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ABSTRACT. For the purpose of studying a class of time-varying delay singular system
with nonlinear disturbances, the Lyapunov’s second method is employed in this work
to determine the uniformly asymptotic stability criterion. Initially, a new Lyapunov
Krasovskii Functional (LKF) is presented, followed by the addition of triple integral terms
to LKF. Secondly, following derivation, the Bessel-Legendre (B-L) integral inequalities
are applied to the integral terms of LKF. By combining the Lyapunov functional approach
with the free-weighting matrix method, we obtain the criterion of uniformly asymptotic
stability. Notably, compared to the study findings of other integral inequalities, B-L in-
tegral inequalities do achieve the uniformly asymptotic stability criterion for singular
time-delay systems with nonlinear disturbances. Finally, a numerical example is given
to demonstrate the feasibility and superiority of the result obtained.

Keywords: Singular time-varying delay system, Nonlinear disturbances, Uniform as-
ymptotic stability, Lyapunov-Krasovskii Functional (LKF), The Bessel-Legendre (B-L)
integral inequality

1. Introduction. Singular systems, also known as implicit systems, descriptor systems,
and generalized state-space systems, arise in a range of practical systems, including ro-
botics, the power system and economic systems. The single system model explains the
physical system more directly and generically than the standard state space model [1].
Currently, numerous fundamental system theories for developing regular state space sys-
tems have been successfully extended to the corresponding singular system theories, such
as controllability and observability [2], Lyapunov stability [3], robust stability and stabi-
lization [4], singular time-delay systems [5,6], and optimal control [7].

Because of their extensive applications in many practical systems, a great number of
fundamental notions and results in control and system theory based on singular systems
have been extended successfully to nonlinear singular systems. For more details on this
matter, we refer the reader to [8-15]. Reducing the conservativeness of existing stability
criteria remains a core issue in the above references. As we all know, the goal of this prob-
lem is to obtain delay-dependent stability conditions. In this study, researchers generally
use Jensen integral inequality, Wirtinger integral inequality and auxiliary function inte-
gral inequality [8-15] to deal with some integral terms generated by the derivative of L-K
function. Compared with Jensen inequality and Wirtinger inequality, B-L inequality en-
larges the integral term less, which effectively reduces the conservation and leads to more
advantageous. Ding et al. [15] developed criteria for the uniformly asymptotic stability
criterion of simple nonlinear singular systems based on the Lyapunov functional approach
and the free-weighted matrix method. The criteria significantly decrease the complexity
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of theoretical derivation and computation compared to current literature. Although the
stability criteria give a less conservative margin than the strategies described in [8-14],
there is still room to delay the reduction of the range boundary’s conservatism. Inspired
by [15], the authors tried to use B-L inequality to deal with the integral terms generated
by the new L-K functions, which has motivated this paper.

Then the primary contribution of this paper is to deal with the problems of uniform-
ly asymptotic stability analysis for nonlinear singular system with time delay. Firstly,
we construct a less conservative stability criterion, which guarantees that the system is
regular, impulse free and has uniformly asymptotic stability. Secondly, by combining the
Lyapunov stability theory and the B-L inequality technique, the conservatism is reduced,
and a delay-dependent sufficient condition for nonlinear singular systems with regular,
impulse free and uniformly asymptotic stability is proposed. Finally, a concrete example
is given to prove the effectiveness and superiority of the proposed method.

2. Problem Statement and Preliminaries. Consider the following nonlinear singular
system with time-varying delay:

Ei(t) = Ax(t) + Agz(t — h(t)) + F f(t,z(t)) + Gg(t, z(t — h(t)))
2(t) = o(t), t € [=hg,0]

where z(t) € R" is the system state and ¢(-) € C([—h2, 0], R") is a differentiable vector-
valued initial continuous function. R" is an n-dimensional vector space, defined in the real
number field. E, A, Ay € R"*" are known real constant matrices, where E may be singular,
rank(E) =r <n, F € R"™_ G € R"™" are the coefficients of the nonlinearities. The
nonlinear disturbances f : RT x R*7R™™ ¢ : Rt x R*7R"*"2 are continuous, f(¢,0) =
0, g(t,0) = 0, and satisfy the Lipschitz conditions, that is

1 (& 2@ < [lwz@)I], gt z(E = ()] < [Jugz(t — A(t))]] (2)

It is assumed that the nonlinear perturbations are bounded in magnitude as where wu;

(1 = 1,2) € R™*™ are constant matrices. And h(t) is a time-varying delay with the

differentiable function satisfying 0 < hy; < h(t) < hy, 0 < h(t) < hg < 1, Vt > 0, where
hi, ha, hg are the bound of time delay, respectively.
The following definitions and lemma are required.

(1)

Definition 2.1. [1] The pair (E,A) is said to be regular if there exists s € C for
which det(sE — A) is not identically zero. The pair (E,A) is said to be impulse free
if deg(det(sE — A)) = rank(E).

Definition 2.2. [15] The nonlinear singular system (1) is said to be regular and impulse-
free if the pair (E, A) is reqular and impulse-free.

Definition 2.3. [15] The nonlinear singular system (1) is said to be uniformly asymp-
totically stable if 1) system (1) is reqular and impulse free; 2) for any € > 0, there
exists a scalar 6(€) > 0 such that, for any compatible initial conditions p(t) satisfying
SUp_p<i<o @) || < 0(€), the solution x(t) of system (1) satisfies limy_,o z(t) = 0.

Lemma 2.1. [5] (B-L integral inequlities) For a symmetric matric R > 0, R € R™",
scalars a and b with a < b, a vector function & : [a,b] — R™, the following integral
inequality holds

b
(b—a) / 27 (s)Rx(s)ds > AT RA + 3MA" RAy + 5A3" RAs + TA,T RA,

b b 9 b b
Ay —/ x(s)ds, Ay = —/ x(s)ds + 2 a/ / x(s)dsdb,
a a - a JO
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A = / s)ds — / / s)dsdf + ——— / / / s)dsdfdu,
“ b—a b —
Ay = —/ s)ds + / / s)dsdf — / / / s)dsdfdu
b—a b —a)?
120 / / / / s)dsdAdfdu.
b —a)3

(b—a) / / s)dsdu > 20,7 RO, + 160, RO, + 540,7 RO + 1280, RO,

b—a b
0, =(b—a)x )ds, ©y = :Ir(b) —i—/ s)d s)dsd®,

- /b<
@3:bg“(b) / ds+b_a// s)dsdf — ——— b_a /// s)dsdfdu,
_b_“(b)+/ ds—b_a// s)dsdf + ———— b_a /// s)dsdfdu

1 T

210 //// s)dsdAdfdu.
b—a

3. Main Results.

O, =

Theorem 3.1. Given scalars 1,60 > 0 and given delay bound hy, hs, hg, the nonlin-
ear singular system (1) is uniformly asymptotically stable, if there exist positive definite

matrices P >0, Q; >0 (i = 1,2,3), T; > 0 (i = 1,2), {W*G Wy >0, {Z1 Zo -0,

Wiy Zs
matrices S, G1, G with appropriate dimensions and some known matrices R, uy, us,
where R € R™ ™7 s a matriz with full column rank satisfying ETR = 0, such that the
following Linear Matriz Inequalities (LMI) holds

II T Q1 Oyx .
o= 7 gl <o0=T G am@) mem ei=128y @

11, 1L, 0 1Ly ILis I I
* 19 0 0 Ilps IIps Ilgr

* * H33 H34 0 0 0
* * * x Ilss O 0
* * * * x  Ilgg O
| * * * * x 77 ]
My I'is T'ig T'iy O 0 0 07
0 0 0 0 0 0 0 0
r— 0 0 0 0 Iy I'zsg I'sy I'ss

5

Py Tw Ta T i i T Tig (5)
0 0 0 0 0 0 0 0

L O 0 0 0 0 0 0 0 J

I, = E"PA+ ATPE + Q1 + Qo + Qs + ho® Wy + h122Z) — 16ETW3E 4+ SRT A
+ ATRST + cyuluy + GTA+ ATGy — 10h°ET T\ E,

My = ho® Wy + h19?Zy + ATGy — GT ) 11y = —4E"WSE,

s = ETPA;+ SRT Ay + GT Ay, Tlig = E"PF + SRTF + G, F,
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hy* h
H17 = ETPG + SRTG + G?Gv H22 = _GZ - Gg + h22W3 + h122Z3 + %Tl + %T%

Iy = GY Ay, Ty = GIF, Tlyy = GIG, Tlsg = —Q1 — 16ET Z3E — 10h2* ETTHE,
I3y = —4ETZ3E, Ty = —Q3 — 16E"W3E — 16E Z3E,
s = — (1 — hyg) Q2 + eaud ug, Igs = —e11, Iy = —eol,

120 120 1200
QO = —16W, — h—WzE - h—ETWQT — 100ETTy E,
2 2
120 1200 480 5400 1200
Qo = S—=Wi+ —E"W; + e+ ETWs E,
2 2 2
480 5400 840 10080 6300
Qs = —75 Wi = 7 ETW] — T WeE — —— E"W3E — e E'"T\E,
2 2 2 2
840 10080 o 13440 .
Qs = EWl i ETWl + o ETT\E,
1200 5400 5400 o 25920 . 16200 _
Ogy = — o Wy — o WoE — o ETW] — e E"W3E — e E'T\E,
5400 90720 10080 25920 50400
iy = 55 Wi+ = E'TE+ ——=Wo B+ === ETWy + ———E"W, E,
2 2 2 2 2
10080 50400 201600
Qo = === Wi = = ETWy — i ———F'"TVF,
2592 50400 50400 100800 529200
Qg3 = —%Wl — =5 E'Wy = 5 WE — ———E'W3E — ———E'T\E,
2 2 2 2 2
50400 100800 1209600
Ui = =W+ ——5—E'Wy + ———FE'T\E,
2 2 2
100800 2822400 _
Qg = — i W — e E™T\E,
12 12
U, = —167;, — %ETng — h—OZQE - OSETZgE — 100ETTLE,
12 12 12
120 1200 T, 480 5400 - 1200 -
Uy = h—mz1 e ETZ] L. —ZE + h123E ZsE + e ETT,E,
480 5400 840 10080 6300
=——Z ——7,F — ETZ:E — ETT,E,
B T T B T I A e R
13440 _ - 840 10080 7 r
Uy, = -~ E T2E+m21+ o ——FE"Z],
16200 1200 5400 5400 25920
Uyy = — ETTLWE — 7, — Z,E — ETZT — ETZ,E,
* T P e T P
90720 - 5400 10080 25920 - o 50400 .,
oy = e E T2E+EZ1+ h ——7,F + P ET 7T + o ETZ3E,
10080 50400 5 _p 201600 _p
oy = — hoi 7 — o E"Z] e ETT,E,
529200 25920 50400 - o 50400 100800 -
oy = — e ETT,E — i Zy — e ETZI — o ——7,F — Pt ETZ3E,
1209600 _ 50400 100800 7 p
Wy = e ETT,E + e Zi + P ETZT,
100800 2822400
Uy = — 7z — ETTyE

60
Iy = —10h E"T\E + AET WS 4+ — n —ETW,E,
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60 360
[y = —h—ETWQT > — E"W3E +180E" TV E,
2 2
360 840 . 1260 - 840 . 3360
P13:h2E W2+h—23E WsE — thTlE,FM_ o —E"Wy + o E,
60
I35 = —10h1o BT T E + 4ET Z] + h—ETZgE,
12
60 360
Iy = 180E"1LE — -——E" 2] — — E"Z3E,
h12 h12
1260 360 840 840 3360
Iy = — E"ThE + —E"Z] + ——=E"Z3E, T'ss = ——FE"Z; + E,
37 Iiis 21y + Iiis + e 3 38 = o e
12 12
Iy = 16ETWI + hOEngE [y = h—OETZgE +16ETZ]
12
12 4 4 4
[y = ——OETW2T 80ETW3E [y3 = 80ETWT 8 OETW3E
hQ h 2 h2 h2
840 . - 120 480
F44 == _h_23E WQ, F46 h E 22 h12 E ZgE
480 840 840
Uy =—E"Z] + —=E"ZsE, Ty = ———E"Z],
hio hio hio

€, = [Onx(i—l)na In7 0n><(15—z)n]> L= 17 27 B 157 h12 - h2 - hl-

Proof: The proof of this theorem is divided into two parts. The first part deals with the
regularity and impulse-free properties and the second part treats the uniformly asymptotic
stability property of the studied class of systems. First of all, we show that system (1) is
regular and impulse free. According to (3) and Schur complement lemma, IT < 0.

I 0000O0O

Let Vi=10 I 0 0 0 0 0]. Pre- and post-multiplying (4) by Vi and VI, yields
000O0TIO0O®O
Iy Ihp s Wy Wy 0 Zy Zy 0
* H22 H25 — h22 * W3 0o — h122 * Z3 0
* x  Ilx5 * x 0 x % 0
Q1+ Q2+ Qs + c1ufuy 0 0
- % b’ + holr o | <o (6)
47t g '
* * 62U%1U2
I AT 0 N T . .
Let V5 = 0 AT 1| Pre- and post-multiplying (7) by V2 and V3", respectively, yields
Y= F*” ?2} <0,%11 = ETPA+ATPE—16E"W3E+SRT A+ ATRST —10h,2ETT\E,
22

212 = ETPAd + SRTAda Z]22 - _<1 - hd)QQ' I
Since rankE = r < n, there must exist two invertible matrices M, N € R™*" such that

” "~ \J ]7“ 0 1 Y N7 All 12112:|
E=MFEN = , A= MAN = |~ ~l 7
|:0 0:| |: 21 A22 ( )
e Tl s e Thm Am] s em o [Py P
S = NTS — ~11:| : A, = MPN = |: dll ~d12:| ’ P = M—TPM—I — |: Nll ~12:| ]
|:521 I Ad21 Ad22 P21 P22 ( )
N L [ T 1o
W — M—TW M—l — [ ~311 312:| T M—TT M—l — |:~111 ~112:| 7R — MT [ :| 9
° ’ W321 W322 e ! T121 T122 H ( )

where H € R("=7>*("=") is any nonsingular matrix.
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Pre- and post-multiply ¥, by N7 and N. Using the obtained (7)-(9), we can easily

§ B
is irrelevant to the following discussion. It is easy to see that Eqy < 0. Thus, Ay is non-
singular. The pair (E, A) is regular and impulse free. This also means that the system
(1) is regular and impulse free.
In the following, we will show that the system (1) is uniformly asymptotically stable.
We can choose two nonsingular matrices M, N € R™*" such that

formulate the following inequality: E = P : ] <0, Bgp = Sy  HT Agy + Ay THST. ¢

I ! A, 0 Sy — Py 1?12
E—MEN—{O O} A= MAN = { },P—M Tpy—t {Pm Pyl

R = MF = [?1} , G=MG = [gﬂ} , Gi=M"TG\N, Gy =M7TGM™,
12 12

e N R A ]

= = [ ] 2wz = [Zn 2

t=writ = [ Z) gz = [ 2

R=MTR Q , T, = ]\Z*TT1]\7[*1 - @11 @12 ’ Ty = MfTTzM—l _ lel f212 .
Tao1 Thoo

At first, we define

£(t) = col {a(t), Ea(t), x(t — hn), x(t — ha), x(t — h(t)), f(t,2(t)), g(t, x(t — h(t))),
(t)7772 t

n(t) :col{/t s)ds /thz/ s)dsdf /t hz/u/ s)dsdfdu,
/th2 /u / / x(s)dsdAdedu},

772(15):col{/t1::1 /th2 / s)dsd#, /t N / / s)dsdfdu,
/t:h /u /0 o A " hlx(s)dsd)\dedu}.

col means column vector. Then choose an LKF candidate as

Vi(xe) = Vi(xy) + Valzy) + Va(we) + Va(xe) + Vs(z), (10)
Vi(z,) = 27 (t)ET PEx(t), (11)

Vi) = / 27 (5)Quz(s)ds + /th(t)ws)@ms)m | ot (2)

Ve =t || / ) [ W s

+h12 He[ } [*1 Z2H (f))} dsdo, (13)
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Vi(zy) = %22 /tth2 A t /9 t(Eg‘c(s))TTl(E:b(s))dsdedA, (14)
) = %22 /t:h /A o /9 (Bi(s)) T Ty(Bi(s))dsdbd. (15)
Le
t X:/(xt) = Vi(z;) + Va(a,) + Va(xe) + Va(w) + Vs(ar), (16)
Vi(w) = 227 () BT P(Ax(t) + Aga(t — h(t)) + Ff(t, 2(t)) + Gg(t, z(t — h(1)))), (17)
Va(e) < 2" (1)(Q1 + Q2 + Q3)a(t) — 27 (t — hy)Qu(t — ha)
== W)L~ he)Qur(t ~ H1) = 74~ ) st = ), (18)
s 1 B | o R P M
- [ o] [ ) [ e
~ / | {ﬁéflf BRI (19)
Assume

O N P Ry B A ke R W A I L
/tthz/u [ L Bs] w5

[ o = [ 1/ [ e
A

According to Lemma 2.1, we have
L] [ ] )
t—ho ( * E W3 (S)
r | Wh 2 W1 WLE 2
<~ { . BT E} ( htq L)V pre| (Tt 2
6 "Tw,  W,E 6 12

60 120 \" [w, W,E 12 60 120

) /““ 2(s) 17 (21 Zo] [ 2(s) "

2, |Bi(s)] | x Zs| |Ei(s)

T
|21 Lok 2 Zy  ZE 2
< -1 {* ETZ.E Is =3 (-1 + h12[6 « ETZE —I5 + h12[6
6 12 7y Z,E 6 12 12

—5 (I — — I+ —=I Is — —Ig+—1I | =7 (=1 + —=1I

(5 T ¢ T T2 7) L ETZ?,EK"’ Ta 1 T2 7) ( "

60 120 \"[z 2E 12 60 120
- D 2 JA Ay I
R 8) [* ETZSEK S e T T gt )
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) hok
Vi(z,) < %fT(t)eQTTlegf(t) — ") (TTETT BT, + STYETTVETy + 27T ET TV BT

- 64FTETT1EF4) £(t) (20)
. h
Vi(zy) < 12 =€ (Oes Toeat (1) — €7 (TS B TLETs + 8T BT T, ETg + 2717 BT T, ET
+ 64r§ E"T,ETs }E(t) (21)
h 3 h 8 20
I'y = hoey —eg, I'o = 7261 +eg — h2€97 I'3= 3261 —eg + h—2€9 - h_22610’
ha 15 90 210 hia 3
Iy = Z€1 +eg — h—2€9 + h—22610 Iy 7 3611, I's = hizez — €12, I's = 763 + ez — h—mem,
F—h26—6+8€—206 r h26+6—15€ —|—906 2106
7= g e T e s T g 8= T el L
For nonlinear functions f, g, given £; > 0, €5 > 0, we have
0< —erfT(t,z(@)f(t,x(t)) + erx” (H)ul uyz(t) (22)

0 < —eog” (t,x(t — h(t)))g(t, x(t — h(t))) + eax” (t — h(t))uzusz(t — h(t)). (23)

It is clear that ET R = 0, and then we can deduce that 0 = 227 (¢t)SRT Ei(t).

Using the free weighted matrix method, we get that
0=2[z"(t)G + (Ei(t)"G,"]

X [—E@(t) + Ax(t) + Aqz(t — h(t)) + Ff(t,x(t)) + Gg(t,z(t — h(t)))]. (24)
Using the derived derivative terms (17)-(21), add the left and right sides of (22)-(24)
into V(z;), and we get V(z;) < T (t)®E() <0 ) o o )
Thus, the nonlinear singular system (1) is stable. Let T=diag[N M~* N N NI I N

following inequalities: ® = L—EF g] < 0. Now, letting ((t) = N~lz(t) = [253} where
G1(t) € R, (5(t) € R*", the nonlinear singular system (1) can be written as
E((t) = AC(t) + AaC(t = h(t)) + Ff(1.¢(t) + Gg(t,¢(t — h(1))). (25)
Let () = N¢(¢) in (10) and x(t) is substituted into N((t), we get
V(C(t) = Va(C(t) + Va(C(1)) + Va(C(2)) + Va(C(t) + V5(C(1). (26)

We can follow the same line as (17)-(24) to get V(¢;) < €7(&)PE () < 0, where
£(G) = col {0, BEH), €t = ha), C(t = ha), C(t = h{), £(2.C(), 9t Gt — (1)}

Then we have Ay, (]511) HQ( )||2— V(¢(0)) < =X\ f(]t [1¢1(s) |2d8 < 0, Auin (pn) ||§1(t)’|2
—V(€(0)) < =1 [y [|G(s)]P ds < 0, if Ay = —Apax (&) > 0. Therefore,

oslM@W@s— /MQH%<—(®D (27)

From (27), it is easy to obtain that lim; ,o, (1(¢) = 0, limy_,o (2(t) = 0. According
to ¢(t) = N~'z(t), we can obtain lim; o z;(t) = 0 (i = 1,2). Thus, lim; ,, z(t) = 0.
According to Definition 2.3, the nonlinear singular system (1) is uniformly asymptotically
stable. This completes the proof.

Remark 3.1. Compared with [15], Theorem 3.1 introduces double and triple integral terms
in the construction of L-K functions in order to increase the information of time delay,
which reduce conservatism.
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Remark 3.2. Two B-L integral inequalities are applied in order to deal with LKF integral
terms in Theorem 3.1, which would obtain a tighter bound. Consequently, the application
of B-L integral inequalities helps to reduce the conservatism of the results efficiently.

4. Numerical Example.

Example 4.1. [15] Consider the following nonlinear singular time-delay system (1) with
Ei(t) = Ax(t) + Agw(t — h(t)) + Ff(t,2(t)) + Gg(t,z(t — h(t)))
where
o 10 A —1.8760 —0.0385 A, — 0.7324 —1.7906
10 0] 7T |—-0.3985 20366 |’ ¢ |—0.4120 0.6635 |’

r_ —0.8876 —0.0805 a— 1.1965 —0.7897
©1—0.9591 —0.7514|* ©  [—0.0348 0.9169 |-

Using these data in [15], a simulation program has been written in Matlab. For this
system, we are able to find a feasible solution for the set of LMI for any hy € [0,0.4772].

In this example, we choose R = [0 1} T Choosing h; as in Table 1 and applying Theorem
3.1 with hy = 0.4772, we find the maximum values of hy for which the system remains
uniformly asymptotically stable, which are listed in Table 1.

TABLE 1. The maximum allowable delay bounds hs for given h; in Example 4.1

Method hl =0 hl =0.1 hl =0.3 hl =0.5 hl =0.7 hl =0.9 hl =1
[15] 0.8617 | 0.9617 | 1.1617 | 1.3617 | 1.5617 | 1.7677 | 1.8825
Theorem 3.1 | 1.7817 | 3.9617 | 4.8709 | 58769 | 6.9821 | 7.7774 | 7.3915

Let us compare the results of Theorem 3.1 in this paper with the ones of Theorem 3.1
in [15]. Theorem 3.1 in [15] gives a delay-range-dependent uniformly asymptotic stability
criterion for system (1). The paper selected the upper bound of time-varying delay h;
which is the same as [15]. For given different values of hy, using Theorem 3.1, the values
of hy are shown in Table 1. The maximum value of hy that makes the system uniformly
asymptotically stable in [15] is also listed in Table 1. It is obvious that hy obtained by
applying Theorem 3.1 is larger than hy of [15]. Therefore, the proposed method presented
in this paper provides less conservative results than previous results.

5. Conclusions. In this paper, the uniformly asymptotic stability of singular time delay
systems with nonlinear disturbances has been investigated. The augmented LKF is estab-
lished, and the B-L integral inequality and the double B-L integral inequality are used to
deal with the integral terms of the derivative of LKF. A numerical example demonstrates
that the proposed method is less conservative than those in previous studies. In future,
state feedback controller or output feedback controller could be considered in order to
control the singular time-delay systems with nonlinear disturbances.

Acknowledgment. This work is supported by Science Basic Research Program of the
Education Department of Liaoning Province (No. LJC202002). The authors also grate-
fully acknowledge the helpful comments and suggestions of the reviewers, which have
improved the presentation.
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