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ABSTRACT. Cryptography is well recognized as one of the most adopted data securi-
ty methods. Since the designers of Rivest-Shamir-Adleman (RSA) invented a reliable
encryption and description technique that is claimed to be difficult to crack, the point
of difficulty lied in the factoring process m — p % q (from RSA). This paper attempted
to demonstrate that factorization could be accomplished by combining two mathematical
equations, namely Pythagorean and quadratic equations. The factorization process of the
two equations has been proven using the Microsoft Excel Solver feature. This method is
an inspiration for future research in developing more proven process using larger numbers
as required by RSA, which could not be performed in Fxcel due to technical software con-
straint. Future research should utilize more sophisticated tools with adequate capability
to crunch large numbers using server instead of desktop application. Simulation on this
research could factorize RSA with limitation of maximum n = 15 digits.

Keywords: Cryptography algorithm, Quadratic equation, Pythagorean, Microsoft Ex-
cel Solver

1. Introduction. Cryptography, as is well known, is one of the most extensively utilized
methods of data security. With cryptography, you can get services like, confidentiality,
data integrity, authentication, and non-repudiation [1,12]. Whitfield Diffie and Martin
Hellman of Stanford University introduced public key cryptography in 1975, then three
people, namely Ron Rivest, Adi Shamir, and Len Adleman of Massachusetts Institute
of Technology, described it in 1977, and it was patented in 1983 by the Massachusetts
Institute of Technology in the United States, known as RSA (which comes from the
initiation of their names Rivest-Shamir-Adleman). To generate n, you will need two prime
integers, p and ¢ (from RSA) [1,2,7,10,11,14,15].

We studied the former research that suggested several methods of sum square [3],
Pythagorean [5], SAT solver [13], IMFv3 [14], and then performed combination of 2
equations of quadrant and Pythagorean which were tested using MS Solver. The outcome
has exhibited a possibility in cracking RSA algorithm security.

Then, Euler’s Theorem to generate a key pair, public key e and private key d by
(d+e) mod p(n) =1, is then used to construct a key pair, public key e and private key d.
As a result, the key asymmetric key might be used to convert a plaintext communication
to an encrypted message (ciphertext), and then descripted message back to plaintext [1-
3,7,10,11]. The problem to be able to open a ciphertext message for a hacker is the value
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of n (from RSA), by factoring it first to get the values of p — 1 and ¢ — 1 so that they can
disassemble the asymmetric key pair [2-6].

This case study has demonstrated how to utilize two equations to obtain the values of
p and ¢, as well as how to disassemble using Ms Excel Solver.

2. RSA, Pythagorean, and Quadratic Equation. It is well known that the most
difficult challenge of cracking RSA is the factoring procedure. The purpose of this study
was to demonstrate how factorization could be accomplished by combining two mathe-
matical equations, which were Pythagorean and quadratic equations. The attempts of
factoring n mathematically were successful.

2.1. RSA. The RSA model is named after the algorithm of two random prime number
variables that produces the multiplication of n = pxq, and Euler’s Theorem to generate an
asymmetric key pair. In general, RSA has the following variables with Table 1 [1,2,6-9,14].

TABLE 1. Component RSA variable

Var Definition Status Remark
P Prime Private Generated n from p * ¢
Q Prime Private Generated n from p * ¢
One parameter public as key public
N for generating (M = message) to Public n as key public to generate
(C' = ciphertext) and reversing M to C, and C to M
(C = ciphertext) to (M = message)
Variable r = (p — 1) x (¢ — 1).
©(n)| Relative n to get d (description key) |Private Calivli)t}}lll gg]ciea(r)lgcfvivazigrfass}éfbd
03A6 (uppercase), then alt + x.
E | One parameter as public key (prime) | Public Encryption key
D |One parameter as private key (prime)|Private Decryption key
M Message plaintext or descripted |Private Message in plaintext
C Message ciphertext or encrypted | Public Message in ciphertext

The RSA algorithm generates variables with private and public statuses, which means
that some variables will be published, and others will not be published as private values.
The variable n is an important value in the RSA model, as it is one of the key values
of RSA cryptography. RSA cryptography, on the other hand, necessitates the use of two
keys to transform a message (M) to ciphertext (C') using the public key {n, e}, and vice
versa. Ciphertext (C') is transformed back into message (M) using the public and private
keys {n,d} — also known as asynchronous keys of RSA [1,3-6,8-11]. Here is the formula
for encrypting and describing messages (M) with the RSA values {n, e} and {n,d}:

a) Encryption message (C) = m® mod n

b) Description message (M) = ¢ mod n

c¢) Generating key pair, public key e and private key d by (d * ) mod ¢(n) = 1, where
1 < e < ¢(n) with e and ¢(n) being coprime.

Figure 1, illustrating the encryption process and cryptographic algorithm decryption
work asymmetrically, explains clearly how the authors carried out the research. The
method must describe the research design clearly, the replicable research procedures,
and describe how to summarize and analyze the data.

The notion depicted in Figure 1 is used to safeguard the exchange of two communicating
entities. For example, Alice communicates with Bob. Bob chooses the key pair (e and
d). Bob delivers the encryption key e (public key) to Alice over any channel but keeps
the decryption key hidden, d (private key). Then Alice wishes to send a message (M)
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using Bob’s public key to obtain (C') = m® mod n and then send C' as a communication
channel (which needs not be secure). Bob decrypts the ciphertext C' with his private key
to obtain (M) = ¢? mod n [1,6,8-11].

2.2. Pythagorean. Fermat’s Christmas theorem on the sum of two squares demonstrat-
ed that there are two sums of two squares representations, and that Euler’s factorization
can be used [3]. Similarly, Pythagorean is defined as the triple variables a, b, and ¢ that
form an angled triangle. In statement (2) ¢ —b?+a? substitution a? —c? —b?, right triangle
is formed by the sum of two squares, in which formula is obtained by finding variable ¢
where ¢ =~ \/(n+1i) and i = i + 1. It is the same as n = px ¢ = (%)2 — (%)2
equal to n = 2 —y%. In addition, shown by Figure 2, right triangle and three squares are
explained in statements (1)-(5) as follows.

’ c b Where:
¢ = hypotenuse

b = side of the base
.' a = the high side

FiGURE 2. Right triangle and three squares

2.3. Quadratic equation. Furthermore, (z — p)(x — ¢) is an quadratic equation on the
right side of statement (1) below [3,5]. The quadratic equation is one in which the variable
with the greatest power equals two variables, p and ¢. The following is the generic form
of the quadratic equation which is written as follows:

a-2°—b-x4+c=0 (1)

where a = coefficients of equation, for this case as 1; b = coefficients of equation, for this
case as (p + q); ¢ = constant, for this case as n = p *q.

The difficulty in completing quadratic equations was determining variable b, which
might be derived from the Pythagorean formula acquired by finding variable c as follows:

Since quadratic equation: a-2?> —b-x + ¢ =0, where c =n

Statement (2) for Pythagorean:

a® = — b*, where b* = n (2)
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In statement (3), get variable ¢ from Pythagorean, where a and ¢ are positive integers:

> =~ +/(n+1), where i =i+ 1 (3)

Quadratic equation will then be derived from Pythagorean variable ¢
b=2xc (4)

Remark 2.1. The variable ¢ has been confirmed by Pythagorean testing, and the result
of variable ¢ may be multiplied by 2, which is equivalent to variable b in the quadratic
equation as stated in statement (4). The probability experiment is presented in statement
(8) with integer data type limitation for a and ¢, which is used to determine the ¢ variable.

Therefore, since the quadratic equation has been finished, it could be determined that
the factorization results of the p and ¢ of the quadratic equation were possible to be
discovered. In order to get the p and ¢ values, the Quadratic Formula could be used to
find the values of x; and 9, following the formula in statement (5):

—b+Vb? — 4dac (5)
2a

3. Results. Both equations have been shown in the scenario above by various tests and
simulations that have managed to acquire p and ¢, with Fermat’s statement 22 —y? = (x—
p)(x—q) [3]. It was recognized that calculating the factorization of two prime numbers has
become a mathematical difficulty that necessitates a large amount of computing resources.
In statement (2), a®> = ¢* — b? was obtained after factorizing RSA of n — to extract p and
g values using the following formulas: p = ¢+ a and ¢ = ¢ — a. Another method for
factorization is to take the quadratic equation in statement (1) with the limitation of
statement (4) where variable b is twice of variable ¢ of Pythagorean, the factorization n
of RSA to obtain p and ¢ values with the following statement (5). Figure 3 below depicts
what has been tested and simulated.

T12 =

b?=1769

FiGure 3. Right triangle simulation result

Please see the following Table 2 and Table 3 for additional experiment outcome as
demonstrated by any number of variable n optioning p and ¢ with both equations.

TABLE 2. Self-processed data by Pythagorean

Pythagorean
No. n Polarization i for ¢ 2 —n=a’ p=ct+alqg=c—a
Getting ¢ | Getting a | Getting p | Getting ¢
1 1769 3 45 16 61 29
2 162733 4 407 54 461 353
3 4394647 848 2944 2067 5011 877
4 | 682690031 21932 48060 40337 88397 7723
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TABLE 3. Self-processed data by quadratic equation

Quadratic equation

No. n Polarization i for j | a-22 —b-24+c¢=0 T1p = %@
Getting b | Getting ¢ | Getting p | Getting ¢
1 1769 3 90 1769 61 29
2 162733 4 814 162733 461 353
3 4394647 848 o888 4394647 5011 877
4 1682690031 21932 96120 | 682690031 | 88397 7723

Clearly, we could obtain the values of p and ¢ from the two equations above; hence,
those formulas might be utilized as process inputs in Ms Excel Solver. The simulation
results executed in Ms Excel Solver were recorded in Table 4.

TABLE 4. Self-processed data by Ms Excel Solver

P);thagzorez:n Qua(zratic equation Result (Output)
=0 +a a-2°=b-x+c=0
b c a a b c Object c P q
(n = p=q)|(Ms Excel Solver) |a* = ¢? — b?|Default a = 1 (n=pxq)la-2® —b-z+c=0[(Ms Excel Solver)|(Ms Excel Solver)| (n/p)
Input n Found Verified Input Tnput 2 ¢ Input n Input formulas Found Found Found
(¢ from Pythagorean)
1769 45 16 1 90 1769 0 45 29 61
162733 407 54 1 814 162733 0 407 353 461
4394647 2944 2067 1 5888 4394647 0 2944 877 5011
682690031 48060 40337 1 96120 682690031 0 48060 7723 88397

To execute the solver, the following configuration steps must be performed in Ms Excel
Solver.

Solver Parameters X

Input cell value objective
7| uadratic Equation

®) Value OF 0

A B & D E

A. Simulation (generated n)
p 29 sample p
q 61 sample q To: Max i

1

2

3

4 n 1769 By Changing Variable Cells (1 g3 yr 1t variables

5 851538516 Ms Excel Solver will be found
6

7

8

Seg Objective:

»

»

B. Pytagorean (Formula: c® = b? + a?) Subject o the Constraints;

b sqrt --> pythagorean b equal to sqrt (n) $B$15:8516 = integer add

a —> it will be calculated (formula pythagorean) sEs162=0
9 c -> put manual ¢ of pythagorean Change
10 Delete.
11
12 |C. Quadratic Equation (Formula: @.x2 — b.x + ¢ = 0) Beset Al
13 a b C Load/Save
14 | 1 1769] [ Make Unconstrained Variables Non-Negative
15 | c (pythagorean) 45 —> Ms Excel Solver will be found (input closely) Select a Solving GRG Nonlincar v Ogtions
16  x (quadrant) 29 --> Ms Excel Solver will be found (input closely) Method:
17 | object - —> Ms Excel Solver will be found - as target =0 Solving Method
18 Select the GRG Nonlinear engine for Solver Problems that are smooth nonlinear, Select the LP Simplex engine
19 |D. Result p and q for linear Sover Problems, and select the Evolutionary engine for Solver problems that are non-smooth
20 p=X1 29
2a=x2 o =

FIGURE 4. Ms Excel Solver configuration settings

4. Design of Ms Excel Solver. The explanation of Figure 5 came from Ms Excel Solver
while running the solver.

Combination of both equations was achieved through variable ¢ of Pythagorean (Sta-
tement (3)) that subsequently defines the value of variable b of quadratic equation (State-
ment (4)). Initially Ms Excel Solver iterated to find the variable ¢ so that variable b can be
defined. Having this b and ¢, the goal seeking of factoring quadratic equation (Statement
(1)) could be performed through statement (5). Those 2 factors, once validated, were
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Result: Solver found an integer solution within tolerance. All Constraints are satisfied.
Solver Engine
Engine: GRG Nonlinear
Solution Time: 1.172 Seconds.
Iterations: 2 Subproblems: 30
Solver Options
Max Time Unlimited, Iterations Unlimited, Precision 0.000001, Use Automatic Scaling
Convergence 0.0001, Population Size 100, Random Seed 0, Derivatives Forward, Require Bounds
Max Subproblems Unlimited, Max Integer Sols Unlimited, Integer Tolerance 1%, Assume NonNegative

Objective Cell (Value Of)

M. SUHARTANA AND A. WIBOWO

Result: Solver found an integer solution within tolerance. All Constraints are satisfied.
Solver Engine
Engine: GRG Nonlinear
Solution Time: 7 891 Seconds
Iterations: 2 Subproblems: 234
Solver Options
Max Time Unlimited, Iterations Unlimited, Precision 0.000001, Use Automatic Scaling
Convergence 0.0001, Population Size 100, Random Seed 0, Derivatives Forward, Require Bounds
Max Subproblems Unlimited, Max Integer Sols Unlimited, Integer Tolerance 1%, Assume NonNegative

Objective Cell (Value Of)

Cell Name Original Value Final Value Cell Name Original Value Final Value
$B317 objecta 1369 0 $BS17 objecta 160964 0
Variable Cells Variable Cells
Cell Name Original Value Final Value  Integer Cell Name Original Value Final Value Integer
$B$15 c (pythagorean) a 20 45 Integer $B%15 c (pythagorean) a 45 407 Integer
$B316 x (quadrant) a 20 29 Integer $B316 x (quadrant) a 29 353 Integer
Constraints Constraints
Cell Name Cell Value Formula Status  Slack Cell Name Cell Value Formula Status  Slack
$BS17 objecta 08B8%17=0  Binding 1] $BS17 abjecta 0$8517=0  Binding 1]
$B316 x (quadrant) a 29 $8$16>=0 Not Binding 1 $B316 x (quadrant) & 353 3BS16>=0 Not Binding 6

$B315:$B816=Integer

$B515:8B816=Integer

(a)

Result: Solver found an integer solution within tolerance. All Constraints are satisfied.
Solver Engine
Engine: GRG Nonlinear
Solution Time: 5.984 Seconds.
Iterations: 6 Subproblems: 208
Solver Options
Max Time Unlimited, Iterations Unlimited. Precision 0.000001, Use Automatic Scaling
Convergence 0.0001, Population Size 100, Random Seed 0, Derivatives Forward, Require Bounds
Max Subproblems Unlimited, Max Integer Sols Unlimited, Integer Talerance 1%, Assume NonNegative

Objective Cell (Value Of)

Cell Name Original Value Final Value
$BS17 objecta 4231914 0
Variable Cells
Cell Name Original Value Final Value Integer
$BS15 c (pythagorean) a 407 2944 Integer
$B316 x (quadrant) a 353 877 Integer
Constraints
Cell Name Cell Value Formula  Status Slack
$BS17 objecta 08B817=0  Binding 0
$BS16 x (quadrant) a 877 $B$16>=0 Binding 0

$B$15:3B516=Integer

()

(b)

Result: Solver found an integer solution within tolerance. All Constraints are satisfied.
Solver Engine
Engine: GRG Nonlinear
Solution Time: 1.312 Seconds
Iterations: 6 Subproblems: 192
Solver Options
Max Time Unlimited, Iterations Unlimited, Precision 0.000001, Use Automatic Scaling
Convergence 0.0001, Population Size 100, Random Seed 0, Derivatives Forward, Require Bounds
Max Subproblems Unlimited, Max Integer Sols Unlimited, Integer Tolerance 1%, Assume NonNegative

Objective Cell (Value Of)

Cell Name Original Value Final Value
$B317 objecta 33940031 0
Variable Cells
Cell Name Original Value Final Value Integer
$BS15 c (pythagorean) a 47000 48060 Integer
$B316 x (quadrant) a 7500 7723 Integer
Constraints
Cell Name Cell Value Formula _ Status Slack
$BS17 object a 0 8BS17=0 Binding 1]
$BS16 x (guadrant) a 7723 $BS16>=0 Binding a

$B515:3B516=Integer

(d)

FIGURE 5. Ms Excel Solver result: (a) Case#1; (b) Case#2; (c) Case#3;

(d) Case#4

found to be the key pair value. Table 4 and Figure 5 provided both simulation inputs and
the finding results executed in Ms Excel Solver.

5. Conclusion. According to the simulation findings, this solver could factorize, yet with
limitation of maximum 15 digits of n. The simulation results were as follows:

1) If n=1769, p = 29 and ¢ = 61,

2) If n = 162733, p = 353 and ¢ = 461,

3) If n = 4394647, p = 877 and ¢ = 5011, then

4) If n = 682690031, p = 7723, and ¢ = 88397.

The time required for the process was determined by the initial assumption value sup-
plied (¢ Pythagorean, and p assumptions). The closer it was to the genuine value, the
faster it was, and the farther it was from the true value, the slower it was, even when
feeding the false value. This insight should be carried when conducting future research
that leverages similar method in cracking RSA.

Based on the existing approach of formulation process and simulations, factorization
could be done by applying the quadratic equation, namely a - 22> — b -z + ¢ = 0, with
quadratic formula ;9 = —btvbi—dac ”lf_‘l“c. The difficulty in creating an quadratic equation
with variable dependence of b might be derived from the statement (4) where variable b
of quadratic equation is twice of variable ¢ in Pythagorean as defined in statement (4).
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Variable ¢ was determined by doing probability test, ¢ =~ /(n + i), where i =i + 1, as
presented in statement (3) with the limitation that @ and ¢ were integers.

Furthermore, by performing additional proof separately using the Pythagorean in Table
1 and quadratic equations in Table 2, it demonstrated that those two equations were
capable of factoring p and ¢. This proven concept might encourage further research to
aim for faster factorization on large RSA numbers by approaching the last method from
the two equations.
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