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Abstract. The tracking control of nonlinear system with partially available states is
investigated. The nonlinear system in this paper can be considered to be composed of
the two coupled subsystems: the subsystem with all available state variables and the
other subsystem with all unavailable state variables. The dynamics of the two subsystems
are represented by vector differential equations, respectively. By using the available state
and the given system tracking reference targets, the state feedback tracking controller is
designed for the nonlinear system, which can guarantee that the available state and the
unavailable state asymptotically track the given reference targets, respectively. In other
words, the results in this paper show that when the available state asymptotically tracks
a given reference target, the unavailable state can also asymptotically track the other
given reference target. Compared with the existing literature, this paper directly utilizes
the available state variables to design the tracking controller instead of utilizing any state
observers to estimate the unavailable state of the system, which not only maintains the
dimension of the system to be constant but also reduces the control operation delay.
Finally, a numerical simulation example is given to verify the validity of the results in
this paper.
Keywords: Available state variables, Nonlinear system, Tracking control, Unavailable
state variables, State feedback controller

1. Introduction. In the field of practical engineering application, some state variables
of the controlled system cannot be directly detected due to sensor technology, design
requirements or cost saving considerations, for example, the permanent magnet synchro-
nous motor drive system without speed sensor [1, 2], the AC/DC servo system without
speed sensor [3, 4], and the winding system without tension sensor [5, 6]. Evidently, the
unavailable state variables mean that they cannot be detected and used directly in control
scheme, so them will make a direct difficulty on the synthesis of state feedback controller.
On the other hand, during system operation, the controller may have some sensor faults
in the detection state beyond expectations. In this case, the controlled system can be
regarded as the operation under the condition with unavailable state variables, which will
also cause the system controller failure, leading to the instability of the whole system
[7, 8, 9, 10]. Thinking via the perspective of large system theory [11], we can consider the
nonlinear system with available state variables and unavailable state variables as a com-
posite system, which is composed of the two subsystems, one is with the available state
variables, and the other is with unavailable state variables. Therefore, how to design the
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controller for the system under the condition that some state variables are unavailable is
a problem worth considering.
In order to solve the above problem, the existing literature mainly considers the control

design based on system state observers [12, 13, 14, 15], containing the full dimensional
state observers [12, 13] and the reduced order observers [14, 15]. For instance, in [12],
a full dimensional state observer is designed for linear systems with unavailable distur-
bances, providing a simple and efficient method for linear systems with unmeasurable
disturbances to estimate disturbances, and solves the shortcomings of previous many
scholars who must assume that unavailable disturbances satisfy the given constant coef-
ficient differential equation and that all inputs are assumed to be known states to design
state observers. In [13], a general nonlinear full-dimensional observer is designed for fuzzy
systems with unavailable variables, which is suitable for discrete and continuous systems,
and solves the mismatch problem of the system caused by the premise variables of un-
available variables. In [14], when studying distributed output feedback tracking control
of nonlinear multi-agent systems, in order to solve the problem of dependence of dynamic
nonlinear functions on available state variables of the system, the reduced order observer
is used to estimate the unavailable state variables, and the corresponding relationship
between network topology and the reduced order observer is established to achieve the
consistency of output of leaders and followers in the system. In [15], a reduced order ob-
server of the nonlinear system is designed for the unavailable state vector contained in the
system to estimate the unmeasurable state, and the coupling between the reduced order
observer and the feedback controller is used to finally complete the design of the system
output feedback controller, when studying the global stabilization and stability problem
of smooth control output feedback of high-order switched nonlinear systems with uncon-
trollable unobservable subsystems linearized by Jacobian matrices. The above examples
show the control design methods based on the state observers, the essence of which is to
design state observers to replace the unavailable state variables with the corresponding
estimated state variables, so as to finish the purpose of designing state feedback controllers
for the system.
However, the control methods via state observers have some disadvantages [16, 17, 18].

On the one hand, the state observer increases the state dimensions of the whole system
(which consists of the original controlled system and state observer), which easily causes
the time-delay of the controller operation; on the other hand, owing to the nonlinear and
unknown inputs, disturbances and other environment uncertainties, the state observer
has a large estimation deviation in actual operation. In order to overcome the above two
shortcomings, designing a robust state observer for the system is one of useful methods
[19, 20, 21]. However, it is a useful alternative method without the state observer that
the control scheme is synthesized only by using the available state variables and the
boundedness information involved in available state variables. This alternative method is
rare in the existing literature.
Influenced by the above discussion, this paper focuses on the tracking control of com-

posite system without the state observer. Compared with the existing literature, the main
contributions and innovations of this paper are as follows. (i) Different from the previous
literature, this paper regards the controlled system as the composite system with the
two coupled subsystems, one is described by the available state variables, and the other
is described by the unavailable state variables. The available state variables are used to
synthesize the tracking controller without the state observer, which is rare in the existing
literature. (ii) The feedback gains in the synthesized tracking controller are determined
mainly by the boundedness information involved in available state variables. This implies
that the tracking controller is robust for the unavailable state variables to a certain extent.
The rest of this manuscript is organized as follows. In Section 2, the dynamic differ-

ential equations for the composite system are proposed, which is composed of the two
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subsystems, one is with available state variables, and the other is with unavailable state
variables, where the two subsystems are mutually coupled. In addition, the control goal
of this paper is presented and the tracking control scheme is also designed. In Section 3,
the simulation example is given to demonstrate the validity of control scheme. Finally,
the conclusion is given in Section 4.

2. Model Description and Control Design. In this paper, we consider the nonlinear

composite system with the state vector x = x(t) =
[
xT
1 xT

2

]T ∈ Rn, where x1 ∈ Rn1 is
available state vector, and x2 ∈ Rn2 is unavailable state vector, n1+n2 = n. The dynamic
differential equations of nonlinear composite system can be described as follows:

ẋ1 = A1(x1, t)x1 + Φ1(x1, t)x2 +G1u1 (1)

ẋ2 = A2(x1, t)x2 + Φ2(x1, t)x1 +G2u2 (2)

where A1 = A1(x1, t) ∈ Rn1×n1 , A2 = A2(x1, t) ∈ Rn2×n2 , Φ1 = Φ1(x1, t) ∈ Rn1×n2 , Φ2 =
Φ2(x1, t) ∈ Rn2×n1 are matrix functions of state vector x1, u1 ∈ Rn1 , u2 ∈ Rn2 are
control inputs for the subsystem (1) and subsystem (2), respectively, G1 ∈ Rn1×n1 and
G2 ∈ Rn2×n2 are gain matrices, n1 ≤ n2.

Remark 2.1. The models of linear composite systems with two subsystems can be regarded
as the special ones of Equations (1) and (2), if the matrices A1 = A1(x1, t), A2 = A2(x1, t),
Φ1 = Φ1(x1, t), Φ2 = Φ2(x1, t) are constant matrices [22, 23, 24]. For some dynamic
systems, the auxiliary system models can be represented in form of Equations (1) and (2).
This can refer to the simulation example (the double coupled inverted pendulums system)
in Section 3.

Let A = A(x1, t) = block-diag
[
A1(x1, t) A2(x1, t)

]
∈ Rn×n, Φ = Φ(x1, t) =[

On1×n1 Φ1(x1, t)
Φ2(x1, t) On2×n2

]
∈ Rn×n, G = block-diag[ G1 G2 ] ∈ Rn×n, u =

(
u1

u2

)
∈ Rn.

Therefore, by the above symbols, Equations (1) and (2) can be rewritten as follows:

ẋ = Ax+ Φx+Gu (3)

Assumption 2.1. Consider the nonlinear composite system with Equations (1) and (2).
The state vector x1 is available and x2 is unavailable. The matrices A1(x1, t), A2(x1, t),
Φ1(x1, t), Φ2(x1, t) are known and bounded, and the gain matrices G1 and G2 are known
with inversible matrices G−1

1 and G−1
2 , respectively.

Let x∗
1 = x∗

1(t) ∈ Rn1 and x∗
2 = x∗

2(t) ∈ Rn2 be two given bounded tracking targets of
subsystem (1) and subsystem (2), respectively, with the bounded derivatives. Introduce
the error vectors e1 = e1(t) = x1(t)− x∗

1(t), e2 = e2(t) = x2(t)− x∗
2(t), and tracking error

e = x − x∗ =

(
e1
e2

)
, in which x∗ =

(
x∗
1

x∗
2

)
. The following error differential equation

can be obtained by using Equation (3).

ė = Ae+ Φe+ Φx∗ + Ax∗ − ẋ∗ +Gu (4)

For a real symmetric matrix D, the inequality D < 0 means that the matrix D is
negative definition.

Assumption 2.2. Consider the nonlinear composite system with Equations (1) and (2).
The following Inequality (5) is true.

A2 + AT
2 +

1

µ+ 1

(
BTΦ1 + ΦT

1B
)
< 0 (5)

where µ is an adjustable positive parameter (µ > 0). B =
[
In1 On1×(n2−n1)

]
∈ Rn1×n2,

the In1 denotes the n1-order identity matrix.
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It is seen that its transpose matrix BT =

[
In1

O(n2−n1)×n1

]
satisfies BBT = In1 , where

Op×q denotes the p× q zero matrix.

Remark 2.2. If A2+AT
2 is the Hurwitz matrix with bounded norm, namely, its maximum

eigenvalue λmax

(
A2 + AT

2

)
≤ −γ, and γ is a positive real number, λ represents matrix

eigenvalue, ∥ ∗ ∥ denotes the norm of matrix “ ∗”.

Due to 1
µ+1

λmax

(
BTΦ1 + ΦT

1B
)
≤ 1

µ+1

∥∥BTΦ1 + ΦT
1B

∥∥, we can select the µ that sat-

isfies the inequality 1
µ+1

∥∥BTΦ1 + ΦT
1B

∥∥ < ε < γ, further 1
µ+1

λmax

(
BTΦ1 + ΦT

1B
)
<

ε (ε is any positive real number). Consequently, the eigenvalue of matrix
[
A2 + AT

2

+ 1
µ+1

(
BTΦ1 + ΦT

1B
) ]

makes the following Inequality (6) true.

λ

[
A2 + AT

2 +
1

µ+ 1

(
BTΦ1 + ΦT

1B
)]

≤ λmax

(
A2 + AT

2

)
+

1

µ+ 1
λmax

(
BTΦ1 + ΦT

1B
)

≤ −γ + ε < 0 (6)

The above Inequality (6) implies that Assumption 2.2 is true.
Control goal. Consider the nonlinear composite system with Equations (1) and (2).

For the given bounded signal x∗ =

(
x∗
1

x∗
2

)
∈ Rn with the bounded derivative, if the

state vector x2 = x2(t) is unavailable, design the control input u = u(x1, x
∗, t) for the

subsystems (1) and (2) such that e =

(
e1
e2

)
t→+∞−→ 0 holds, that is to say, the state

vectors x1(t) and x2(t) can track the given reference goals x∗
1(t) and x∗

2(t), respectively.

Remark 2.3. According to Assumption 2.2, the matrix BTB =

[
In1

O(n2−n1)×n1

]
[
In1 On1×(n2−n1)

]
=

[
In1 On1×(n2−n1)

O(n2−n1)×n1 O(n2−n1)×(n2−n1)

]
, then, defining matrix In2 =[

In1 On1×(n2−n1)

O(n2−n1)×n1 In2−n1

]
, hence, it is easy to obtain [(µ + 1)In2 − BTB] =[

µIn1 On1×(n2−n1)

O(n2−n1)×n1 (µ+ 1)In2−n1

]
, this proves that the matrix [(µ+1)In2−BTB] is invertible

and [(µ+ 1)In2 −BTB]−1 =

[
µ−1In1 On1×(n2−n1)

O(n2−n1)×n1

1
µ+1

In2−n1

]
, particularly, if n1 = n2, then[

(µ+ 1)In2 −BTB
]−1

= µ−1In1.

In order to achieve the above control goal, the control input u1 of subsystem (1) and
the control input u2 of subsystem (2) are proposed, respectively.

u1 = G−1
1 (−Kn1×n1e1 − Φ1x

∗
2 − A1x

∗
1 + ẋ∗

1) (7)

u2 = G−1
2

(
−K̄n2×n1e1 − Φ2x

∗
1 − A2x

∗
2 + ẋ∗

2

)
(8)

where the gain matrices K̄n2×n1 and Kn1×n1 of the control inputs are proposed as follows:

K̄n2×n1 =

 µ−1In1 On1×(n2−n1)

O(n2−n1)×n1

1

µ+ 1
In2−n1

{
ΦT

1 + (µ+ 1)Φ2 + AT
2B

T +BTA1

− BT [0.5δIn1 +BΦ2 + A1]
}

(9)

Kn1×n1 = 0.5δIn1 +BΦ2 + A1 −BK̄n2×n1 (10)
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where δ is an adjustable positive parameter (δ > 0).
Equations (7) and (8) can be rewritten as follows:

u = G−1

[
−
(

Kn1×n1e1

K̄n2×n1e1

)
− Φx∗ − Ax∗ + ẋ∗

]
(11)

It is easily verified by Equations (9) and (10) that the following equations are true.

−δIn1 = A1 −Kn1×n1 +B
(
−K̄n2×n1 + Φ2

)
+ AT

1 −KT
n1×n1

+
(
−K̄T

n2×n1
+ ΦT

2

)
BT (12)

On2×n1 = ΦT
1 + AT

2B
T +BT (A1 −Kn1×n1) + (µ+ 1)

(
−K̄n2×n1 + Φ2

)
(13)

Theorem 2.1. Consider the nonlinear composite system with Equations (1) and (2), if

Assumptions 2.1 and 2.2 are true, for the given bounded signal x∗ =

(
x∗
1

x∗
2

)
∈ Rn with the

bounded derivative, the designed control scheme (7)-(10) can ensure that e =

(
e1
e2

)
=(

x1 − x∗
1

x2 − x∗
2

)
t→+∞−→ 0.

Proof: Consider the block-matrix P =

[
In1 B

BT (µ+ 1)In2

]
∈ Rn×n. By using Remark

2.3 into the Schur Complement theorem [25], it can be verified that the P is the positive
definite matrix. So, V = V (e) = eTPe is the positive definite function about the entries
of e.

Through Assumptions 2.1 and 2.2 and the control scheme (7)-(10) with (12) and (13),
the orbit derivative of V = V (e) along the error system (4) is obtained as follows.

V̇ = ėTPe+ eTP ė

= 2eTP ė

= 2eT
[

In1 B

BT (µ+ 1)In2

]
{Ae+Φe+Φx∗ +Ax∗ − ẋ∗ +Gu}

= 2eT
[

In1 B

BT (µ+ 1)In2

]{[
A1

On2×n1

On1×n2

A2

]
e+

(
Φ1e2

Φ2e1

)
−

(
Kn1×n1e1

K̄n2×n1e1

)
+

(
Kn1×n1e1

K̄n2×n1e1

)
+ Φx∗ +Ax∗ − ẋ∗ +Gu

}
= 2eT

[
In1 B

BT (µ+ 1)In2

]{[
A1

On2×n1

On1×n2

A2

]
e+

[
−Kn1×n1 Φ1

−K̄n2×n1 +Φ2 On2×n2

]
e

+

(
Kn1×n1e1

K̄n2×n1e1

)
+ Φx∗ +Ax∗ − ẋ∗ +Gu

}
= 2eT

[
In1 B

BT (µ+ 1)In2

]{[
A1 −Kn1×n1

−K̄n2×n1 +Φ2

Φ1

A2

]
e+

(
Kn1×n1e1

K̄n2×n1e1

)
+Φx∗ +Ax∗ − ẋ∗ +Gu

}
= 2eT

[
In1 B

BT (µ+ 1)In2

] [
A1 −Kn1×n1

−K̄n2×n1 +Φ2

Φ1

A2

]
e

+2eT
{(

Kn1×n1e1

K̄n2×n1e1

)
+Φx∗ +Ax∗ − ẋ∗ +Gu

}
= 2eT

[
A1 −Kn1×n1 +B

(
−K̄n2×n1 +Φ2

)
Φ1 +BA2

BT (A1 −Kn1×n1) + (µ+ 1)
(
−K̄n2×n1 +Φ2

)
BTΦ1 + (µ+ 1)A2

]
e
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= eT

[
A1 −Kn1×n1 +B

(
−K̄n2×n1 +Φ2

)
Φ1 +BA2

BT (A1 −Kn1×n1) + (µ+ 1)
(
−K̄n2×n1 +Φ2

)
BTΦ1 + (µ+ 1)A2

]
e

+ eT

[
AT

1 −KT
n1×n1

+
(
−K̄T

n2×n1
+ΦT

2

)
BT

(
AT

1 −KT
n1×n1

)
B+(µ+ 1)

(
−K̄T

n2×n1
+ΦT

2

)
ΦT
1 +AT

2 B
T ΦT

1 B+(µ+ 1)AT
2

]
e

= eT

[
M1 +MT

1 M2

MT
2 BTΦ1 + (µ+ 1)A2 +ΦT

1 B + (µ+ 1)AT
2

]
e

= eT

[
−δIn1 On1×n2

On2×n1 BTΦ1 + (µ+ 1)A2 +ΦT
1 B + (µ+ 1)AT

2

]
e (14)

where matrices in Equation (14) M1 = A1 − Kn1×n1 + B
(
−K̄n2×n1 + Φ2

)
, M2 = Φ1 +

BA2 +
(
AT

1 −KT
n1×n1

)
B + (µ+ 1)

(
−K̄T

n2×n1
+ ΦT

2

)
.

By Assumption 2.2, we get that V̇ (e) < 0 and

Ψ =

[
−δIn1 On1×n2

On2×n1 BTΦ1 + (µ+ 1)A2 + ΦT
1B + (µ+ 1)AT

2

]
is negative definite. Therefore, it can be seen by using Equation (14) that the error
system (4) with the control scheme (7)-(10) is asymptotically stable in Lyapunov sense.

This means that e =

(
e1
e2

)
t→+∞−→ 0. So, Theorem 2.1 is proved.

Remark 2.4. To apply Theorem 2.1, the following steps are proposed.
(I) Determine the known and bounded function matrices A1(x1, t), A2(x1, t), Φ1(x1, t),

Φ2(x1, t) and the known inversible matrices G1, G2, in Equations (1) and (2). Verify
whether Assumptions 2.1 and 2.2 are true for the above matrices.
(II) Give the bounded and derivatives bounded reference signal targets x∗

1 and x∗
2 con-

cerning x1(t) and x2(t), respectively.
(III) Give the matrix B according to n1 and n2, adjustable positive parameter µ in

Assumption 2.2.
(IV) Take the above matrices and parameters into the control scheme (7)-(10), which

can ensure that tracking error vector e
t→+∞−→ 0.

3. Simulation Example. Consider the double coupled inverted pendulums system (DC-
IPS) with the following dynamic models [26].

I1φ̈1 = m1gl1φ1 + kh2(φ2 − φ1)− c1φ̇1 −m1l1u11 −m1l1u̇12 (15)

I2φ̈2 = m2gl2φ2 + kh2(φ2 − φ1)− c2φ̇2 −m2l2u21 −m2l2u̇22 (16)

where φ1 and φ2 are the swing angles of two inverted pendulums with the masses m1 and
m2, the damping coefficients are c1 and c2, and the lengths are l1 and l2, respectively.
The spring stiffness coefficient is k and the h is the distance between the spring fixation
point and the suspension point of the pendulums. The u1 and u2 are control inputs for
the DCIPS.
Here, assume that the swing angle φ1 and its angular speed φ̇1 of the first pendulum

are available, and the swing angle φ2 and the angular speed φ̇2 of the second pendulum
are unavailable.
The control goal in this simulation is to control the swing angles φ1 and φ2 to track

the given reference targets φ∗
1 and φ∗

2, respectively. In order to use the control scheme in
this paper for achieving the above control goal in this simulation, the following auxiliary
system models with (17) and (18) can be obtained in form of Equations (1) and (2).
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Selecting the system state variables x1 =

(
x11

x12

)
, x2 =

(
x21

x22

)
with x11 = φ1,

x12 = −α1φ1 + φ̇1 +
m1l1
I1

u12, x21 = φ2, x22 = −α2φ2 + φ̇2 +
m2l2
I2

u22 and the control

inputs u1 =

(
u11

u12

)
, u2 =

(
u21

u22

)
, where α1 and α2 are the adjustable parameters to

be chosen, by which and Equations (15) and (16), we can obtain the auxiliary dynamic
models of DCIPS as follows:

ẋ1 =

 α1 1

m1gl1
I1

− kh2

I1
− α1

(
α1 +

c1
I1

)
−
(
α1 +

c1
I1

) x1 +

 0 0

kh2

I1
0

x2

+

 0 −m1l1
I1

−m1l1
I1

m1l1
I1

(
α1 +

c1
I1

)
u1 (17)

ẋ2 =

 α2 1

m2gl2
I2

− kh2

I2
− α2

(
α2 +

c2
I2

)
−
(
α2 +

c2
I2

) x2 +

 0 0

kh2

I2
0

x1

+

 0 −m2l2
I2

−m2l2
I2

m2l2
I2

(
α2 +

c2
I2

)
u2 (18)

For Equations (17) and (18) and the given reference goals x∗
1 =

(
x∗
11

x∗
12

)
, x∗

2 =

(
x∗
21

x∗
22

)
,

the control goal in this simulation is that the swing angles x11 and x21 track the given
reference targets x∗

11 = φ∗
1(t) and x∗

21 = φ∗
2(t), respectively. The other state variables x12

and x22 are auxiliary variables, which can track the given reference targets x∗
12 = x∗

12(t)
and x∗

22 = x∗
22(t), respectively.

In simulation, choose the parameters inspired in [26, 27] as follows: m1 = m2 = 1.0 kg,
l1 = l2 = 0.5 m, h = l1

2
= l2

2
= 0.25 m, I1 = m1 × l21, I2 = m2 × l22. The spring stiffness

coefficient k = 100 N/m; the damping coefficients c1 = 3.5, c2 = 3.33.
Comparing (17) and (18) with Equations (1) and (2), the function matrices A1(x1, t),

A2(x1, t), Φ1(x1, t), Φ2(x1, t) and gains G1, G2 are obtained as follows:

A1(x1, t) =

 α1 1

m1gl1
I1

− kh2

I1
− α1

(
α1 +

c1
I1

)
−
(
α1 +

c1
I1

)  , Φ1(x1, t) =

 0 0

kh2

I1
0



A2(x1, t) =

 α2 1

m2gl2
I2

− kh2

I2
− α2

(
α2 +

c2
I2

)
−
(
α2 +

c2
I2

)  , Φ2(x1, t) =

 0 0

kh2

I2
0



G1 =

 0 −m1l1
I1

−m1l1
I1

m1l1
I1

(
α1 +

c1
I1

)
 , G2 =

 0 −m2l2
I2

−m2l2
I2

m2l2
I2

(
α2 +

c2
I2

)


In addition, it is easily verified that c2
2I2

≥ 1 +
√
1 + r, k ≥ m2gl2

h2

(
r = kh2

I2
− 1− m2gl2

I2

)
is true. In order to ensure that Assumption 2.2 is true, the adjustable parameter α1 < 0
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can be selected arbitrarily and α2 is chosen to satisfy the following two inequalities:

1

2

[
− c2

I2
+

√
c22
I22

− 4
(
1 +

√
1 + r

)2
]
< α2 <

1

2

[
−c2
I2

+

√
c22
I22

− 4
(
1−

√
1 + r

)2
]

(19)

or

−1

2

[
c2
I2

+

√
c22
I22

− 4
(
1−

√
1 + r

)2
]
< α2 < −1

2

[
c2
I2

+

√
c22
I22

− 4
(
1 +

√
1 + r

)2
]

(20)

In simulation, select α1 = −13.5, α2 = −14.48, µ = 9. The reference targets of two
swing angles x∗

11 = φ∗
1 = sin(t) and x∗

21 = φ∗
2 = cos(t), the reference targets of auxiliary

variables x∗
12 = sin(t) and x∗

22 = cos(t).
The simulation results are shown in Figures 1-3, in which Figure 3 shows that the

comparison results by using controllers via the reduced-order observers in [20, 21] and
state feedback controller in this paper, where the comparison results are indicated by the
tracking error curves of two swing angles φ1 and φ2, as well as two auxiliary variables x12

and x22.
Let e11 = x11−x∗

11 = φ1−φ∗
1, e21 = x21−x∗

21 = φ2−φ∗
2, e12 = x12−x∗

12, e22 = x22−x∗
22.

From the simulation figures, the following conclusions can be obtained.
(I) Figure 1 shows that the tracking errors of two swing angles φ1, φ2 and two auxiliary

variables x12, x22 are divergent. This implies that the swing angles φ1, φ2 and the auxiliary
variables x12, x22 cannot track their respective reference targets without the controller in
this paper.
(II) Figure 2 shows that the swing angle tracking errors and auxiliary variables tracking

errors converge asymptotically to zero, respectively. This implies that the controller in
this paper can ensure not only the swing angles φ1 and φ2 track asymptotically the given
reference goals φ∗

1 and φ∗
2, respectively, but also the auxiliary variables x12, x22 can track

asymptotically the given reference goals x∗
12 and x∗

22, respectively. This verified the validity
of the control scheme proposed in this paper.

(a) (b)

Figure 1. The error response curves without controller in this paper: (a)
The tracking errors of two swing angles φ1 and φ2; (b) the tracking errors
of auxiliary variables x12 and x22
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(a) (b)

Figure 2. The error response curves with controller in this paper: (a)
The tracking errors of two swing angles φ1 and φ2; (b) the tracking errors
of auxiliary variables x12 and x22

(III) In Figure 3, (a) and (b) show that the comparison results by using the controllers
based on the reduced-order observers in [20, 21] and this paper, respectively. It is easy
to observe that with the controller in this paper, the tracking errors of swing angles can
quickly and asymptotically converge to zero. However, the tracking errors cannot converge
to zero with the controllers in [20, 21]. The above results mean that compared to the
observers with the partially unavailable state variables that are not utilized in the tracking
control scheme, the controller proposed in this paper is more suitable than ones in [20, 21].
(c) shows that the auxiliary variables x12 and x22 are bounded. This implies that the
auxiliary variables introduced in this paper do not cause the unboundedness in the control
process. In addition, from x12 = −α1φ1 + φ̇1 +

m1l1
I1

u12 and x22 = −α2φ2 + φ̇2 +
m2l2
I2

u22

with the controllers (7) and (8), it is seen that the boundedness of x1 and x2 can guarantee
the boundedness of angular velocities of the inverted pendulums.

4. Conclusion. In this paper, the dynamic model of nonlinear composite system, which
is composed of the available state subsystem and the unavailable state subsystem has
been proposed. In the existing literature mainly focused on the tacking control of the
nonlinear system with unavailable state variables, designing the state observer to esti-
mate unavailable state is important one of control synthesis methods. Compared with the
existing literature, the main advantage of this paper is to synthesize the asymptotic track-
ing control scheme only by using the available state variables, in which any observers for
unavailable state are not used. In simulation example, the auxiliary variables are chosen
so that the dynamic model of the double coupled inverted pendulums can be transformed
into a standard form in this paper. However, the tracking control of nonlinear systems
with unavailable state in this paper is based on the accurate mathematical model of the
system, and the system matrices and parameters are known. Hence, the tracking control
of nonlinear systems with partially unavailable state variables and uncertainties will be
researched in the future work.
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(a) (b)

(c)

Figure 3. The error and auxiliary variable response curves with controller
in this paper: (a) The tracking errors of swing angle φ1 with the controllers
in [20, 21] and in this paper; (b) the tracking errors of swing angle φ2 with
the controllers in [20, 21] and in this paper; (c) the time response curves of
auxiliary variables x12 and x22 with the controller in this paper
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