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Abstract. In this paper, a double closed-loop tracking control strategy is proposed to
achieve trajectory tracking for a differential drive mobile robot with load offsetting. A
nonlinear extend state observer (ESO) is designed to estimate the disturbance from load
offsetting. A kinematics controller is proposed to produce desired velocities for the dif-
ferential drive mobile robot in outer loop. A dynamics controller is designed to track the
desired velocities from kinematics controller in inner loop. Based on Lyapunov method,
stability analyses are given for the nonlinear ESO, the kinematics controller and the
dynamics controller. Simulations are carried out to illustrate effectiveness of the double
closed-loop tracking control strategy.
Keywords: Differential drive mobile robot, Load offsetting, Double closed-loop control,
Nonlinear extended state observer, Trajectory tracking

1. Introduction. With the development of intelligent logistics, smart mobile robots are
widely used in the field of warehouse logistics due to high automation and flexibility [1].
As one of intelligent mobile robots, differential drive mobile robots play an important
role in the logistics field. Popular for its low cost, it has been more widely used in the
logistics [2, 3]. Due to attractive prospects for development, the motion control schemes
for the differential drive robots emerge endlessly [4, 5, 6]. In practical engineering appli-
cations, there are some internal disturbances and external uncertainties, which need to be
considered in the design of trajectory tracking control strategy. Therefore, many control
schemes have been designed to compensate these disturbances. An adaptive neural net-
work control strategy is proposed for uncertain wheeled mobile robots with velocity and
nonholonomic constraints [7]. A vision adaptive controller is proposed for mobile robots
with uncertain conditions in complex environments [8]. In addition, a sliding mode control
method combining ESO is designed to solve external interference and parameter uncer-
tainty of wheeled mobile robots [9]. Comparing the above methods, the method using
ESO is a better way to eliminate disturbances in a nonlinear and disturbed system [10].

It is well known that many control strategies with ESO have been developed and wide-
ly used in engineering practice [11, 12]. A friction compensation model predictive control
method with ESO is proposed for the dynamics model of omnidirectional mobile robots
with unknown friction [13]. In intelligent logistics, load offsetting is obviously an inevitable
problem which causes centroid offsetting for the differential drive mobile robots [14].
Therefore, it is necessary to design a control strategy to ensure the robustness for dif-
ferential drive mobile robots with load offsetting. Inspired by the above research work,
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a nonlinear ESO is used to estimate the disturbance from load offsetting in differential
drive mobile robots.
A double closed-loop tracking control strategy is designed for a differential drive mobile

robot with load offsetting in this paper. A nonlinear ESO is given to estimate the dis-
turbance caused by load offsetting. In the outer loop, a kinematics controller is designed
for outputting desired velocities for the differential drive mobile robots. In the inner
loop, a dynamics controller is designed to track the desired velocities from the outer loop.
Based on Lyapunov method, the stability analyses are given for the nonlinear ESO, the
kinematics controller and the dynamics controller. Effectiveness of the proposed double
closed-loop tracking control strategy is shown by simulations results.
This paper is organized as follows. Section 2 presents the model of the differential drive

mobile robot with load offsetting. Section 3 describes the design of the double closed-loop
tracking control strategy. Simulations results of the proposed control strategy are given
in Section 4, followed by the conclusion in Section 5.
Notations: In this paper, symbol sgn(·) is a standard sign function. diag{X1, X2} is a

diagonal matrix with diagonal elements being X1, X2. fal(·) is a nonlinear function given
by

fal(ǫ(t), σ, δ) =

{

ǫ(t)/δ1−σ, |ǫ(t)| ≤ δ

|ǫ(t)|σsgn(ǫ(t)), |ǫ(t)| > δ

where σ and δ are satisfied with 0 < σ < 1, δ ≥ 0, and ǫ(t) is a variable. Function
fal(ǫ(t), σ, δ) is expressed as fal(ǫ(t)) for the sake of simplicity.

2. Model of the Differential Drive Mobile Robot. The schematic diagram of the
differential drive mobile robot with load offsetting is shown in Figure 1. The motion of
the differential drive mobile robot satisfies a condition of nonholonomic constraint. A
constraint equation is written as A(q(t))q̇(t) = 0, where q(t) = [x(t), y(t), θ(t)]T is the
global coordinate vector, and A(q(t)) = [sin(θ(t)),− cos(θ(t)), d cosα] is a kinematics
constraint vector.
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Figure 1. Coordinate representation of the mobile robot with load offsetting

The kinematics model of the differential drive mobile robot is obtained as:

q̇(t) = S(q(t))V (t) (1)
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where V (t) = [v(t), w(t)]T is the velocity vector of the differential drive mobile robot,
v(t) is the linear velocity and w(t) is the angular velocity, the Jacobian matrix S(q(t)) is
written as

S(q(t)) =





cos(θ(t)) −d sin(ϕ(t))

sin(θ(t)) d cos(ϕ(t))

0 1





For the differential drive mobile robot, the left and right power wheels are driven by
DC motors through the gearboxes. A simplified diagram of the motor drive system is
shown in Figure 2.
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Figure 2. Power wheels drive system

The relationship between the driving torques of the two power wheels and the voltages
of the DC motors is written as follows:

τm(t) = M1uc(t)−M2B0V (t) = M1uc(t)−
M2

r

[

1 b
1 −b

]

V (t) (2)

where τm(t) = [τmr(t), τml(t)]
T , uc(t) = [uar(t), ual(t)]

T are the driving torque vector and
the input voltages of the DC motors, respectively, M1 = n2Ka/n1Ra, M2 = n2M1Ke/n1,
Ka is a torque constant, Ke is a back EMF constant, n1 and n2 are the numbers of motor
gear teeth and power wheel gear teeth, respectively, and Ra = Ral = Rar is the resistance
value in the circuit.

Based on Euler-Lagrange equation, the dynamics model of the differential drive mobile
robot is obtained as follows [15]:

M(q(t))q̈(t) + C(q(t), q̇(t))q̇(t)

= B(q(t))τ(t)−G(q(t))− F (q̇(t))− τd(t)− λ1A
T (q(t)) (3)

where λ1 is a constraint multiplier, G(q(t)) = 0 is the gravity vector, and τd(t) represents
the unknown interference, which is not considered in this paper. F (q̇(t)) is the friction
between the differential drive mobile robot and the ground, and the positive definite
symmetric inertia matrix M(q(t)), the centripetal and Coriolis matrix C(q(t), q̇(t)) and
the input transformation matrix B(q(t)) are obtained as follows:

M(q(t)) =





m 0 md sin(ϕ(t))

∗ m −md cos(ϕ(t))

∗ ∗ J +md2



 , B(q(t)) =
1

r





cos(θ(t)) cos(θ(t))

sin(θ(t)) sin(θ(t))

b −b





C(q(t), q̇(t)) =





0 0 mdϕ̇(t) cos(ϕ(t))

0 0 mdϕ̇(t) sin(ϕ(t))

0 0 0





where m1, mw and ml are the mass of the differential drive mobile robot, a power wheel
and the load, respectively, m = m1 +ml + 2mw and J = 2mwb

2 + (m1 +ml)d
2, µ is the

rolling friction factor and g is the acceleration of gravity, then F (q̇(t)) is given as
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F (q̇(t)) = B(q(t))r

[

fr
fl

]

= B(q(t))r

[

µ(m1 +ml)g(l− d cosα)(b− d sinα)/2bl + µmwg

µ(m1 +ml)g(l− d cosα)(b+ d sinα)/2bl + µmwg

]

Substituting Equations (1) and (2) into Equation (3), and multiplying left with ST (q(t))
on both sides, Equation (3) is written as

M̄cV̇ (t) + M̄lV̇ (t) + C̄V (t) + f̄(t) = B̄0u(t) (4)

where

C̄ =
2M2

r2

[

1 0

−d sinα b2

]

and f̄(t)=ST (q(t))F (q̇(t)), M̄c = diag {(m1+2mw) cosα, 2mwb
2+I1}, M̄l=diag{ml cosα,

I2}, B̄0 = M1

r
diag{1, b}, I1 and I2 are the moments of inertia to the point Po of the

robot and the load, respectively, u(t) = [u1(t), u2(t)]
T with u1(t) = uar(t) + ual(t) and

u2(t) = uar(t)−ual(t). Letting x1(t) = V (t) = [x11(t), x12(t)]
T = [v(t), w(t)]T and shifting

the term of Equation (4), one has that

ẋ1i(t) = f0i(t) + b0iui(t) (5)

where f0(t) = −M̄−1

c

[

M̄lV̇ (t) + C̄V (t) + f̄(t)
]

= [f01(t), f02(t)]
T and b0 = M̄−1

c B̄0 =

diag{b01, b02}.

Assumption 2.1. For the disturbance f0(t) in Equation (5), assume it is continuously

differentiable and bounded. That is, there is a constant N0 satisfying |f0(t)| ≤ N0.

Remark 2.1. Due to the fact that the angular velocity dynamic model is similar to the

linear velocity one, only the linear velocity dynamics model is considered for the sake of

simplicity. Therefore, the linear velocity dynamics model is considered in stability analyses

of the nonlinear ESO and the dynamics controller.

3. Main Results. In this section, a double closed-loop tracking control strategy is de-
signed to achieve trajectory tracking for a differential drive mobile robot with load off-
setting. The structure of the double closed-loop tracking control strategy is shown in
Figure 3. A nonlinear ESO is designed to estimate the disturbance from load offsetting.
A kinematics controller of the outer loop is given to produce the desired velocities for
the differential drive mobile robot. A dynamics controller of the inner loop is proposed to
track the desired velocities. Te is a transformation matrix between global coordinate and
local coordinate.

Figure 3. The structure of the double closed-loop tracking control strategy
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3.1. Nonlinear extended state observer. For the differential drive mobile robot, the
control performance is affected due to the disturbance f0(t) in the inner loop. Therefore,
a nonlinear ESO is designed to estimate the disturbance. f0(t) is extended to a new state
x2(t), which is shown that x2(t) = [x21(t), x22(t)]

T = [f01(t), f02(t)]
T . Based on Assumption

2.1, the dynamics system is described as

ẋ1i(t) = x2i(t) + b01ui(t) (6)

ẋ2i(t) = ωi(t) (7)

where ω(t) = [ω1(t), ω2(t)]
T , in which ωi(t) with i = 1, 2 is a bounded continuous function.

The nonlinear ESO for the dynamics system (6) and (7) is designed as follows

˙̂x1i(t) = x̂2i(t)− β1ie1i(t) + b0iui(t) (8)

˙̂x2i(t) = −β2ifal(e1i(t), σ, δ) (9)

where x̂1i(t) and x̂2i(t) are the estimation values of x1i(t) and x2i(t), respectively, e1i(t) =
x̂1i(t)−x1i(t) with i = 1, 2 is the estimation error, β1i and β2i with i = 1, 2 are appropriate
positive constants.

Considering the dynamics system (6) and (7) and the nonlinear ESO (8) and (9), an
estimation error system is given as

ė1i(t) = e2i(t)− β1ie1i(t) (10)

ė2i(t) = −ωi(t)− β2ifal(e1i(t), σ, δ) (11)

where e2i(t) = x̂2i(t) − x2i(t) with i = 1, 2 is the estimation error of the disturbance.
Stability analysis of the nonlinear ESO (8) and (9) is given in the following theorem.

Theorem 3.1. The estimation errors e1i(t) and e2i(t) are bounded by giving appropriate

positive parameters β1i and β2i with i = 1, 2. That is, the estimation error system (10)
and (11) is asymptotically stable by the nonlinear ESO (8) and (9).

Proof: A Lyapunov function is given by

V1(t) = λ1|e11(t)|
3
2 − λ2e11(t)e21(t) + λ3e21(t)

2 (12)

where λ1, λ2, and λ3 are constants which are satisfied with λ1 > 0, λ2 > 0, λ3 > 0,
λ2

2 − 4λ1λ3 < 0. Therefore, it is obtained that V1(t) is positive according to (12). The
derivative of Equation (12) is given as follows

V̇1(t) =
∂V1(t)

∂e11(t)
ė11(t) +

∂V1(t)

∂e21(t)
ė21(t)

= −A|e11(t)|
2( 3

4) +B|e11(t)|
3
4 sgn(e11(t))e21(t)− Ce21(t)

2

+ω1(t)(λ2e11(t)− 2λ3e21(t)) (13)

where A =
(

3

2
λ1β11 − λ2β21

)

, B =
[

3

2
λ1 − 2λ3β21 + λ2β11|e11(t)|

1
2

]

|e11(t)|
−

1
4 and C = λ2.

The quadratic part of Equation (13) is negative if A > 0, B > 0, C > 0 and B2−4AC < 0
hold. That is, 3λ1/λ2 > 2β21/β11, 3λ1 > 4λ3β21, λ2 > 0, and

3

2
λ1 − 2λ3β21 + λ2β11|e11(t)|

1
2 < 2

√

λ2

(

3

2
λ1β11 − λ2β21

)

|e11(t)|
1
4

Letting a = λ2β11, b =
√

λ2

(

3

2
λ1β11 − λ2β21

)

, c = 3

2
λ2−2λ3β21, and x(t) = |e11(t)|

1
4 , it

is obtained that c+ ax2(t) < 2bx(t). For this inequality to make sense x(t) has to satisfy
b2 − ac > 0, it holds between two roots of the quadratic equation ax2(t)− 2bx(t) + c = 0.
Select a large δ = b2 − ac > 0 to ensure that the interval between the two roots of
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Equation (13) is large, and pick a suitable λ3 to make 2λ3β11 − λ2 > 0 large. Therefore,
the coefficients of the Lyapunov function (12) satisfy the following inequalities

λ2 > 0, 3
λ1

λ2

> 2
β21

β11

, 3λ1 > 4λ3β21

It guarantees that the Lyapunov function (12) satisfies the positive definite condition.
In this case, for any e21(t) and for a large range of e11(t), V̇1(t) is negative definite.
However, when the parameters are selected in the above way, the negative definite con-

dition is not satisfied on the intersection line of parabola Z1(t) = −A|e11(t)|
2( 3

4) +

B|e11(t)|
3
4 sgn(e11(t))e21(t) − Ce21(t)

2 and plane Z2(t) = −λ2ω1(t)e11(t) − 2λ3ω1(t)e21(t).
The e11(t) and the (λ2ω1(t)/A)

2 on this intersection are the same order of magnitude.
Then it can be deduced that e11(t) and (ω1(t)/β21)

2 are of the same order of magnitude.
Therefore, adjusting parameters β21 makes error e11(t) bounded. That is, the estimation
values x̂11(t) and x̂21(t) of the nonlinear ESO (8) and (9) is effective.

3.2. Kinematics controller. A kinematics controller is proposed to give the desired
velocities for the differential drive mobile robot. qr(t) = [xr(t), yr(t), θr(t)]

T represents
the reference trajectory, and the tracking error between real differential drive mobile
robot and reference differential drive mobile robot is given as qe(t) = Te(qr(t) − q(t)) =
[ex(t), ey(t), eθ(t)]

T , where

Te =







cos θ(t) sin θ(t) 0

− sin θ(t) cos θ(t) 0

0 0 1







To facilitate the design of kinematics controller, letting ẽx(t) = ex(t) + d(1− cos eθ(t)),
ẽy(t) = ey(t)− d sin eθ(t), the tracking error system is obtained as











˙̃ex(t) = w(t)ẽy(t) + vr(t) cos eθ(t)− v(t)

˙̃ey(t) = −w(t)ẽx(t) + vr(t) sin eθ(t)

ėθ(t) = wr(t)− w(t)

(14)

Based on back-stepping method and the tracking error system (14), a kinematics controller
is designed as follows

Vp(t) =

[

vp(t)

wp(t)

]

=

[

k1ẽx(t) + vr(t) cos eθ(t)

wr(t) + k2vr(t)ẽy(t) + k3vr(t) sin eθ(t)

]

(15)

Theorem 3.2. For the kinematics controller (15), the tracking error system (14) is

asymptotically stable by selecting appropriate positive parameters k1, k2 and k3.

Proof: A Lyapunov function is given as

V2(t) =
1

2

[

ẽ2x(t) + ẽ2y(t)
]

+
1

k2
[1− cos eθ(t)] (16)

Based on the following tracking error system, one has that

V̇2(t) = [(wr(t) + vr(t)(k2ẽy(t) + k3 sin eθ(t)))ẽy(t)− k1ẽx(t)]ẽx(t)

+ [−(wr(t) + vr(t)(k2ẽy(t) + k3 sin eθ(t)))ẽx(t) + vr(t) sin eθ(t)]ẽy(t)

+
1

k2
[−vr(t)(k2ẽy(t) + k3 sin eθ(t))] sin eθ(t)

= − k1ẽx(t)
2 −

k3
k2

vr(t) sin
2 eθ(t) ≤ 0

Therefore, the tracking error system (14) is asymptotically stable with appropriate
positive parameters k1, k2 and k3.
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3.3. Dynamics controller. In the inner loop of the double closed-loop control strategy,
a dynamics controller is designed to track the desired velocities from the outer loop.
Let xp(t) = Vp(t) = [xp1, xp2] = [vp(t), wp(t)]

T , the tracking error of the inner loop is
εi(t) = xpi(t) − x1i(t) with i = 1, 2. Considering Equation (6), the derivative of εi(t) is
shown as ε̇i(t) = ẋpi(t)−x2i(t)−b0iui(t) with i = 1, 2. The sliding mode surface is selected

as si(t) = εi(t) + h1i

∫ t

0
fal(εi(t))dt, where h1i with i = 1, 2 is a positive constant. The

derivative of the sliding mode surface si(t) is shown as ṡi(t) = ẋpi(t)− x2i(t)− b0iui(t) +
h1ifal(εi(t)) with i = 1, 2. A reaching law is designed as ṡi(t) = −h2isi(t)− h3isgn(si(t))
with i = 1, 2, and a dynamics controller is obtained as

ui(t) =
1

b0i
[ẋpi(t)− x̂2i(t) + h1ifal(εi(t)) + h2isi(t) + h3isgn(si(t))] (17)

where h2i and h3i with i = 1, 2 are positive constants. Effectiveness of the control law
(17) is shown in the following theorem.

Theorem 3.3. The tracking error of the inner loop εi(t) with i = 1, 2 is convergent by

selecting suitable positive parameters h1i, h2i and h3i with i = 1, 2.

Proof: A Lyapunov function is chosen as V3(t) =
1

2
s2
1
(t), and one has that

V̇3(t) = s1(t)ṡ1(t)

= s1(t) (e21(t)− h21s1(t)− h31sgn(s1(t)))

≤ e21(t)|s1(t)| − h21s
2

1
(t)− h31|s1(t)| (18)

where e21(t) is bounded according to the nonlinear ESO design. Therefore, there exists a
positive constant N2 such that e21(t) ≤ N2. Inequality (18) will be rewritten as

V̇3(t) ≤ −(h31 −N2)|s1(t)| − h21s
2

1
(t)

The inequality V̇3(t) < 0 holds by selecting the appropriate parameter h31. Therefore,
the tracking error system is asymptotically stable, and the dynamics controller (17) de-
signed in this paper is effective.

4. Simulations Results. In this section, simulations are carried out to verify effective-
ness of the double closed-loop control strategy for the differential drive mobile robot with
load offsetting. In the simulations, the physical parameters of the differential drive mobile
robot are set as m1 = 3.6 kg, mw = 0.5 kg, r = 0.12 m, b = 0.166 m, l = 0.4 m, g = 9.8
m/s2, µ = 0.015, M1 = 0.64 andM2 = 0.96. The distance d, the angle α and the weight ml

are the load offset parameters of the differential drive mobile robot. The sampling period
is T = 0.01 s in the simulations. The initial values and velocities of reference trajectory
and real trajectory are set as (xr(0), yr(0), θr(0)) = (3.0 m, 1.0 m, 0 rad), vr = 0.4 m/s,
wr = 0.6 rad/s, (x(0), y(0), θ(0)) = (3.0 m, 0.8 m, 15 rad), v(0) = 0.3 m/s and w(0) = 0.5
rad/s. The parameters used in the nonlinear ESO (8) and (9), the kinematics controller
(15) and the dynamics controller (17) are listed in Table 1. In the simulations of the cir-
cular trajectory tracking, two different tracking trajectories are obtained by changing the
load offset parameters of the differential drive mobile robot, and the simulations results
are shown in Figure 4(a).

It is shown that the differential drive mobile robot effectively tracks the reference tra-
jectory. For the different load offset parameters, the differential drive mobile robot keeps

Table 1. Controller parameters in the simulations

Nonlinear ESO β1i = 300 β2i = 1000 σ = 0.25 δ = 0.01
Kinematic controller k1 = 1.5 k2 = 5 k3 = 5
Dynamics controller h1i = 25 h2i = 25 h3i = 0.1 σi = 0.25 δi = 0.05
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Figure 4. Simulations results

up with the reference trajectory. To show superiority of the double closed-loop tracking
control strategy, a simulation has been carried out for the method of [16] and the double
closed-loop tracking control strategy. The comparison results of the tracking trajectory are
given in Figure 4(b). It is shown that the tracking effect of this paper is better than that
of [16]. Therefore, it illustrates the effectiveness and superiority of the double closed-loop
control strategy proposed in this paper.

5. Conclusion. In this paper, a double closed-loop trajectory tracking strategy is de-
signed for a differential drive mobile robot with load offsetting. A nonlinear ESO is used
to estimate the disturbance from load offsetting. A kinematics controller of the outer loop
is used to deal with the nonholonomic constraints of the differential drive mobile robot.
In the inner loop of the double closed-loop trajectory tracking strategy, a dynamics con-
troller is designed to track the desired velocities from the outer loop. Based on Lyapunov
method, stability analyses are given for the nonlinear ESO, the kinematics controller and
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the dynamics controller. Simulations results illustrate effectiveness of the double closed-
loop tracking control strategy. In the further work, it is of great significance to promote
the development of differential drive mobile robot prototypes.
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