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Abstract. In this paper, tensorized high-order fuzzy system framework is studied. The
interval type-n fuzzy system can be constructed under the proposed framework with tensor
structure. Based on the proposed framework, three high-order fuzzy systems are proposed,
which are tensorized type-2, type-3 and type-4 fuzzy systems. Antecedent part of tensorized
type-n fuzzy system is a kind of interval type-n fuzzy set which is able to generate via the
proposed framework. The whole antecedent part is combined with the (n+2)-dimensional
tensor structure. The consequent part is completed by the tensor unfolding method and
tensor’s Moore-Penrose (M-P) inverse. The realization of the operation between tensors
through Einstein product. Under the proposed framework, tensorized type-n fuzzy system
has (n+2)-dimensional tensor structure, the consequent part unfolded (n+2)-dimensional
tensor into 3n−2 (n > 2) 4-dimensional tensors. Then, the consequent learning part is
completed in high-order tensor space. Finally, the effectiveness of three kinds of models
that are generated by the proposed framework is verified by simulation results. Simul-
taneously, the proposed framework is proved to be a feasible scheme for constructing
high-order fuzzy sets and high-order fuzzy systems.
Keywords: Tensorized fuzzy system, Interval type-n fuzzy set, High-order fuzzy system,
Tensor regression

1. Introduction. Since Zadeh first proposed fuzzy set [1], fuzzy theory has developed
for decades. Based on fuzzy set theory, various fuzzy systems have emerged and have been
extended to many branches of science. Numerous studies have shown that approximation
ability is considered to be the main ability of the fuzzy system. Therefore, fuzzy system is
mainly used to estimate nonlinear functions or establish a mathematical model according
to data set. Due to the excellent data modeling ability, fuzzy theory is employed in many
scientific fields, such as expert systems [2], mobile robot control [3], binary classifier [4],
fuzzy forecasting [5], sickness diagnosis [6], pattern recognition [7] and control system [8].
In the existing research on fuzzy system, type-1 fuzzy set (T1FS) and type-2 fuzzy set
(T2FS) have been widely studied and applied. In [9], classification of faults is realized via
a T1 fuzzy logic system in an electromechanical equipment. Recently, T1 and singleton
fuzzy logic system are optimized via Broyden-Fletcher-Goldfarb-Shanno (BFGS) method
in [4]. The performance of T1 fuzzy system in binary classification problems is improved.
In [5], T1 fuzzy function is improved via Elastic-net regularization method, and this
method is a new T1 fuzzy system optimization method. Compared with T1 fuzzy system,
T2 fuzzy system is more widely studied. Mendel et al. introduced the T2 fuzzy logic
systems [10]. In succession, IT2 fuzzy logic systems are proposed in [11] by team of
Mendel. Afterwards, T2 fuzzy system has been extensively researched and applied. In
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[12], the Gaussian interval type-2 fuzzy set (IT2FS) is applied for modeling the process of
multi-attribute decision-making. In [13], T2FS is employed to enhance medical images’
visibility. In [14], T2 fuzzy system is incorporated with things technology and used to
appraise air quality. Type-reduction or defuzzification is the key content of type-2 fuzzy
logic systems, and three kinds of center-of-sets type-reduction methods are compared in
[15], recently.
In the aforementioned papers, it is shown that T1FS and T2FS have been fully studied

and popularized in the past decades. However, there are a few relative researches on high-
order fuzzy sets and high-order fuzzy systems. Zadeh introduced the content of high-order
fuzzy set at the beginning of fuzzy set establishment [16]. Mendel et al. introduced and
described the construction of type-n fuzzy set (TnFS) [17]. Subsequently, Rickard et
al. proposed fuzzy subset in the light of type-n fuzzy set in [18]. A short introduction
about the type-3 fuzzy set (T3FS) and high-order FSs is given in [19]. In [20], the interval
type-3 (IT3) fuzzy system is introduced. After that, there are some research works around
IT3 FS, such as MEMS gyroscopes’ fuzzy predictive controller design [21], renewable
energy modeling-prediction [22], nonlinear systems modeling [23], as well as 5G telecom
applications and stabilization converter [24].
Although there are some researches on type-3 fuzzy system and type-n fuzzy set, there

is no framework-like work on high-order fuzzy sets. In [25, 26, 27], the approach of con-
structing tensor-based T2 fuzzy system by combining tensor structure and T2FS is in-
troduced. And performance and effectiveness of the algorithm are verified. Based on the
tensor structure, a framework of the high-order fuzzy system is suggested in this work.
The primary contributions of this work are as the following.

• In accordance with description of classical TnFS and high-order fuzzy theory, a
high-order fuzzy system framework is studied in the tensor structure.

• Under the framework of tensorized high-order fuzzy system, tensorized type-2, type-3
and type-4 fuzzy systems are realized, and simulation experiments are carried out.

• The tensor unfolding learning algorithm is extended under the high-dimensional
tensor structure, and the extended method is used in solving learning problem of the
suggested framework.

The manuscript of this paper is as below. Background of type-n fuzzy set is expressed
in Section 2. The design of the proposed tensorized high-order fuzzy system framework
(THOFSF) is presented in Section 3, among which, Section 3.1 studies the tensorized high-
order fuzzy set, and Section 3.2 introduces the consequent learning part of the suggested
framework. Section 4 narrates the simulation test framework and discusses comparison
results. At last, Section 5 gives conclusion part.

2. Background of High-Order Fuzzy Set.

2.1. Type-1 fuzzy set (T1FS). T1FS is the classical content in fuzzy theory. In uni-
verse X, a T1FS can be denoted by Φ. And Φ is explained via its membership function
(MF) µΦ(x) which can be called type-1 MF. The elements of T1FS µΦ take values on
interval [0, 1]. Therefore, T1FS is conveyed as a set of characteristics which can be ex-
tracted from interval [0, 1] by membership function µΦ(x). According to collection of
points representation, the T1FS Φ is expressed as below [1, 16, 28, 29, 30]:

Φ = {(X,µΦ(x))|x ∈ X}, (1)

where µΦ : X for [0, 1]. In accordance with Formula (1), T1FS can be understood as the
set of ordered pairs of a member.
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2.2. Type-2 fuzzy set (T2FS). T2FS is constructed via T1FS. For the given general
T2FS Φ̃, it is denoted as below:

Φ̃ =
{(

(x, u), µΦ̃(x,u)

)
|∀x ∈ X, ∀u ∈ Jx ⊆ [0, 1]

}
, (2)

where Jx is the primary membership of x. 0 ≤ µΦ̃(x, u) ≤ 1 can be called the T2 MF
and it can also be called secondary grades. The x is lied in range of primary MF. The u
belongs to secondary MF. Additionally, the general T2FS Φ̃ is defined as below [25]:

Φ̃ =

∫
x∈X

∫
u∈Jx

µΦ̃(x, u)

(x, u)
, Jx ⊆ [0, 1], (3)

where
∫∫

represents the association relation between x and u. Based on Formulae (2) and
(3), secondary MF of general T2FS is a type-1 MF. And secondary grades comply this
type-1 membership function. The IT2FS is deemed the exceptional condition of general
T2FS. Similar to Formulae (2) and (3), the IT2FS can be defined as

Φ̃ = {((x, u), 1)|∀x ∈ X, ∀u ∈ Jx ⊆ [0, 1]} or Φ̃ =

∫
x∈X

∫
u∈Jx

1

(x, u)
, Jx ⊆ [0, 1], (4)

where X is primary domain, and Jx is secondary domain. Obviously, the secondary mem-
bership grade µÃ(x, u) of IT2FS is equal to 1.

2.3. Type-3 fuzzy set (T3FS). Similar to the relationship between T1FS and T2FS,
T3FS and T2FS inherit the similar relationship. In the light of the introduction of the
high-order fuzzy set by Zadeh [16] and the notation of Mendel et al. [17], the type-n
(n > 1) FSs can be described as the set of values extracted in type-(n− 1) FSs on [0, 1].
That is, secondary MF of type-n FS is type-(n− 1) MF, and secondary grades of type-n
FS are type-(n− 1) secondary grades.

Therefore, let Φ̃3 be an interval T3FS, which is expressed as [20]

Φ̃ =

{(
(x, u),

[
1

µΦ̃(x, u)

])∣∣∣∣ ∀x ∈ X, ∀u ∈ Jx ⊆ [0, 1]

}

or Φ̃ =

∫
x∈X

∫
u∈Jx

[
1

µΦ̃(x,u)

]
(x, u)

, Jx ⊆ [0, 1], (5)

where µΦ̃(x, u) expresses interval type-2 MF.

3. The Proposed High-Order Fuzzy System Framework.

3.1. Tensorized high-order fuzzy set. In this section, tensorized high-order fuzzy set
is proposed. The T1FS is the earliest and most classical fuzzy set. T2FS, T3FS and type-n
FS are constructed by T1FS. In the content of tensor theory, fuzzy set can be combined
in the tensor structure. In [25], triangular T2FS is combined in 4-dimensional tensor
structure. In [26], the IT2FS extends the enhancement node of random vector functional
link (RVFL) network, and the using IT2FS is denoted via tensor structure. On the basis
of tensor model, a trapezoidal T2 fuzzy inference system (TT2FIS) is studied in [27],
and trapezoidal T2FS is combined in tensor structure. Therefore, the effectiveness and
implementation of reconstructing T2FS through tensor structure have been proved.

Tensorized T2 fuzzy set (T2FS) is the earliest tensor-based high-order fuzz set. Let A
be a tensorized T2FS. The N -dimensional data set is expressed as {x}I = {x1, x2, . . . , xI},
xI = [xi,1, xi,2, . . . , xi,J ]

T ∈ RN , where i = 1, 2, . . . , I and I is an order index of sorted set.
The MFs of IT2FS are denoted as follows:

µ̄il = exp
(
−s1t

2
)
, µ

il
= exp

(
−s2t

2
)
, (6)
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where t = xij−mij, s1 =
1
σ̄2
ij
and s2 =

1
σ2
ij
(1 ≤ i ≤ I, 1 ≤ l ≤ L). mij is average value. σ̄

2
ij

and σ2
ij are standard deviation of UMF and LMF, respectively. The area between LMF

and UMF is defined as foot of uncertainty (FOU) of the IT2FS. And the membership
degree of IT2FS is 1.
For a given testing dataset {xm, ym}Nt=1, the input sample xm = (xm1 , xm2 , . . . , xmM) ∈

RM and the desired output ym ∈ R. The lower MF of tensorized T2FS A is denoted
A ∈ RN×2×L×1. Meanwhile, it is noted that A is an array of lower MFs of T2FS. And A
can be estimated the relationship between xt and yt. The array A can be expressed as
below:

A:,:,1,1=

µ(ϖ11x1 + τ11) µ(ϖ12x1 + τ12)
...

...
µ(ϖ11xN + τ11) µ(ϖ12xN + τ12)

 , . . . ,A:,:,L,1=

µ(ϖL1x1 + τL1) µ(ϖL2x1 + τL2)
...

...
µ(ϖL1xN + τL1) µ(ϖL2xN + τL2)

,
where ϖil = [ϖi1, ϖi2, . . . , ϖiK ] are randomly generated input weights, µ(xn) = [µ(x1),
µ(x2), . . . , µ(xN)] (n = 1, 2, . . . , N) are three similar membership function with different
parameters (that is, µ(·), µ̂(·), and µ(·)), and τil are stochastic generated bias. Similarly,

the Ā ∈ RN×2×L×1 can be denoted by upper membership function arrays, which are
expressed as below:

Ā:,:,1,3=

 µ̄(ϖ11x1 + τ11) µ̄(ϖ12x1 + τ12)
...

...
µ̄(ϖ11xN + τ11) µ̄(ϖ12xN + τ12)

 , . . . , Ā:,:,L,3=

 µ̄(ϖL1x1 + τL1) µ̄(ϖL2x1 + τL2)
...

...
µ̄(ϖL1xN + τL1) µ̄(ϖL2xN + τL2)

.
The Â ∈ RN×2×L×1 can be denoted as principal membership function arrays, and it can
be constructed in the same way as A and Ā. Â can be expressed as below:

Â:,:,1,2=

 µ̂(ϖ11x1 + τ11) µ̂(ϖ12x1 + τ12)
...

...
µ̂(ϖ11xN + τ11) µ̂(ϖ12xN + τ12)

 , . . . , Â:,:,L,2=

 µ̂(ϖL1x1 + τL1) µ̂(ϖL2x1 + τL2)
...

...
µ̂(ϖL1xN + τL1) µ̂(ϖL2xN + τL2)

.
In conclusion, a 4-dimensional tensor A ∈ RN×2×L×3 is obtained via three 3-dimensional
tensor which dimension is N×2×L. 4-dimensional tensor A can be constructed via T2FS.
For convenience, A is called tensorized T2FS.

Remark 3.1. The classical T2FS is constructed via lower MF, upper MF and principal
MF. Principal MF is generated in type-reduction step of T2 fuzzy system. Because tensor
structure integrates the content of the secondary MF directly, the reduction step of T2
fuzzy inference can be refrained in tensorized T2 fuzzy system modeling. Thus, tensorized
fuzzy structure framework can directly combine the content of T2FS.

In this paper, the proposed tensorized high-order system framework is designed as a
multi-layer network. The tensorized T2FS described above can be regarded as the first
layer of multi-layer network. The tensorized T3FS (T3FS) is the next layer, that is, the
second layer of multi-layer network. As mentioned earlier, tensorized T2FS is constructed
via T1FS. The tensorized T3FS of the proposed tensorized high-order system framework
can be constructed via tensorized T2FS. For easy identification, the above tensorized
T2FS A is denoted A(2). Then, a tensorized T3FS can be expressed A(3), and it can be
defined as below:

Ā(3)
:,:,:,:,1 = Ā(2), Â(3)

:,:,:,:,2 = Â(2), A(3)
:,:,:,:,3 = A(2), (7)

where Ā(2) ∈ RN×2×L×3, Â(2) ∈ RN×2×L×3 and A(2) ∈ RN×2×L×3 represent upper T2 MF,
secondary T2 MF and lower T2 MF, respectively. It is noted that the dimension of the
suggested tensorized T3FS A(3) is N × 2 × L × 3 × 3, that is, A(3) is a 5-dimensional
tensor. According to the introduction of T3FS in [18] and [20], when the secondary MF
of T2FS changes from T1 to T2, the original T2FS becomes T3FS. That is, the secondary
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MF of T3FS is T2 MF. The interval T3FS or tensorized T3FS A(2) which is generated by
Formula (7) has the same design with the interval T3FS in [18] and [20]. The secondary
MF of tensorized T3FS is a T2 MF. The UMF and LMF of interval T3FS in [18] and
[20] are T1 MF. However, the UMF and LMF of the proposed tensorized T3FS are both
upgraded to T2 MF.

Similarly, the tensorized T4FS which is denoted asA(4) can be constructed by tensorized
T3FS. The tensorized T4FS A(4) is expressed as follows:

Ā(4)
:,:,:,:,:,1 = Ā(3), Â(4)

:,:,:,:,:,2 = Â(3), A(4)
:,:,:,:,:,3 = A(3), (8)

whereA(4)∈RN×2×L×3×3×3. Ā(3)∈RN×2×L×3×3, Â(3)∈RN×2×L×3×3 andA(3) ∈ RN×2×L×3×3

are type-3 LMF, type-3 secondary MF and type-3 LMF, respectively. The dimension of
A(4) is N × 2× L× 3× 3× 3, that is, A(4) is a 6-dimensional tensor.

In the above, the tensorized T2FS, tensorized T3FS and tensorized T4FS are described.
For the proposed tensorized high-order system with multi-layer network structure, the first
layer corresponds to tensorized T2FS, the second layer corresponds to tensorized T3FS,
the third layer corresponds to tensorized T4FS and so on. In other words, the proposed
tensorized type-n fuzzy system has (n − 1) layers network structure, and the tensorized
type-n fuzzy set is constructed by tensorized type-(n−1) set. Since then, the design of the
antecedent part of the proposed tensorized high-order fuzzy system framework with multi-
layer network structure has been completed. In the next section, the tensor regression for
solving consequent learning part is introduced.

Remark 3.2. According to the introduction of the high-order fuzzy set by Zadeh [16] and
Mendel et al. [17], type-n FS is ultimately composed by T1FS. For the proposed tensorized
high-order fuzzy set, the promotion of order is on the basis of tensorized T2FS. And
tensorized T2FS is based to T1FS. Thus, the proposed tensorized high-order fuzzy set
conforms to the construction idea of classic high-order fuzzy theory.

3.2. Consequent learning part of the proposed framework. In this section, the
regression algorithm for solving consequent learning of the proposed framework is in-
troduced. The mathematical model of the proposed high-order fuzzy system framework
is

A(n) ∗N X = T , (9)

where A(n) ∈ RI1···2×J1···2 is the tensor which is generated by tensorized type-n fuzzy
system, where I1···2 = I1 × I2, and J1···2 = J1 × J2. X ∈ RJ1···2 is the corresponding
weight tensor and T ∈ RI1···2 is the output tensor. In [31], a generalized M-P inverse of
tensor is proposed, which is utilized as regression algorithm of the proposed tensorized
framework. The pseudo code of M-P inverse is shown in Algorithm 1.

Algorithm 1: Moore-Penrose inverse of tensor A [31]

Require: Input: Tensor A, tensor index P1···K and Q1···K , where P1···K=P1×· · ·×PK ,
Q1···K=Q1×· · ·×QK .

Ensure: K is even, P =
∏K

i=1 Pi, Q =
∏K

i=1Qi.

1: Reshape tensor A ∈ RP1···K×Q1···K into a matrix A ∈ RP×Q.

2: Perform SVD on matrix A, A is decomposed as A = FGH∗, where H∗ is conju-
gate transpose of H.

3: Reshaping matrix into tensor, that is, F into F , G into G, H∗ into H∗.

4: Output: Obtain Moore-Penrose inverse of A through A+ = F ∗K G+ ∗K H∗.
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Then, the weight tensor X in Formula (9) is denoted as follows:

X =
{
A(n)

}+

∗N T , (10)

where
{
A(n)

}+

is M-P inverse of
{
A(n)

}
. With regard to tensorized type-2 fuzzy system,

Formula (10) is rewritten as

X (2) =
{
A(2)

}+

∗N T , (11)

where A(2) ∈ RN×2×L×3 is the regression tensor, and
{
A(2)

}+

is the M-P inverse of

tensor A(2). The output of the tensorized T2 fuzzy system in the suggested framework is
indicated as below:

T̂ (2) = A(2) ∗N X (2). (12)

For the tensorized type-3 fuzzy system, the regression tensor is A(3) ∈ N×2×L×3×3.
Tensor structure has the ability to expand with adjacent order tensors. In [27], tensor
unfolding structure learning method is used to solve the consequent part, and a 4-D
tensor is unfolded to generate three matrices. The effectiveness of tensor unfolding struc-
ture is verified. The regression tensor of tensorized type-3 fuzzy system in the proposed
framework is a 5-D tensor. For consistency, the 5-D tensor A(3) is expanded to generate
three 4-D tensors in order to use the Moore-Penrose inverse for solving the learning part.
Therefore, the output of tensorized type-3 fuzzy system in the proposed high-order fuzzy
system framework can be expressed as below:

T̂ (3) =
1

3

3∑
k=1

A(2)
k ∗N X (2)

k , (13)

where A(2)
k ∈ RN×2×L×3, k = 1, 2, 3. Three 4-D tensors, A(2)

1 , A(2)
2 and A(2)

3 can obtain

from the 5-D tensor A(3) ∈ RN×2×L×3×3. According to tensor unfolding method, A(3)
:,:,:,:,1

can be unfolded to A(2)
1 , A(3)

:,:,:,:,2 can be unfolded to A(2)
2 and A(3)

:,:,:,:,3 can be unfolded to

A(2)
3 .
Finally, the output of tensorized type-n fuzzy system in the proposed high-order fuzzy

system framework is denoted as below:

T̂ (n) =
1

3n−2

3∑
k1=1

· · ·
3∑

kn−2=1︸ ︷︷ ︸
n−1

∑
A(2)

k1···kn−2
∗N X (2)

k1···kn−2
. (14)

For example, the output of the tensorized type-4 fuzzy system in the proposed high-order
fuzzy system framework can be expressed as below:

T̂ (4) =
1

9

3∑
k1=1

3∑
k2=1

A(2)
k1k2

∗N X (2)
k1k2

. (15)

4. Simulation Experiment.

4.1. Regression problems modeling. Five regression problems datasets are conduct-
ed, which are Auto MPG, Concrete slump, Hybrid, Servo and Wine quality white. The
parameters setting and attributes of each data set are shown in Table 1. The compari-
son outcomes of average value and standard deviation on each data set with 1000 times
testing are tabulated in Table 2. In the proposed framework, tensorzied type-2 fuzzy sys-
tem (THOFSF-T2), tensorzied type-3 fuzzy system (THOFSF-T3), and tensorzied type-4
fuzzy system (THOFSF-T4) are performed in simulation studies. Furthermore, random
vector functional link (RVFL) network [32], trapezoidal T2 fuzzy inference system (TT-
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Table 1. Basic information of five data sets

Data set #Attributes #Train sets #Test sets
Auto MPG 7 274 118

Concrete slump 11 91 12
Hybrid 7 107 46
Servo 5 116 51

Wine quality white 12 3429 1469

Table 2. Comparison results with RVFL [32], TT2FIS [27], IT2FNN [33]
and the proposed high-order fuzzy system framework

Data set
Phase

(RMSE)
Statistic

Method
RVFL IT2FNN TT2FIS THOFSF-T2 THOFSF-T3 THOFSF-T4

Auto
MPG

Training
Mean 3.96e-01 4.35e-01 7.47e-01 3.83e-01 3.62e-01 3.54e-01
Std 2.47e-02 2.51e-02 4.58e-02 2.29e-02 1.65e-02 1.39e-02

Testing
Mean 4.50e-01 4.72e-01 7.37e-01 4.45e-01 4.15e-01 4.04e-01
Std 4.51e-02 3.95e-02 1.00e-15 4.25e-02 3.59e-02 3.51e-02

Concrete
slump

Training
Mean 9.23e-01 1.16e+00 1.43e+00 8.43e-01 7.29e-01 6.89e-01
Std 1.16e-01 1.01e-01 1.07e-01 1.02e-01 6.76e-02 5.18e-02

Testing
Mean 1.44e+00 1.39e+00 1.51e+00 1.46e+00 1.16e+00 1.03e+00
Std 5.04e-01 2.08e-01 5.33e-15 3.81e-01 2.77e-01 1.73e-01

Hybrid
Training

Mean 9.23e-01 1.16e+00 1.43e+00 8.43e-01 7.29e-01 6.89e-01
Std 1.16e-01 1.01e-01 1.07e-01 1.02e-01 6.76e-02 5.18e-02

Testing
Mean 1.44e+00 1.39e+00 1.51e+00 1.46e+00 1.16e+00 1.03e+00
Std 5.04e-01 2.08e-01 5.33e-15 3.81e-01 2.77e-01 1.73e-01

Servo
Training

Mean 5.96e-01 7.05e-01 1.27e+00 5.42e-01 4.93e-01 4.78e-01
Std 7.71e-02 7.71e-02 7.13e-02 6.76e-02 5.70e-02 5.45e-02

Testing
Mean 7.92e-01 8.38e-01 1.28e+00 7.81e-01 6.93e-01 6.66e-01
Std 1.56e-01 1.63e-01 7.11e-15 1.60e-01 1.51e-01 1.56e-01

Wine
quality
white

Training
Mean 6.27e-01 6.39e-01 6.66e-01 6.30e-01 6.22e-01 6.20e-01
Std 9.32e-03 1.02e-02 1.02e-02 9.74e-03 9.17e-03 8.67e-03

Testing
Mean 6.54e-01 6.55e-01 6.47e-01 6.57e-01 6.47e-01 6.44e-01
Std 2.19e-02 2.24e-02 6.66e-16 2.41e-02 2.22e-02 2.11e-02

2FIS) [27] and interval T2 fuzzy-neural network (IT2FNN) [33] are applied in the model
comparisons.

As it can be seen, errors of RVFL, TT2FIS, IT2FNN and the proposed framework are
listed in Table 2. THOFSF-T4 of the proposed high-order fuzzy system framework outper-
forms the other five models. For the RVFL and IT2FNN, the training and testing errors
outperform TT2FIS on moderate scale data set Auto MPG, and three small scale datasets
(Concrete slump, Hybird and Servo). And the performance of TT2FIS is better than
RVFL and IT2FNN on large moderate scale data set Wine quality white. Thus, RVFL
and IT2FNN are more suitable for deployment on moderate scale and small datasets scale,
and TT2FIS is more suitable large moderate scale data set. Three kinds of sub-systems
of the proposed high-order fuzzy system framework, which are THOFSF-T2, THOFSF-
T3 and THOFSF-T4, obtained more excellent performance than RVFL, TT2FIS and
IT2FNN on 5 different scales datasets. Performance of the suggested framework infers
that it is feasible to construct high-order fuzzy system through tensor structure and ten-
sor regression method. The effectiveness of the operation to construct the type-n fuzzy
set is proved via the comparison results in Table 2. The results show that the proposed
framework has better generalization performance and the ability to deal with high-order
uncertain information.
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4.2. Nonlinear system fitting. In this experiment, three kinds of sub-systems of the
suggested high-order fuzzy system framework are used for nonlinear system fitting. The
nonlinear system is given by [25], which can be denoted as below:

Y (s) =
Y (s− 1)Y (s− 2)(Y (s− 1) + 2.5)

1 + (Y (s− 1))2 + (Y (s− 2))2
+ ζ(s− 1). (16)

The system reaches equilibrium when it is in (0, 0). The input of fuzzy system is elected
as ζ(s) ∈ {−2, 2}. Training input elects the uniformly distributed random variable in the
{−2, 2}. Testing input is ζ(s) = sin(2πs/25). The nonlinear system (16) can be rewritten
as below:

Ŷ (s) = f̂(Y (s− 1), Y (s− 2), u(s− 1)). (17)

The fitting results are shown in Figure 1. And the results show that the proposed model
has excellent performance. Excellent uncertain information modeling ability is an advan-
tage of the fuzzy system. The THOFSF-T2, THOFSF-T3 and THOFSF-T4 are based on
T2FS, T3FS and T4FS, respectively. The high-order fuzzy set has more complex struc-
ture, and it can include more uncertain information. Therefore, the uncertain information
modeling ability of high-order fuzzy system is gradually enhanced with the increasing
order of fuzzy system.

Figure 1. The prediction results of THOFSF-T2, THOFSF-T3 and
THOFSF-T4 for the nonlinear system fitting problem

5. Conclusion. In this work, a tensorized high-order fuzzy system framework is studied.
Based on tensor structure, the type-n fuzzy system can be constructed. In Section 3.1,
tensorized T2FS, tensorized T3FS and tensorized T4FS are generated via the proposed
framework. According to the tensor regression method and above three kinds of high-
order fuzzy sets, the tensorized type-2, type-3 and type-4 fuzzy systems are constructed.
Meanwhile, the formulaic output of the type-n fuzzy system which is generated via the
proposed framework is given in Section 3.2. Two simulation experiments compare three
fuzzy systems generated by the proposed framework with RVFL, IT2FNN and TT2FIS.
RVFL can be considered as a T1 fuzzy network. IT2FNN can be considered as a T2 fuzzy
neural network. TT2FIS is a T2 fuzzy system. The simulation results express that the
suggested framework obtains excellent generalization ability and uncertainty modeling
ability. And the proposed framework is a feasible scheme to construct type-n fuzzy sets
and high-order fuzzy systems. There is still space for advancement in the suggested
THOFSF in this study. In the future, the strategy of constructing tensorized high-order
system will be updated and expanded around tensor structure and tensor regression al-
gorithm.
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