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Abstract. Fuzzy adaptive event-triggered and self-triggered control techniques are stud-
ied for uncertain nonlinear systems in this article. A new adaptive law is constructed by
using the state of the system sampling time. Zeno behavior can be effectively removed by
embedding a normal number in the event-triggered condition. Then, a self-triggered algo-
rithm is constructed that uses the current state of the object to decide the next moment.
Compared with existing algorithms, this algorithm is easier to express and calculate. Fi-
nally, it is proved that all states of the closed-loop system are semi-globally uniformly
bounded. A simulation example shows the validity of the control scheme and the theory.
Keywords: Event-triggered control (ETC), Self-triggered control (STC), Fuzzy logic
systems, Backstepping design

1. Introduction. Recently, adaptive fuzzy backstepping control has received increasing-
ly attention in the realm of control. For uncertain strict-feedback nonlinear systems [1-3],
many excellent results have been obtained. The authors put forward several important
adaptive neural network backstepping controllers in [1]. Although the adaptive state feed-
back controllers were designed in [2,3], the controlled object considered is limited to
the strict-feedback nonlinear system with constant control gain. In order to conquer the
above limitations, different methods have been proposed in [4-6]. By introducing some
smoothing functions and bounded estimation methods in [4], the authors have successful-
ly achieved the stability of the closed-loop system. The Nussbaum function method has
been used to design the controller to overcome the issue of unknown control direction in
[5]. [6] combined backstepping method with bounded control technology, and established
a new Lyapunov function so that all variables of the closed-loop system are bounded.

Note that the above results are all traditional periodic control, ETC was developed
due to the ability to save communication, computing, and power resources. A simple
event-triggered scheduler has been studied in [7], which needs to wait T units after each
transmission. In [8], the controller and event-triggered condition have been devised si-
multaneously to avoid ISS assumption. Specifically, [9] proposed a new switching ETC
scheme, which enables the switching event-triggered controller to effectively offset nonlin-
earity, uncertainty and sampling errors. [10] presented a new model-free adaptive event-
triggered control strategy for nonlinear discrete-time systems. In [11], event-triggered
conditions were updated periodically. However, using ETC presents an obstacle: special
hardware is usually required to continuously check trigger conditions. So, [12] proposed
an STC mechanism. As far as we know, there is little work to research the self-triggered
technique for nonlinear systems with unknown control gain function.
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Motivated by the corresponding research, this article investigates to study an event-
triggered and a self-triggered techniques for nonlinear systems. The major contributions
of this study are as below.
1) This is the first time to develop fuzzy adaptive self-triggered technology, which

can effectively avoid continuous states monitoring. This process only needs the state
information obtained at the moment when the current event is triggered, and there is
no need to continuously monitor the state, which can save a large number of resources.
2) Unlike the existing results [13], it also needs to calculate the resources at discrete

times. This paper effectively reduces the use of communication resources by embedding
a constant in ETM.
3) A fuzzy adaptive law using only sampling time information is designed, which does

not require real-time calculation and saves a lot of communication channel resources.

2. Problem Statement and Preliminaries.

2.1. System descriptions and assumptions. Consider the following strict-feedback
nonlinear systems:

ẋi = fi(x̄i) + gi(x̄i) xi+1, 1 ≤ i ≤ n− 1

ẋn = fn(x̄n) + gn(x̄n)u

y = x1 (1)

where x̄i = [x1, x2, . . . , xi]
T ∈ Ri, x̄n = [x1, x2, . . . , xn]

T ∈ Rn is the state variable, y ∈ R
and u ∈ R are output and input of the nonlinear systems, respectively. f(·) and g(·)
(1 ≤ i ≤ n) are smooth unknown nonlinear functions.

Remark 2.1. The system (1) is a common strict-feedback nonlinear system. In practice,
many real-world systems can be modeled as the above nonlinear strict-feedback system,
such as marine surface vehicle [14] and unmanned aerial vehicles system [15].

Assumption 2.1. There exist positive constants gi,1, gi,0 and gi,d which satisfy gi,0 ≤
|gi(·)| ≤ gi,1 and |ġi(·)| ≤ gi,d, i = 1, 2, . . . , n.

Lemma 2.1. For any continuous function f(x) defined over a compact set U and any
given positive constant ε, there is an FLS θ∗Tφ(x) such that

sup
x∈U

∣∣f(x)− θ∗Tφ(x)
∣∣ ≤ ε (2)

2.2. Notion of event-triggered mechanism. Let {tk}∞k=1 with tk+1 > tk represent the
event-triggered instants, and xi(tk) be the state of the system at time instant tk. Between
successive event instant [tk, tk+1), the state vector is given as

x̆i(t) = xi(tk), tk ≤ t ≤ tk+1 (3)

An event error is defined as follows: ei(t) = xi(t) − x̆i(t), tk ≤ t ≤ tk+1 which is
determined of the moment of triggering. The controller has the following form u(t) =
u(tk), t ∈ [tk, tk+1). For i = 1, . . . , n ∀t ∈ [tk, tk+1), the adaptive laws are described as

˙̂
θi(t) = κizi(tk)φi(Zi(tk))− σiθ̂i(t) (4)

where κi and σi are positive parameters.

3. Event-Triggered Algorithm.

3.1. Event-triggered controllers design. This introduces the coordinate transforma-
tion:

z1 = y − ym

zi = xi − αi−1, i = 2, 3, . . . , n (5)
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where αi−1 is the virtual control law.
Step 1: From (1) and (5), one can get

ż1 = g1(x1)
(
z2 + α1 + θ∗T1 φ(Z1) + ε(Z1)

)
= g1(x1)

(
z2 + α1 + θ̂T1 φ(Z1) + θ̃T1 φ(Z1) + ε(Z1)

)
(6)

According to Lemma 2.1, let h1(Z1) = g−1
1 (x1)(f1(x1) − ẏm) = θ∗T1 φ1(Z1) + ε1(Z1),

Z1 = [x1, ẏm]
T , ε1(Z1) satisfied with |ε1(Z1)| ≤ ε∗1, ε

∗
1 is a positive integer and θ̃1 = θ∗1 − θ̂1

with θ̂1 being the estimate of θ∗1.

Choose the Lyapunov function candidate as V1 =
1

2g1(x1)
z21 +

1
2κ1

θ̃T1 θ̃1, from (6), the time

derivative of V1 can be computed as

V̇1 = z1z2 + z1

(
α1 + θ̂T1 φ1(Z1) + ε∗1 −

ġ1z1
2g21(x1)

)
+ θ̃T1 z1φ1(Z1)−

1

κ1

θ̃T1
˙̂
θ1 (7)

To stabilize this subsystem, the event-triggered virtual control signal α1 and the pa-
rameter adaptive law are designed as

α1 = −c1z̆1 − c̄1z̆1 − θ̂T1 φ1(Z1)

˙̂
θ1 = κ1z1(tk)φ1(Z1(tk))− σ1θ̂1(t) (8)

where c1 and c̄1 are positive parameters to be designed, and z̆1 = z1(tk), t ∈ [tk, tk+1) is
an event-triggered variable. In addition, based on event error, we obtain x̆1 = x1 − e1;
furthermore, one has z̆1 = z1 − e1. Substituting (8) into (7) gives

V̇1 ≤ z1z2 + z1

(
−c1z̆1 − c̄1z̆1 + ε∗1 −

ġ1z1
2g21(x1)

)
+ z1θ̃

T
1 φ1(Z1)− z1(tk)θ̃

T
1 φ1(Z1(tk))

+
σ1θ̃

T
1 θ̂1
κ1

(9)

Using the Young’s inequality, one gets

z1(t)θ̃
T
1 φ1(Z1(t))− z1(tk)θ̃

T
1 φ1(Z1(tk))

≤ θ̃T1 (z1(t)− z1(tk))φ1(Z1(tk)) + θ̃T1 z1(t)[φ1(Z1(t))− φ1(Z1(tk))]

≤ θ̃T1 θ̃1
2κ1

+ κ1 |z1(t)− z1(tk)|2 + κ1z
2
1

z1ε
∗
1 ≤

1

2
z21 +

1

2
ε∗21

σ1θ̃
T
1 θ̂1
κ1

≤
σ1θ̃

T
1

(
θ∗1 − θ̃1

)
κ1

≤ − σ1

2κ1

∥∥∥θ̃1∥∥∥2 + σ1

2κ1

∥θ∗1∥
2 (10)

Further, substituting (10) into (9) gives

V̇1 ≤ −γ1z
2
1 −

(σ1 − 1)

2κ1

∥∥∥θ̃1∥∥∥2 + (c1 + c̄1) z1e1 + z1z2 + κ1 |z1(t)− z1(tk)|2 +D1 (11)

where c̄1 ≥ 1
2
− ġ1

2g21(x1)
, γ1 = c1 − κ1 and D1 =

σ1

2κ1
∥θ∗1∥

2 + 1
2
ε∗21 .

Step i (i = 2, . . . , n− 1): From (1) and (5), one can obtain

żi = gi (x̄i)
(
zi+1 + αi + θ̂Ti φi(Zi) + θ̃Ti φi(Zi) + εi(Zi)

)
(12)

Let hi(Zi) = g−1
i (x̄i) (fi (x̄i)− α̇i−1 + gi (x̄i) zi−1) = θ∗Ti φi(Zi) + εi(Zi), Zi =

[
x̄T
i ,

∂αi−1/∂x1, . . . , ∂αi−1/∂xi−1, ϕi−1

]T
, εi(Zi) satisfied with |εi(Zi)| ≤ ε∗i . And θ̃i = θ∗i − θ̂i

with θ̂i being the estimate of θ∗i .
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Choose the Lyapunov function candidate as Vi = Vi−1 +
1

2gi(x̄i)
z2i +

1
2κi

θ̃Ti θ̃i, from (12),

the time derivative of Vi can be computed as

V̇i ≤ V̇i−1 + zizi+1 + zi

(
αi + θ̂Ti φi(Zi) + ε∗i −

ġizi
2g2i (xi)

)
+ θ̃Ti ziφi(Zi)−

θ̃Ti θ̂i
κi

(13)

Choose the virtual control signal and the adaptive law as

αi = −ciz̆i − c̄iz̆i − θ̂Ti φi(Zi)

˙̂
θi = κizi(tk)φi(Zi(tk))− σiθ̂i(t) (14)

where ci and c̄i are positive parameters to be designed, and z̆i = zi(tk), t ∈ [tk, tk+1) is an
event-triggered variable. We can obtain x̆i = xi − ei, which indicates z̆i = zi − ei.
Then, one can obtain

V̇i ≤ V̇i−1 + zizi+1 + zi

(
−ciz̆i − c̄iz̆i + ε∗i −

ġizi
2g2i (xi)

)
+ θ̃Ti ziφi(Zi)

− θ̃Ti zi(tk)φi(Zi(tk)) +
θ̃Ti

˙̂
θi

κi

(15)

By using the Young’s inequality, the algorithm is the same as step 1. Further, one has

V̇i ≤ −
i∑

k=1

γkz
2
k −

i∑
k=1

(σk − 1)

2

∥∥∥θ̃k∥∥∥2 + i∑
k=1

(ck + c̄k) zkek

+
i∑

k=1

κk |zi(t)− zi(tk)|2 + zizi+1 +Di (16)

where c̄i ≥ 1
2
− ġi

2g2i (xi)
, γk = ck − κk and Di = Di−1 +

σi

2κi
∥θ∗i ∥

2 + 1
2
ε∗2i .

Step n: With the same design procedure in step i, choose the control signal and the
adaptive law as

u = −cnz̆n − c̄nz̆n − θ̂Tnφn(Zn)

˙̂
θn = κnzn(tk)φn(Zn(tk))− σnθ̂n(t) (17)

where cn and c̄n are positive parameters to be designed, and z̆n = zn(tk), t ∈ [tk, tk+1) is
an event-triggered variable. By (17), one can obtain

V̇n = V̇n−1 + zn

(
−cnz̆n − c̄nz̆n + ε∗n −

ġnzn
2g2n (x̄n)

)
+ θ̃Tnφn(Zn)zn

− θ̃Tn zn(tk)φn(Zn(tk)) +
σnθ̃

T
n θ̂n

κn

(18)

By utilizing the Young’s inequality, the algorithm is the same as step 1. Further, one has

V̇n ≤ −
n∑

k=1

γkz
2
k −

n∑
k=1

(σk − 1)

2

∥∥∥θ̃k∥∥∥2 + n∑
k=1

(ck + c̄k) zkek

+
n∑

k=1

κk |zk(t)− zk(tk)|2 +Dn (19)

where c̄n ≥ 1
2
− ġn

2g2n(xn)
, γn = cn − κn and Dn =

∑n
k=1

σk

2κk
∥θ∗k∥

2 +
∑n

k=1
1
2
ε∗2k .

Remark 3.1. For ∀t ∈ [tk, tk+1), since the controller contains system state and adaptive
law, and they are sampled at instant tk, the adaptive law and state are triggered at the
same time. Compared with [11], we propose a method to calculate the adaptive law only
at tk time, which greatly saves network resources.



ICIC EXPRESS LETTERS, VOL.17, NO.7, 2023 797

Now, the event-triggered mechanism is given as

tk+1 = tk +max{τk, bi} (20)

where bi is a strictly positive real number, given in the following Theorem 3.1, and τk is
described as

τk = inf
t>tk

{t− tk| |ei(t)| > ϕiξi |zi(t)|} (21)

with ∥·∥ being the Euclidean norm and 0 < ϕi < 1, ξi > 0.

3.2. Stability analysis.

Theorem 3.1. Considering nonlinear system given by (1), event-triggered controllers and
adaptive laws (8), (14), (17), there exists bi, which is strictly positive satisfying

bi ≤

√
γi√

ci+c̄i

ζ̄
(
1 +

√
γi√

ci+c̄i

) (22)

Then, all the signals of system (1) are bounded and the tracking error will exponentially
converge to a residual. Moreover, there is no Zeno behavior.

Proof: To find the lower time bound bi, the time derivative of ∥ei(t)∥
∥zi(t)∥ is

ż = żi = −ci(zi − ei)− c̄i(zi − ei) +
1

2
zi −

ġizi
2g2i (x̄i)

≤ (ci + c̄i) ∥zi + ei∥ (23)

Then one can get

d

dt

∥ei∥
∥z∥

≤ eT ė

∥e∥∥z∥
− ∥e∥zT ż

∥z∥3
≤ ∥ż∥

∥z∥
+

∥e∥
∥z∥

· ∥ż∥
∥z∥

≤
(
1 +

∥e∥
∥z∥

)
(ci + c̄i)

∥zi + ei∥
∥z∥

= ζ̄

(
1 +

∥e∥
∥z∥

)2

(24)

where ζ̄ = ci + c̄i.

It is noted that ∥ei∥
∥z∥ is always upper bounded by ∥e∥

∥z∥ and both of them are nonnegative.

Then we conclude that ∥ei∥
∥z∥ satisfies the bound ∥e∥

∥z∥ < y (t, y0) where y(t, y0) is the solution

of ẏ(t) = ζ̄(1 + y(t))2, y0 = 0. Then the evolution time of ∥ei∥
∥z∥ from 0 to

√
ξi is lower

bounded by

Bi =

√
ξi

ζ̄
(
1 +

√
ξi
) =

√
γi√

ci+c̄i

ζ̄
(
1 +

√
γi√

ci+c̄i

) (25)

Further, we consider the stability of the system

V̇n ≤ −
n∑

k=1

γkz
2
k −

n∑
k=1

(σk − 1)

2

∥∥∥θ̃k∥∥∥2 + n∑
k=1

(ck + c̄k) zkek +
n∑

k=1

κke
2
k +Dn (26)

According to (26), where ξi is chosen as ξi =
γi

ci+c̄i
, then, one has

V̇n ≤ −
n∑

k=1

(
1− ϕ− κk

(
ϕγk

ck + c̄k

)2
)
z2k +

n∑
k=1

(σk − 1)

2

∥∥∥θ̃k∥∥∥2 +Dn (27)

Let C = min

{
2gi,0

(
1− ϕ− κk

(
ϕγk

ck+c̄k

)2)
, (σi − 1)

/
2

}
, and we get

V̇ ≤ −CV +D (28)
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where D = Dn =
∑n

k=1
σk

2κk
∥θ∗k∥2 +

∑n
k=1

1
2
ε∗2k . Then, (26) becomes Vn(t) ≤ V (t)

(
V (0)

− D
C

)
e−Ct + D

C
. Further, ∀t ∈ [tk, tk+1), when t → ∞, one has

lim
t→∞

V (t) ≤ 2D

C
(29)

Furthermore, we obtain limt→∞ |zi| ≤ 2
√
(D/C) and limt→∞

∣∣∣θ̃i∣∣∣ ≤ 2
√

(κiD/C).

From (29), we obtain e2i (t) ≤ V (t) ≤ V (0)e−Ct. Thus, all states of system (1) are
bounded.

Remark 3.2. From the event-triggered condition (19), the error is corrected with the
states. ϕ and ξ are regulated by γ, c and c̄, to guarantee the closed-loop stability such that
the parameters are chosen c = 60, c̄ = 2, ϕ = 0.9, κ = 0.1. Through calculation, we can

get κk

(
ϕγk

ck+c̄k

)2
is 0.076, and 1 − ϕ − κk

(
ϕγk

ck+c̄k

)2
is always bigger than zero. Therefore,

it does not affect the stability of the system.

4. Self-Triggered Algorithm. The self-triggered policy is given in Theorem 4.1.

Theorem 4.1. In order to construct self-triggered algorithm of the closed-loop system
(1), the inter-execution interval function τk(x(tk)) = tk+1 − tk is considered as

τk(x(tk)) = tk+1 − tk =
ϕiξi

(1 + ϕiξi)M1

|zi(tk)| (30)

where M1 ≥ κi

√
V (0).

Proof: Using (3), we have |ėi(t)| = |żi(t)| ≤ M1ei(t). Further, we can get |ėi(t)| ≤ M1

with M1 shown in (30), one has |ei(t)| ≤ |e(t)| ≤ M1t. Because the continuity of |ei(t)|
and |zi(t)|, for any T ∈ (tk, tk+1), |ei(t)| can only decrease to a level which is bigger
than ϕiξi|zi(t)| from time tk to T . To get a valid T , the value of V (0) is needed to be
memorized by state x1 during the evolution. Since ei(t) = xi(tk) − xi(t), a sufficient
condition to guarantee |ei(t)| > ϕiξi|zi(t)| is |ei(t)| > ϕiξi

1+ϕiξi
|zi(tk)|. Let T ′ be the accurate

time consumed for |ei(t)| to increase from 0 to ϕiξi
1+ϕiξi

|zi(tk)|. From (30), we denote T0 =
ϕiξi

(1+ϕiξi)M1
|zi(tk)|. Then, T̃ = tk + T0 < T ′ < tk+1 will be a feasible choice for T = tk+1

to ensure |ei(t)| > ϕiξi|zi(t)| holds. It means that the inter-event time can be chosen as
τk =

ϕiξi
(1+ϕiξi)M1

|zi(tk)|. This completes the proof.

5. Simulation Results.

Example 5.1. Consider the following two-order nonlinear system:

ẋ1 = f1(x1) + g1(x1)x2

ẋ2 = f2 (x̄2) + g2 (x̄2)u

y = x1 (31)

The design parameters are chosen as c1 = 60, c̄1 = 2, c2 = 60, c̄2 = 3, σ1 = σ2 = 0.2,
ϕ1 = 0.9, ϕ2 = 0.9, ξ1 = 0.5, ξ2 = 0.4. The initial values of the variables and adaptive
parameters are chosen as x1(0) = 0.2, x2(0) = 0, x3(0) = 0.4, x4(0) = 1, θ1(0) = θ2(0) =
[0, 0, 0, 0, 0]T , and the other initial values are chosen zeros.
Figure 1 shows the event times which is the event-triggered algorithm compared with the

self-triggered algorithm. It is obvious that the number of self-triggered methods is much less
than that of event-triggered, which proves the effectiveness of the self-triggered algorithm.
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Figure 1. Triggering event

6. Conclusions. Adaptive fuzzy event-triggered and self-triggered schemes for uncertain
strict-feedback nonlinear systems are investigated in this article. A new adaptive law
solves the issue of event-triggered in fuzzy adaptive control. It is worth mentioning that
the self-triggered technique further reduces the waste of event monitoring, in which the
next triggered moment of communication can be decided by the state of the current
moment. In the future, it will be a meaningful research direction to apply the proposed
self-triggered method to output-feedback control methods and interconnected large-scale
systems.
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