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Abstract. This paper concentrates on the issue of adaptive predefined-time trajectory
tracking control for underactuated autonomous underwater vehicles (AUVs). With the
help of time-varying asymmetric barrier function, the good trajectory tracking accuracy
of AUVs can be achieved. Based on predefined-time stable and adaptive backstepping
control, a novel predefined-time trajectory tracking adaptive constraint control approach is
developed. The proposed control approach can ensure the AUV’s trajectory tracking error
converges to a preset error constrained region in predefined time, and also guarantees the
other closed-loop signals are bounded in predefined time.
Keywords: Underactuated AUVs, Adaptive trajectory tracking control, Backstepping
control, Predefined-time control, Time-varying asymmetric barrier function

1. Introduction. With the rapid development of marine techniques, underactuated
AUVs or autonomous vehicles, as a more efficient tool for exploring ocean boundaries,
have attracted considerable attention for scholars. Meanwhile, many useful works have
been published, for example, [1-3]. The authors in [1] investigate a leader-follower for-
mation control for multi-underactuated AUVs, and the dynamic model and kinematic of
AUVs are given. Inspired by [1], [2] develops a robust adaptive trajectory tracking control
method for AUVs. By adopting prescribed performance technique, the trajectory track-
ing accuracy of AUVs is ensured. Then, the authors in [3] study the trajectory following
control method for autonomous vehicles by designing a feedforward controller. Note that
the above developed control approaches do not ensure the settling time of AUVs usually
tends to infinite, which will be detrimental to the development of marine exploring indus-
try. Thus, the high trajectory tracking accuracy and the faster settling time need to be
required.

To overcome this drawback, the fixed-time stable theory is developed for nonlinear
systems in [4]. The settling time in [4] does not depend on the initial values, but only on
the design parameters. Thus, inspired by [4], the author in [5] investigates the fixed-time
adaptive output constraint control issue for nonlinear systems. The authors in [6] develop
an adaptive fuzzy fixed-time control approach for nonlinear systems, and the concept
of practical fixed-time stable is developed. In addition, [7,8] study adaptive fixed-time
output feedback control issues for nonlinear systems. The authors in [9] study a robust
adaptive practical fixed-time leader-follower formation control for AUVs. Note that [8,9]
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also develop the non-singular fixed-time control methods, but the settling time depends
on the small design parameter.
Obviously, the fixed-time control schemes in [6-9] are all depending on a small design pa-

rameter. Thus, a novel predefined-time adaptive control approach is developed for robotic
in [10], and the settling-time is given in advance. Then, the authors in [11] develop a
singularity-free adaptive predefined-time control approach for rigid spacecrafts. However,
it should be noted that there are not available works about the predefined-time adaptive
constraint tracking control for AUVs.
Inspired by the above discussions, this paper concentrates on the predefined-time-based

adaptive trajectory tracking constraint control issue for underactuated AUVs. Compared
with the existing works, the main contributions of this paper can be highlighted as follows.
1) With the help of predefined-time stable theory and hyperbolic tangent function,

a predefined-time adaptive trajectory tracking control approach is developed for AUVs.
The problem that the settling time depends on the small design parameter and singular
problem are solved in [8,9].
2) An output feedback control approach is developed for AUVs by using time-varying

barrier function. The developed constraint control approach can ensure the tracking error
converges to a preset time-varying error constraint region, and then the trajectory tracking
accuracy can be ensured.

2. Problem Statement and Preliminaries.

2.1. Model of AUVs. Based on the body and earth fixed coordinates, inspired by [1,2],
AUV usually can be modeled as follows:

η̇ = R(ψ)υ

τ + d(t) = Mυ̇ +C(υ)υ +D(υ)υ
(1)

where υ = [u, v, r]T represents the AUV’s velocity vector with yaw rate r, sway velocity v
and surge velocity u; η = [x, y, ψ]T represents the AUV’s position vector with yaw angle
ψ ∈ [0, 2π) and position (x, y); d(t) = [d1(t), d2(t), d3(t)]

T represents external disturbance
vector; τ = [τu, 0, τr]

T represents the control input vector with yaw moment, sway force
and surge force. The damping matrix D(υ), the matrix of Coriolis and centripetal terms
C(υ), positive definite inertia matrix M and rotation matrix R(ψ) are described as

D(υ) =

 d1,1(u) 0 0
0 d2,2(v) 0
0 0 d3,3(r)

 , C(υ) =

 0 0 −m2,2v
0 0 m1,1u

m2,2v −m1,1u 0

 ,
M =

 m1,1 0 0
0 m2,2 0
0 0 m3,3

 , R(ψ) =

 cos(ψ) − sin(ψ) 0
sin(ψ) cos(ψ) 0

0 0 1


where d1,1(u) = −Xu−Xu|u||u|, d2,2(v) = −Yv − Yv|v||v| and d3,3(r) = −Nr −Nr|r||r| with
hydrodynamic derivatives Xu, Xu|u|, Yv, Yv|v|, Nr, Nr|r|; m1,1 = m − Xu̇, m2,2 = m − Yv̇,
m3,3 = Iz −Nṙ with AUV’s mass m, added masses Xu̇, Yv̇ and Nṙ, and moment of inertia
in yaw Iz.

Assumption 2.1. [1] The desired trajectory ηd = [xd, yd, ψd]
T is bounded, η̇d and η̈d are

also bounded.

Assumption 2.2. [2] There exists unknown constant vector d∗ =
[
d∗1, d

∗
2, d

∗
3

]T
, and the

external disturbance vector d(t) =
[
d1(t), d2(t), d3(t)

]T
satisfies ∥d(t)∥ ≤ ∥d∗(t)∥.

Control Objective: This paper will design an adaptive predefined-time constraint
tracking control law for AUVs (1) such that

1) AUV can track the desired trajectory ηd = [xd, yd, ψd]
T in predefined time;
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2) All closed-loop signals are bounded;
3) Tracking error ej (j = x, y, ψ) are not beyond the constraint regions Hj(t) and Hj(t).

ej, Hj(t) and Hj(t) will be defined in Section 3.1.

2.2. Preliminaries. The following useful knowledge is introduced to achieve the control
objective of this paper.

Definition 2.1. [10, 11] For nonlinear system χ̇(t) = f(χ, t) with f(0) = 0, the equilib-
rium point χ(0) = χ0 is said to be the practical predefined-time stable (PTS) if the state
trajectory satisfies ∥χ(χ0, t)∥ ≤ δ for ∀t ≥ Tmax with predefined time Tmax and constant
δ > 0. Thus, for any constants β ∈ (0, 1), ϵ > 0, ϵ > 0 and D > 0, there exists a
continuous differentiable function V (χ), we have

V̇ (χ) ≤ − ϵπ

βTmax

V 1+β
2 − ϵπ

βTmax

V 1−β
2 +D (2)

thus, the nonlinear system χ̇(t) = f(χ, t) is practical predefined-time stable (PPTS).

Lemma 2.1. [7] Assume that
∣∣∣ϑ̃∣∣∣ ≤ δ∗ with constant δ∗ > 0; thus for constants β1 ∈

(
1
2
, 1
)

and β2 > 1, the following inequality holds

−ϑ̃Tϑ̃ ≤
(
1

2
ϑ̃Tϑ̃

)β1
−
(
1

2
ϑ̃Tϑ̃

)β2
+ Γ (3)

where Γ = (1− β1)β
β1

1−β1
1 +

(
δ∗

2

)β2
.

Lemma 2.2. [6] For χi ∈ R, there exist constants p ∈ (0, 1] and q > 1, and we have

m∑
i=1

|χi|q ≥ m1−q

(
m∑
i=1

|χi|

)q

,
m∑
i=1

|χi|p ≥

(
m∑
i=1

|χi|

)p

(4)

3. Main Results. In this section, the adaptive path following control law will be de-
signed, and the stability analysis will be given.

3.1. Adaptive predefined time path following controller design. In this subsec-
tion, an adaptive predefined time tracking controller will be designed by using the uni-
versal asymmetric barrier function and novel predefined-time technique.

First, define the tracking error e = [ex, ey, eψ]
T as

e = η − ηα (5)

where ηα = [xd, yd, ψα]
T, ψα is called to be approach angle, which is used to solve the

AUV’s underactuation issue, and defined as

ψα = atan2(ey, ex) tanh

(
e2x + e2y
δ

)
+ ψd

(
1− tanh

(
e2x + e2y
δ

))
(6)

Obviously, ψα = ψd when ex = ey = 0.
To achieve the predefined-time constraint control objective, according to [5] and [12],

define the following universal asymmetric barrier function as

z1,j = T
(
ej,Hj,Hj

)
=

HjHjej(
Hj − ej

) (
Hj + ej

) , −Hj(0) < ej(0) < Hj(0) (7)

where Hj(t) > 0 and Hj(t) > 0 are time-varying continuous functions, and Hj(t) ̸= Hj(t)

(j = x, y, ψ). Obviously, z1,j = 0 if and only if ej = 0. Then, when ej → Hj or ej → −Hj,
we have z1,j → +∞ or z1,j → −∞.

Hereafter, the adaptive backstepping-based predefined-time constraint controller design
will be given.
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Step 1: From (5) and (7), ż1,j is

ż1,j = Pj ėj +Qj (8)

where Pj =
HjHj(e2j+HjHj)
(Hj−ej)(Hj+ej)

, Qj = − Hje
2
j

(Hj−ej)
2
(Hj+ej)

Ḣj +
Hje

2
j

(Hj−ej)(Hj+ej)
2 Ḣj.

From (1) and (5), we have ėj = R(ψ)υ − η̇α, define z2 = υ − α, and thus ż1 is

ż1 = P [R(ψ)(z2 + α)− η̇α] +Q (9)

where P = diag (Px,Py,Pψ), Q = [Qx,Qy,Qψ]
T.

Choose the Lyapunov function as

V1 =
1

2
zT1 z1 (10)

From (9) and (10), V̇1 is

V̇1 = zT1 ż1 = zT1P [R(ψ)(z2 + α)− η̇α] + zT1Q (11)

With the help of Young’s inequality, the following inequality holds

zT1PR(ψ)z2 ≤ zT1PR(ψ)z1 + zT2PR(ψ)z2 (12)

Design the virtual control law α as

α = R−1(ψ)

{
P−1

[
− 2βπ

βTmax

(
1

2

)1+β
2

z1+β1 − π

βTmax

z1−β1

×
(
1

2

)1−β
2

tanh

(
π

βTmax

(
1

2

)1−β
2 z2−β1

ς1

)
−Q

]
+ η̇α

}
−R(ψ)z1 (13)

where ς1 > 0 is a constant.
Invoking (11)-(13), V̇1 can be further written as

V̇1 ≤ zT2PR(ψ)z2 −
2βπ

βTmax

(
1

2

)1+β
2

z2+β1

− π

βTmax

(
1

2

)1−β
2

z2−β1 tanh

(
π

βTmax

(
1

2

)1−β
2 z2−β1

ς1

)
(14)

Inspired by [9], the inequality |χ| − χ tanh
(
χ
ς

)
≤ κς is used to handle term tanh(·); thus,

the following inequality holds

π

βTmax

(
1

2

)1−β
2

z2−β1 − π

βTmax

(
1

2

)1−β
2

z2−β1 tanh

(
π

βTmax

(
1

2

)1−β
2 z2−β1

ς1

)
≤ κς1 (15)

where κ = 0.2785. Thus, V̇1 can be finally written as

V̇1 ≤ zT2PR(ψ)z2 −
2βπ

βTmax

(
1

2

)1+β
2

z2+β1 − π

βTmax

(
1

2

)1−β
2

z2−β1 + κς1 (16)

Step 2: From z2 = υ − α, ż2 is

ż2 = M−1 [τ + d(t)−C(υ)υ −D(υ)υ −Mα̇] (17)

Define F
(
υT, α̇

)
as

F(Z) = −M−1 [C(υ)υ +D(υ)υ +Mα̇] (18)

where Z =
[
υT, α̇

]T
.
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In the practical environment, there exist the uncertain parameters in AUVs; thus, with

the help of universal approximation property of FLS in [6], an FLS F̂
(
Z
∣∣∣θ̂) = θ̂Tφ(Z) is

adopted to identify F(Z), and assume that

F(Z) = θ∗Tφ(Z) + ε(Z) (19)

where φ(Z) = [φ1(Z), φ2(Z), φ3(Z)]
T is the fuzzy basis function vector, ε(Z) = [ε1, ε2, ε3]

T

is the identify error vector, and θ∗ is the ideal weight vector, which is defined as

θ∗T =

 θ∗T1 0 0

0 θ∗T2 0

0 0 θ∗T3


Thus, ż2 can be further rewritten as

ż2 = M−1
[
τ + d(t) + θ∗Tφ(Z) + ε(Z)

]
(20)

Choose the Lyapunov function as

V2 = V1 +
1

2
zT2Mz2 +

1

2
θ̃TΓ−1θ̃ (21)

where Γ ∈ R3×3 is a positive-definite gain matrix. θ̃ = θ∗ − θ̂ is the estimation error, and
θ̂ is the estimation of θ∗.

Invoking (20) and (21), V̇2 is

V̇2 = V̇1 + zT2
[
τ + d(t) + θ∗Tφ(Z) + ε(Z)

]
− θ̃TΓ−1 ˙̂θ (22)

Based on Assumption 2.2, define ω∗
1,0 = ε(Z)+d(t), there is an unknown constant ω1,0 >

0, ω∗
1,0 satisfies

∥∥ω∗
1,0

∥∥ ≤ ω1,0. Then, similar to (15), we have

zT2 ω∗
1,0 − ω1,0z2 tanh

(
ω1,0z2
ς2

)
≤ κς2 (23)

Invoking (21)-(23), V̇2 can be further written as

V̇2 ≤ − 2βπ

βTmax

(
1

2

)1+β
2

z2+β1 − π

βTmax

(
1

2

)1−β
2

z2−β1 + zT2PR(ψ)z2

+ zT2

[
τ + θ̂Tφ(Z)

]
+ κς1 + κς2 + θ̃TΓ−1

[
Γφ(Z)zT2 − ˙̂θ

]
+ ω1,0z2 tanh

(
ω1,0z2
ς2

)
(24)

Design the adaptive tracking control law τ and adaptive law
˙̂θ as

τ = − 2βπ

βTmax

(
1

2

)1+β
2

z1+β2 − θ̂Tφ(Z)−PR(ψ)z2 −
π

βTmax

z1−β2

×
(
1

2

)1−β
2

tanh

(
π

βTmax

(
1

2

)1−β
2 z2−β2

ς2

)
− ω1,0 tanh

(
z2ω1,0

ς2

)
(25)

˙̂θ = Γ
(

φ(Z)zT2 −Kθ̂
)

(26)

where ω1,0 will be defined later, ς2 > 0 is a constant. K > 0 is a constant.

Thus, invoking (24)-(26), V̇2 can be finally written as

V̇2 ≤ − 2βπ

βTmax

(
1

2

)1+β
2

z2+β1 − π

βTmax

(
1

2

)1−β
2

z2−β1 + θ̃TΓ−1θ̂

+κς1 + 2κς2 −
2βπ

βTmax

(
1

2

)1+β
2

z2+β2 − π

βTmax

(
1

2

)1−β
2

z2−β2 (27)
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3.2. Stability analysis. The following theorem is summarized to illustrate the proper-
ties of the above developed adaptive predefined-time constraint tracking control law for
AUVs.

Theorem 3.1. For AUV system (1), Assumptions 2.1 and 2.2 hold, if we adopt the
control law (25), virtual control law (13), adaptive law (26); thus, the proposed control
algorithm has the following properties:
1) AUV can track the desired trajectory ηd = [xd, yd, ψd]

T in predefined time;
2) All closed-loop signals are bounded.

Proof: Choose the whole Lyapunov as

V =
1

2
zT1 z1 +

1

2
zT2Mz2 +

1

2
θ̃TΓ−1θ̃ (28)

From (16), (27) and (28), V̇ is

V̇ ≤ − 2βπ

βTmax

(
1

2

)1+β
2

z2+β1 − π

βTmax

(
1

2

)1−β
2

z2−β1 + θ̃TKθ̂

+κς1 + 2κς2 −
2βπ

βTmax

(
1

2

)1+β
2

z2+β2 − π

βTmax

(
1

2

)1−β
2

z2−β2 (29)

Similar to (12), the following inequality holds

θ̃TKθ̂ ≤ 1

2
θ̃TKθ̃ +

1

2
θ∗TKθ∗ (30)

From Lemma 2.1, assume
∥∥∥θ̃
∥∥∥ ≤ δ∗; thus, we have

−θ̃TKθ̃ ≤ −
(
K

2

∥∥∥θ̃
∥∥∥)1−β

2

−
(
K

2

∥∥∥θ̃
∥∥∥)1+β

2

+ Γ (31)

where Γ = β
2

(
2−β
2

) 2−β
β +

[
δ∗

2
K
]1+β

2 .

Thus, from (29)-(31), V̇ can be further rewritten as

V̇ ≤ − 2βπ

βTmax

(
1

2
z21

)1+β
2

− π

βTmax

(
1

2
z21

)1−β
2

− 2βπ

βTmax

(
1

2
z22

)1+β
2

− π

βTmax

(
1

2
z22

)1−β
2

−K1−β
2 λmax

(
Γ−1

)(1

2
θ̃TΓ−1θ̃

)1−β
2

+ Γ

−K1+β
2 λmax

(
Γ−1

)(1

2
θ̃TΓ−1θ̃

)1+β
2

+ κς1 + 2κς2 +
1

2
θ∗TKθ∗ (32)

With the help of Lemma 2.2, choose parameters ϵ and ϵ as ϵ = min
{
1,(

λmin(K)Kλmax

(
Γ−1

) )1−β
2

}
, ϵ = min

{
2β,
(
λmin(K)Kλmax

(
Γ−1

))1+β
2

}
, and V̇ can be fur-

ther rewritten as

V̇ ≤ − ϵπ

βTmax

V
1−β

2
1 − ϵπ

βTmax

V
1+β

2
1 +D (33)

where D = κς1 + 2κς2 +
1
2
θ∗TKθ∗ + Γ.

To achieve the predefined-time control objective, inspired by [11], define a set as

Ω =

{
V |V ≤ min

{[
2βDTmax

ϵπ

] 2
2−β

,

[
2βDTmax

ϵπ

] 2
2+β

}}
(34)
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thus, we know V can converge into the set Ω in predefined time T ≤
√
2Tmax. Obviously,

from the definition of V , we know tracking and virtual errors z1 and z2, estimation error
θ̃, and other closed-loop signals are all bounded in predefined time

√
2Tmax. The proof of

Theorem 3.1 is thus completed. �

4. Conclusions. We have investigated the issue of predefined-time trajectory tracking
adaptive constraint control for underactuated AUVs. The ideal trajectory tracking accu-
racy of AUVs has been ensured by adopting time-varying asymmetric barrier functions.
Then, under frame of adaptive backstepping control, a novel predefined-time trajectory
tracking control approach has been developed. Based on predefined-time stable theory, the
developed control method can ensure the AUVs’ trajectory tracking error converges into
a preset error region, and all closed-loop signals are bounded in predefined time. Future
research direction will extend the proposed control method of this paper to multi-agent
systems.
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