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Abstract. The purpose of this paper is to extend our previous approach for detecting
magnetic field ranges emitted by laptops to the tablet computers. Accordingly, we intro-
duce a new analysis of the extremely low frequency magnetic field emitted by tablets using
clustering algorithms. In particular, we compare partition-based, model-based, hierarchi-
cal, and density-based algorithms for clustering magnetic field values measured at the top
and bottom positions of the tablet. The experiment is performed on 9 tablets of different
manufacturers in their normal operating condition. Obtained results detected high ranges
of magnetic field in some areas of the tablet surface. This is very important for both
manufacturers and users for a safer conduct with tablet computers.
Keywords: Clustering, Magnetic field, Measurement, Tablet

1. Introduction. In the last years, the Extremely Low Frequency (ELF) magnetic field
effects on human health have been studied and some correlation to children cancers,
Alzheimer’s disease and miscarriage has been reported [1]. The mechanisms of influence
of these fields remain unclear. ELF fields are thought less harmful than higher frequency
fields [2]. Still, in these two studies, no attempt is made to categorize ELF emissions based
on clustering of the magnetic component values. Tognola et al. [3] propose a clustering
mechanism for estimating the common patterns of children’s exposure to the ELF mag-
netic field generated by high-voltage sources, such as electric over-lines and others. The
focus of their study is limited to high power devices, e.g., heaters but not to low-power
electronic devices. Furthermore, Tognola et al. [4] extend their study to include the dis-
tances to the emitting source and try to find correlation to the development of leukemia.
Indoor devices are not considered in this case. Koziorowska et al. [5] find the effect of
the ELF magnetic field on certain chemical components of the honeybee. Using Fourier
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spectrum analysis in the infrared range and working with a source of only 50 Hz for more
than 2 hours and intensities of 1.6 µT, changes in DNA, RNA and other components oc-
cur. A geospatial partitioning of the field distribution in the case of ultra-high frequency
magnetic field is proved useful into building non-cummulative and cummulative models
to establish the link to the amyotrophic lateral sclerosis [6]. The method may be useful
for the study of the ELF magnetic field as well. The harmful effect of the ELF component
on infants is being studied in [7]. No attempt is made to classify the different values of
the magnetic component but only a 50 Hz emission of 500 µT is considered. Significantly
lower dosages of 28.67 µT and less were observed by Abarghoee et al. [8] while creating
a multivariate linear regression model revealing the connection to job stress in workers
from combined cycle plants. Three groups of emissions are considered depending on the
magnetic induction value, but a more flexible division into a higher number of sub-ranges
could be employed. Another study [9] of the influence of the ELF magnetic field on hu-
mans, occupying commercial areas, relies on the spatial variability of the magnetic level
but in the virtually all tested cases the generated maximum is below 2 µT. Appliances,
such as F1 freezer, are the primary focus of this study. Duncan et al. [10] look at the
ELF emission as a mean to detect and classify electronic activity. They use frequencies
between 1 and 1000 Hz and positive results are reported at the use of linear regression
analysis, T-distributed stochastic neighbor embedding, dendrogram and Density-Based
Spatial Clustering of Applications with Noise (DBSCAN) clustering. Yet, more cluster-
ing techniques could be tried. Dehaghi et al. [11] investigate the health effects which the
magnetic field, generated by office computers, has on their users. The electric component
of the electromagnetic field within the range 0.26-1.2 V/m for desktops and 0.28-0.87 V/m
for laptops was the primary object of investigation. It could be extended for the magnetic
component as well. The magnetic component distribution is analyzed in [12] with regard
to a public access space. Mostly underground and overhead power lines are the sources
of an induction with levels from 1 to 100 µT. No attempt is made for clustering of the
registered values. Overhead transmission lines are object of investigation in [13], where
Luqman et al. propose a plan for proper magnetic field measurement. It is split to path
and spot measurement, followed by time management and at the end registering of the
actual field values. For the particular experimental configuration, they are between 1 and
4 µT, and the two measurement techniques are alternatively changed among preliminary
selected zones based on their suitability. Yet, there is no grouping of the measured values
for a further classification. A mapping of static magnetic fields emitted in the vicinity
of mobile phones is performed by Zastko et al. [14]. Direct measurements act as mean
for building a model by extrapolation down to the size of the phone’s screen, and then
projecting the resulting values over a 3D model of the head. The magnetic induction
values are in the range between µT and mT. The authors do not consider the ELF and
radiofrequency fields in the current study, but propose a similar method of measurement
for them in order to get a combined field model for assessing the hazards to the human
body. An artificial neural network is used in [15] in order to classify the levels of ELF
magnetic field generated by high-voltage power lines. These predictions are used to create
a 3D map based on latitude and longitude in space of the investigated fields, and find
dangerous zones to the human health.
Following the good practices for measuring and classification of the ELF magnetic fields,

in our recent studies we managed to successfully classify the level of magnetic induction
emitted by laptops [16]. Introducing a partition zone over the surface of the laptop and
defining control points for measurement, it is easy to create a map of the emissions [17].
A distinction between normal and stress operating modes of the laptops reveals different
dynamic ranges of the ELF magnetic field [18], which is important in the process of
deriving recommendations for a safer use during prolonged periods of working. Various
clustering techniques [19] proved useful into partitioning the registered values of the ELF
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induction to limited numbers of levels, from very low to very high, which eases the process
of evaluation of the safety of the laptops. The artificial neural network [20] is another
tool that later provides us with the capability of predicting the degree of danger from the
ELF emissions sent to the input for classification.

The main goal of this study is to extend our previous analysis of the ELF magnetic
field emitted by laptop computers to the tablet computers. Accordingly, we evaluate the
efficacy of numerous clustering techniques of the ELF magnetic field values emitted by
tablets and measured through suitable partitioning of their top and bottom surface to
measuring points.

The rest of the paper is organized as follows. In Section 2, we propose a general method-
ology for measuring the ELF magnetic field values on tablet devices. In Section 3, we
describe various approaches for clustering the magnetic field values. In Section 4, we
present experimental results with their analysis and comparison of the tested methods.
Finally, in Section 5, we draw a conclusion and outline future work directions.

2. Measuring the Magnetic Field Levels on Tablet Devices. The inner compo-
nents of a tablet working in normal operating condition are fed by a current I which,
flowing through these electronic or electric components, induces a magnetic field B. It is
composed of its magnitude and direction, and is computed as

B(r) = Bx · x+By · y +Bz · z (1)

where x, y and z are positional vectors orthogonal to each other, Bx, By and Bz are
the scalar intensity values of the magnetic induction in the direction of these vectors,
respectively, and r is radius vector. Starting from these values, the Root Mean Square
(RMS) of the magnetic induction B can be computed as

B =
√

Bx +By +Bz (2)

We measured the ELF magnetic field through the following devices: (i) Lutron 3D
EMF-828 and (ii) Aaronia Spectran NF-5030. Lutron 3D EMF-828 tester with external
probe measures the level of the magnetic field at the direction of all three axes (X, Y ,
Z directions), i.e., Bx, By and Bz in the ELF frequency interval between 30 and 300 Hz.
The magnetic field can be measured in three measurement intervals: 20 µT, 200 µT and
2000 µT with a resolution of 0.01 µT, 0.1 µT and 1 µT, respectively. Also, SPECTRAN
NF Spectrum Analyzer NF-5030 measures the values of minimum, maximum, average
and RMS of the magnetic field at the direction of all three axes, i.e., Bx, By and Bz, or
the total one B in the ELF interval between 1 Hz and 1 MHz. The measurement interval
goes from 1 pT to 2 mT.

We performed an experiment which consists in measuring the ELF magnetic field at
the top and bottom surface of the tablet in 9 different points each (a total of 18 measuring
points). It corresponds to the measurement methodology introduced in [16, 18], overcom-
ing the limitations of the TCO standard in measuring the ELF magnetic field emitted by
laptop computers. Figure 1 shows the tablet’s top and bottom measuring points.

We examined 9 tablets (named as Tablet 1, . . . , 9) designed by different manufacturers.
With the only exception for Tablet 1 which is a convertible with external keyboard,

Figure 1. Tablet’s top (T) and bottom (B) measuring points
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Tablets 2, . . . , 9 do not have external keyboard. In the experiment, we did not consider
the keyboard of Tablet 1, because it emits a negligible magnetic field.
All tablets were commonly used in normal operating condition. It means that they

work for operating over the Internet or for making Skype calls, viewing pictures, read-
ing documents and for typing. Also, tablets were battery powered only. Figure 2 shows
the value of the measured ELF magnetic field at each measuring point (measurement
geometry) of the top and bottom parts of the 9 tablets.

Figure 2. (color online) Measured ELF magnetic field at the top and
bottom parts of the 9 tablets

It is worth noting that the top part of most tablets emits an ELF magnetic field
exceeding 0.2 µT, which is the safety reference limit [16, 18]. In particular, the measured
ELF magnetic field in the risk areas ranges between 0.2 µT (Tablets 5, 8) and 0.86 µT
(Tablet 5). We can observe that high-risk areas at the top part correspond in most cases
to points where CPU (green) and other motherboard components (cyan) are located.
Also in the bottom part, most tablets emit an ELF magnetic field exceeding 0.2 µT.
In particular, the measured ELF magnetic field in the risk areas ranges between 0.2 µT
(Tablets 2, 4, 8) and 0.93 µT (Tablet 1). We can observe that high-risk areas at the
bottom part correspond in most cases to points where CPU (green) and battery (blue)
are located.

3. Approaches for Clustering the Magnetic Field Levels. We stored the ELF
magnetic field measured at the 9 top and 9 bottom points of the 9 tablets in two datasets
with 81 values each. Accordingly, the top (resp. bottom) dataset collects the RMS values
of the measured ELF magnetic field induction B at the top (resp. bottom) surface of
the tablets. The aim is to detect the danger levels of exposure to ELF magnetic field
emitted by tablet computers in the normal operating condition. To pursue this goal, we
apply and compare different clustering methods for each dataset, in order to detect ELF
magnetic field ranges at the top and bottom parts of the tablet. In particular, we use four
clustering methods for binning one-dimensional data: (i) partitional, (ii) model-based,
(iii) hierarchical, and (iv) density-based.

3.1. Partitional clustering. We selected three partitional clustering algorithms: (i)
K-means, (ii) K-medians, and (iii) Fuzzy C-means.
In K-means algorithm [21, 22], the input parameter K for the clusters (ranges) is

predetermined. The centroid of each cluster, which is the mean of its data points, serves
as the foundation for the algorithm. The process begins by choosing K initial centroids
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at random and assigning each data point to its nearest centroid using the Euclidian
distance. The second step involves recalculating the new K centroids using the previous
assignments. The centroids move about gradually as these two procedures are repeated
until no more adjustments are needed.

Also, K-medians algorithm [23, 24] consists of analogous phases of the K-means al-
gorithm. The main differences are (i) the cluster’s centroid is calculated as the median
value of the data points that make up the cluster, and (ii) the Manhattan distance is used
to compute the distance between data points and centroids. K-medians produces more
compact clusters than K-Means and provides robustness to outliers.

Finally, in Fuzzy C-means [25], the input data points used in the clustering procedure
may be a component of multiple clusters. The following objective function’s minimization
must be given for convergence to take place: J =

∑D
i=1

∑K
j=1 λ

m
ij ||xi − cj||2, where D is

the number of data points, K the number of clusters, m a factor influencing the fuzzy
overlap represented by a real number greater than 1, xi the i-th data point, cj the center
of the j-th cluster, and λij the level of belonging of xi to the j-th cluster.

3.2. Model-based clustering. We adopted two model-based clustering algorithms: (i)
Self-Organizing Map, (ii) Expectation-Maximization with Gaussian Mixture Models.

Kohonen’s Self-Organizing Map (SOM) [26, 27] is built on a neural network that learns
to predict the output based on the “shape” of the training data. An algorithm made up
of several stages is iteratively run to train the network, beginning with the first epoch.

Without the availability of a direct solution, the Expectation-Maximization (EM) algo-
rithm [28] is used to statistical models for the estimation of maximum likelihood param-
eters. The input often contains latent variables and unknown parameters together with
partial data observations. With the likelihood function, the derivatives of all unknown
values, latent variables, and parameters could be used to find a maximum as a solution.

3.3. Hierarchical and density-based clustering. Agglomerative hierarchical cluster-
ing [29] is a bottom-up method that merges pairs of clusters by starting at the lowest
level of the hierarchy and working up. A dendrogram is a common visual representation
of the resulting hierarchy. A measure of dissimilarity between the input data points is
used to determine whether two clusters should be combined.

About density-based clustering, DBSCAN [30] is a method that identifies high density
areas and the low density areas that lie between them. The density is defined as the number
of points covered by a given radius (Eps). Three types of points are being introduced for
the purposes of analysis: (i) core points, such that their number (MinPts) is over a
certain number within Eps so they form the cluster itself, (ii) border points, which are
fewer than MinPts encapsulated by Eps and still are in the neighbourhood of the core
points, and (iii) noise points, which are all the other points from the dataset. N data
points are provided as input together with the globally determined Eps and MinPts.

4. Comparison of Methods and Results. We compare the ELF magnetic field ranges
detected by the aforementioned algorithms for the tablets’ top ranges (Figure 3) and bot-
tom ranges (Figure 4). Considering the top ranges, hierarchical clustering and K-means
clustering detected a higher minimum ELF magnetic field than the other approaches,
especially for the “very high” cluster (Figure 3, left). Similar can be observed for the
maximum values; however, in this case all the used algorithms have detected the same
maximum value of ELF magnetic field for the cluster “very high” (Figure 3, right). For
the tablet’s bottom, the detected minimum value was higher when using DBSCAN and
hierarchical clustering for “very low”, “low”, “middle” and “high” clusters, but for the
“very high” cluster K-means and Fuzzy C-means also detected high minimum values in
addition to DBSCAN and hierarchical clustering. For the maximum values, DBSCAN
also has the tendency to detect higher maximum values in each class. It is interesting to
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Figure 3. (color online) Top range minimum and maximum ELF magnetic field

Figure 4. (color online) Bottom range minimum and maximum ELF mag-
netic field

observe that in the “high” cluster, higher maximum values were detected by the K-means,
hierarchical clustering, Fuzzy C-means and DBSCAN, while for the “very high” class all
the algorithms detected the same maximum value.
In addition, a minimum difference is observed between the top and bottom ranges.

However, the minimum and maximum values of the ELF magnetic field are higher at the
bottom part of the tablet compared to the top part. Middle, high, and very high ranges
all have values of the ELF magnetic field above the reference limit of 0.2 µT, with the
middle range representing the borderline as its minimum values are just slightly below
the reference limit at the top part. As for the very low and low ranges, they are generally
considered safe as their detected maximum values on the top of the tablet do not cross
the reference limit except for hierarchical clustering and EM clustering. However, for the
bottom part of the tablet the low emission range exhibits minimum values higher than
the reference limit when using the DBSCAN clustering approach, while all clustering
approaches except K-means detected maximum values higher than the reference limit.
We can observe that K-medians algorithm is the best choice for detecting the danger

classes, because K-means, SOM and agglomerative hierarchical clustering approaches de-
tected ranges that might be made of single values, and the differences between top and
bottom ranges are not clearly detected. In addition, the DBSCAN algorithm is prone to
detecting very large ranges, as seen in Figures 3 and 4, while the EM algorithm detected
overlapping ranges. Both the K-medians and Fuzzy C-means showed good performance
as these algorithms did not detect overlapping ranges; however, the K-medians is a much
better approach for detecting the ELF magnetic field ranges emitted by tablets as it
differentiates between the top and bottom emissions better.
Accordingly, Figure 5 shows the top and bottom danger maps of exposure to ELF mag-

netic field obtained by the K-medians clustering. The top (resp. bottom) map associates
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Figure 5. (color online) Top and bottom danger maps obtained by the
K-medians algorithm

each measuring top (resp. bottom) point to the corresponding ELF magnetic field range
according to its value. Here, we can observe that a very high range of ELF magnetic field
emissions is located at the CPU area (Figure 2, Figure 5 Tablets 1, 3, 5, 6 (top) and
Tablets 3, 4, 5 (bottom)), as well as at the battery area (Figure 2, Figure 5 Tablets 1,
3, 4, 9 (bottom)), while the middle levels are emitted by the RAM (Figure 2, Figure 5
Tablet 6 (top)). Other motherboard components were found to emit very low to high
emissions, depending on the tablet (Figure 2, Figure 5 Tablets 3, 7, 8, 9 (top)).

5. Conclusions. In this paper, we introduced a new method for measuring the ELF
magnetic field ranges emitted by tablet computers using clustering methods. In particu-
lar, we compared partition-based, model-based, hierarchical and density-based clustering
approaches. We tested the proposed method on 9 tablets. First, we measured the ELF
magnetic field emissions at the top and bottom parts of their surface in normal operating
condition. Then, we employed clustering on the top and bottom measured values for de-
tecting the ELF magnetic field ranges. In the end, we realized that K-medians algorithm
is more robust than the other algorithms in detecting ELF magnetic field ranges emitted
by tablets. The proposed method can be very helpful in identifying the risk levels of ex-
posure to magnetic fields from the tablet users. Also, from the danger maps, it is possible
to explore the most dangerous tablet’s inner components in terms of ELF magnetic field
level. It will hopefully provide useful information to the manufacturers, for a more careful
production of the inner components, and to the tablet users, for a more cautious use of
the device. In particular, we suggest to avoid to directly keep in touch with the tablet
device, using the mouse and external keyboard. In the future, we will explore the tablet
under the so called “stress condition”, i.e., when it is overloaded with heavy programs.
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