distribution of the feature that is associated with m. For instance, let m be a
simple concept supporting the explanation: “close to cm” and m′ be the negation concept
of m: “far from cm”, whose Gaussian weighting functions can be defined as follows [16].

ρm(y) = e−dm(f(y)−cm)2 , (5)

ρm′(y) = 1− ρm(y), (6)

where cm denotes the prototype of the fuzzy concept m, dm is the parameter that reflects
the variance of samples associated with the simple concept m. f(y) represents the value
of y with respect to the feature associated with the simple concept m.

3. Interval Type-2 Membership Functions Developed via Axiomatic Fuzzy
Sets. In (4), the weight function of a simple concept can be influenced by the human
perception of the individual’s observed data [16]. The different individual’s observed data
sets can result in the emergence of various membership functions of the same fuzzy con-
cept. Thus, it is necessary to extend (4) to type-2 fuzzy membership functions based on
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multiple individual’s observed sets. In what follows, we explore a method of determining
interval type-2 membership functions.
Usually, there exist two ways of generating interval type-2 membership functions within

probability space [20, 21], which cover 1) consider a fixed mean value µ with uncertain
standard deviation σ ∈ [σ1, σ2]; 2) take account of a fixed standard deviation σ with
uncertain mean µ ∈ [µ1, µ2]. For instance, two different versions of Gaussian IT2 MFs are
shown in Figure 1. Notice that µ = 2.5 and σ = [0.5, 0.75] are shown in the left figure,
whereas µ = [2.5, 3] and σ = 0.5 in the right figure. This study only focuses on eliciting
interval type-2 coherence membership functions involving an interval-value spread [σ1, σ2]
and a fixed mean value µ.

Figure 1. Examples of interval type-2 membership functions

3.1. Constructing new IT2 membership functions. In what follows, some individ-
ual’s observed data sets are obtained by using the sampling technique, for which mem-
bership functions are established by considering different individual’s weight functions
and multiple data distribution information. For any simple concept m, an interval-valued
spread [σ1, σ2] and a fixed mean value µr are obtained based on different observed da-

ta sets. The IT2 membership function (AFSITMF) ˜̃µξ(x)
(
ξ =

∑
s∈S
(∏

m∈As
m
)
∈ EM

)
can be expressed as follows.˜̃µξ =

[
µ̃1
ξ , µ̃

2
ξ

]
=
[
µ̃L
ξ (x;µ, σ1), µ̃U

ξ (x;µ, σ2)
]
, (7)

µ̃1
ξ(x;µ, σ1) = sup

s∈S

∏
m∈As

∫
Aτ

s (x)
ρ1m(y)dP(y;µ, σ1)∫

Ω
ρ1m(y)dP(y;µ, σ1)

, ∀x ∈ Ω, (8)

µ̃2
ξ(x;µ, σ2) = sup

s∈S

∏
m∈As

∫
Aτ

s (x)
ρ2m(y)dP(y;µ, σ2)∫

Ω
ρ2m(y)dP(y;µ, σ2)

, ∀x ∈ Ω, (9)

where P(y;µ, σi) denotes the probability distribution of y (i = 1, 2), which reflects the
range of individual’s observed data distribution. ρ1m (y; cm, dm) and ρ2m

(
y; cm, dm

)
charac-

terize the subjective uncertainty with respect to the simple concept m within individual’s
probability spaces. They are defined as follows.

ρ̃m =
[
ρ̃1m(y), ρ̃

2
m(y)

]
=
[
ρ1m (y; cm, dm) , ρ

2
m

(
y; cm, dm

)]
,

ρ1m (y; cm, dm) = e
−
(

f(y)−cm
2dm

)2

, ρ2m
(
y; cm, dm

)
= e

−
(

f(y)−cm
2dm

)2

, (10)

ρm′ = 1− ρm,
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where cm, f(y) and m′ are identical with (5) and (6). dm and dm are the parameters of
reflecting the range of the subjective preferences of fuzzy concept m, and they are set
to the variances interval of different samples associated with the user-predefined simple
concept m in this study.

In (8) and (9), the terms
∫
Aτ
s (x) ρ

i
m(y)dP(y;µ,σi)∫

Ω ρim(y)dP(y;µ,σi)
(i = 1, 2) describe the membership grades of

x with respect to the simple conceptm. The membership functions of the complex concept
are composed of the counterparts of single simple concepts by means of max t-conorm
‘sup’ and product t-norm ‘

∏
’. By taking the distribution information of individuals’

probability spaces and the semantics of fuzzy concepts into consideration, (8) and (9)
deliver potential statistical strategies for extracting type-2 membership functions.

When the cardinality of observed data set X ⊆ Ω tends to infinity, the following holds
[19].

lim
|X|→∞

∑
z∈Aτ

s (x)
ρim(z)Nz∑

z∈X ρim(z)Nz

=

∫
Aτ

s (x)
ρim(y)dP(y;µ, σi)∫

Ω
ρim(y)dP(y;µ, σi)

, i = 1, 2, (11)

where Nz denotes the number of the sample z ∈ Aτ
s(x). By using (11), the membership

functions with continuous form can be approximately calculated by discrete approach
instead of directly dealing with the high dimensional integral. Moreover, in problem-
solving, we can also employ Gaussian functions to approximate these AFSITMFs.

3.2. An example of forming interval type-2 membership functions via AFS.
The implementation procedure of the proposed method is illustrated by considering a
simple example. The Iris data set is represented by a 150 × 4 matrix X = (xij)150×4,
whose elements come from three categories {C1, C2, C3}. Each sample is described by four
features {f1, f2, f3, f4}. By taking ten times replacement sampling with a sampling rate of
60% being drawn from X, the values of the interval-value standard variances are obtained.

Let cij and
[
dij, dij

]
be the mean and the interval-value standard variance of the samples

in the class Ci with respect to the feature fj (i = 1, 2, 3, j = 1, 2, 3, 4), respectively, which
are listed in Tables 1 and 2.

Table 1. The mean values of iris data

Class Mean cij
C1 (5.0060, 3.4180, 1.4640, 0.2440)

C2 (5.9360, 2.7700, 4.2600, 1.3260)

C3 (6.5880, 2.9740, 5.5520, 2.0260)

Table 2. The interval-value standard variances of iris data

Class
[
dij, dij

]
C1 ([0.2722, 0.4404], [0.3210, 0.4181], [0.1584, 0.2015], [0.0810, 0.1249])

C2 ([0.4283, 0.5923], [0.2857, 0.3655], [0.3862, 0.5504], [0.1528, 0.2314])

C3 ([0.5292, 0.7569], [0.2483, 0.3629], [0.4737, 0.6417], [0.2198, 0.3056])

To illustrate the process of generating AFSITMF, we employ Iris data [22] to obtain
interval type-2 membership functions of 24 fuzzy concepts derived from 4 features, respec-
tively. The collection of simple concepts M = {mij | 1 ≤ i ≤ 4, 1 ≤ j ≤ 6} is associated
with the feature fj (j = 1, 2, 3, 4) on X. For the semantics of the simple concepts m ∈ M ,
refer to [19]. For example, m11: “the sepal length is near about c11”, m12 is the negation
of m11; m13: “the sepal length is near about c12”, m14 is the negation of m13; m15: “the
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sepal length is near about c13”, m16 is the negation of m15, where cij is the samples’ mean
of class Cj with respect to fi [16].
To obtain the weight functions of a simple concept by taking advantage of the indi-

vidual’s observed data information, in this example, the interval weight information of
simples on mij ∈ M is described by using Gaussian weighting functions,

ρ1mij
(y) = e−

(
2dik

)−2

(fi(y)−cik)
2

, j = 2k − 1,

ρ2mij
(y) = e−(2dik)

−2
(fi(y)−cik)

2

, j = 2k − 1,

ρ1mij
(y) = 1− ρ2mi(j−1)

(y), j = 2k,

ρ2mij
(y) = 1− ρ1mi(j−1)

(y), j = 2k,

(12)

where y ∈ X,
[
dij, dij

]
is the interval-value standard variance of the samples in class Ck

of the feature fi, i = 1, 2, 3, 4, k = 1, 2, 3.
Based on the weight functions described in (12) and Definition 2.2, we can obtain

the IT2 MF of any simple concept m ∈ M on the total space. To better approximate
the membership functions, the Monte Carlo numerical simulation method is employed to
calculate the membership degrees. Taking fuzzy concept m11 as an example, we generate
the lower membership function of simple concept m11 by using (11). The membership
degree intervals of samples with respect to m11 are also obtained in Figure 2, in which
the grade of sepal length 5.5 centimeters belonging to m11 is [0.1266, 0.3].

Figure 2. An example of membership functions of m11

The designed AFSITMFs are completed in a supervised mode. The proposed method
fails to generate the membership function when the data is unlabeled. For this case, we
can perform a clustering algorithm in advance.

4. The Effectiveness of the Established AFSITMFs. The established AFSITMFs
exhibit their underlying semantics, and we examine their effectiveness in solving classifica-
tion problems. In what follows, we explore a fuzzy classification algorithm to highlight the
effectiveness of AFSITMFs, in which the AFSITMFs and semantic rules can be generated
from training samples. By finding the description of xi, we can obtain an overall fuzzy de-
scription of each class, by which test samples can be classified based on max-membership
principle.
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4.1. Classification method based on AFSITMFs. Let X = {x1, x2, . . . , xn} be a
training set with l different class labels Cj (j = 1, 2, . . . , l), M = {m1,m2, . . . ,mp} be the
collection of simple concepts associated with the attributes on X.

Step 1 Determine the description of each object. The best fuzzy description ζ of xi

is formed by finding the complex concept with the maximum distinguished ability from
other objects.

• Let small positive numbers ε ≥ 0, ϑ =
∑p

k=1mk. Construct Bε
xi

by selecting some
potential simple concepts as follows.

Bε
xi
=
{
mk ∈ M

∣∣µL
mk

(xi) ≥ µL
ϑ − ε, µU

mk
(xi) ≥ µU

ϑ − ε
}
, (13)

Bε
xi

is a collection of the simple concept.

• Define the set ∧ε,δ
xi

as follows.

∧ε,δ
xi

=

{∏
m∈A

m
∣∣∣µL∏

m∈A mm(xi) ≥ δ − ε, A ⊆ Bε
xi

}
. (14)

Note 4.1. We only consider the conjunctions of not more than five simple concepts to
alleviate the complexity of the semantics and system overhead.

Step 2 Given two positive numbers ε > 0, δ > 0. If xi belongs to the class Cj (j =
1, 2, . . . , l), the fuzzy description ξxi

of xi can be obtained as follows.

ξxi
= argmax

ξ∈F δ
ε

∑
xi∈Cj

µU
ξ (xi)

 , (15)

where

Eδ
∧ =

{
m
∣∣m ∈ ∧ε,δ

xi
,∀xi ∈ X − Cj, µ

U
ξ (xi) < δ

}
, (16)

F δ
ε =

{
ξ
∣∣ ξ ∈ Eδ

∧,∀xi ∈ Cj, µ
L
ξ (xi) ≥ δ − ε

}
. (17)

Step 3 Find the description ζCj
of the class Cj, where ζCj

is defined as follows:

ζCj
=
∑
xi∈Cj

ξxi
. (18)

Note 4.2. For some objects xi, we cannot find their fuzzy description to meet the con-
dition, which means that the description of xi is not suitable to be employed to describe
this class. The ζCj

offers a sound semantics of classification rule by the logic operations
of simple concepts described in Section 3.2.

Step 4 For each test sample xi,
[
µL
ζCj

(xi), µ
U
ζCj

(xi)
]
is the membership degree interval

of xi belonging to class j, j = 1, 2, 3, . . .. The greater the number
µL
ζCj

(xi)+µU
ζCj

(xi)

2
is, the

higher the degree of xi belongs to the class Cj.

4.2. Experimental studies. To illustrate the designed classification method, seven clas-
sification algorithms in WEKA software, including KNN, Näıve Bayes (NB), Random For-
est (RF), AdaBoostM1 (ABM), Classification via Regression (CVR), Logit Boost (LB)
and Bagging, are conducted to compare the classification accuracy rate on some UCI data
sets. Training data sets in each experiment consist of 60% samples obtained using random
sampling, and other samples are considered testing samples. The average classification
accuracy rate of 10 times experiments is employed to compare the proposed method with
other methods. We have verified the performance of the designed classification method
in this study by employing 11 real data sets [22]. The marked numerical values with bold
faces mean the current method is better than the other classification algorithms in Table
3. Seven classical classification algorithms obtain better performance on 0, 2, 0, 3, 5, 4,
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Table 3. Performances of the designed method and other seven classical algorithms

Accuracy Instances Features
Class
number

AFSITMF KNN NB ABM Bagging CVR LB RF

Iris 150 4 3 0.9533 0.9037 0.8963 0.9483 0.9259 0.7851 0.7037 0.8889
Breast 683 9 2 0.9667 0.9608 0.9648 0.9571 0.9619 0.9630 0.9619 0.9633
Wine 178 13 3 0.9657 0.8904 0.9549 0.9178 0.9479 0.9684 0.9630 0.9863
Glass 214 9 7 0.6929 0.5958 0.5544 0.4300 0.6010 0.5440 0.5803 0.5596
Seeds 210 7 3 0.9131 0.9024 0.9107 0.8655 0.9178 0.9452 0.9571 0.9678

Ionosphere 351 34 2 0.9121 0.8700 0.8285 0.8928 0.9071 0.8642 0.9000 0.9071
Sonar 208 60 2 0.7243 0.6631 0.6310 0.6952 0.6791 0.5828 0.6631 0.6364
Balance 625 4 3 0.8469 0.7638 0.7582 0.7627 0.8394 0.8875 0.8702 0.8245
UK 403 5 4 0.8716 0.8622 0.8823 0.5698 0.9433 0.9471 0.9257 0.9585

Bloods 748 4 2 0.7701 0.7083 0.7792 0.7546 0.7721 0.7875 0.7765 0.7369
Vehicle 946 18 4 0.6730 0.6189 0.4704 0.3995 0.5913 0.6609 0.5992 0.6347

and 3 data sets among 11 data sets than the performance of the designed classification
method. The accuracy of the designed classification method is higher than that of the
other seven classical classification algorithms on Iris, Breast, Glass, Ionosphere, Sonar,
and Vehicle data sets.

5. Conclusions. In this study, we design a practical method of generating interval type-2
membership functions by combining data distribution information and Gaussian weight-
ing functions, which can be directly derived from observed data and offers new insight
into the development of type-2 fuzzy sets within the framework of probability theory.
The classification method based on the proposed interval type-2 membership functions
embraces knowledge rules inferences with semantics and satisfactory accuracies. The ex-
periments show the effectiveness of the established interval type-2 membership functions.
The designed classifier based on the observed samples can also perform the prediction
task on the whole data set. The established interval type-2 membership functions-based
clustering algorithm is a direction worth further investigating.
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