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Abstract. In this article, a command filtering-based adaptive fuzzy controller is pro-
posed for speed-sensorless permanent magnet synchronous motors (PMSMs) with full-
state constraints. Firstly, aiming at the problem that the traditional backstepping method
cannot constrain the state variables, the barrier Lyapunov function is employed to guar-
antee that the rotor position, stator current and other states of PMSMs drive system
runs in a given range. Then, the adaptive fuzzy technology is used to deal with unknown
parameters and load disturbance difficulty, and a fuzzy reduced-order observer is con-
structed to evaluate the rotor angular velocity of the PMSMs. In addition, in order to
deal with the problem of “complexity of differentiation” in conventional backstepping, the
command filtering technology is used to filter the virtual control signals to obtain their
derivative. The error compensation mechanism is further combined with backstepping
command filtering to eliminate the adverse effect of accumulated filtering errors on con-
trol performance. Finally, the simulation results verify the effectiveness of the controller.
Keywords: Adaptive fuzzy control, Command filtering control, Barrier Lyapunov func-
tions, Full-state constraints, Speed-sensorless PMSMs

1. Introduction. In recent years, PMSMs have been widely used in the field of high
precision servo system because of its high efficiency, strong robustness, high torque iner-
tia ratio, superior power density and low rotating inertia [1]. With the development of
control theory, a large number of new non-linear control methods have been studied and
applied to motor systems, such as backstepping control [2], sliding mode control [3] and
adaptive control [4]. In addition, backstepping adaptive control technology has attracted
much attention because it can overcome the disturbance problems caused by unknown
parameters and load torque [5]. However, when the order of the system increases or the
form of the virtual control function is more complex, the derivation process will become
very complicated [6]. To this end, in the tracking controller design for PMSMs [7], by
using fuzzy logic system (FLS) to approximate the derivative of virtual control function,
a more concise controller form is obtained, but the tracking effect is markedly reduced.

In order to overcome the above problem of “complexity of differentiation” [8], Swaroop
et al. have proposed a dynamic surface control method [9] to approximate the derivative
of virtual control. However, the uncertainty of the system increases. Farrell et al. [10]
proposed a backstepping method based on second-order command filter, which used the
filter to realize the approximation of virtual signal and its derivative. In addition, the
filter error compensation loop [11,12] is designed to improve the tracking performance.
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Although the control strategy based on command filtering control (CFC) ensures the
accuracy of position tracking control, the safety problems caused by excessive speed,
current and other state variables of PMSMs in the staring stage are not considered.
Inspired by the above surveys, a command filtering-based adaptive fuzzy controller is

proposed for speed-sensorless PMSMs with full-state constraints. The controller has the
following advantages.
1) Compared with the adaptive backstepping method in [11], the full-state constraints

are further considered for PMSMs systems, and the control signals are devised based on a
new log-type barrier Lyapunov function (BLF), which can assure tracking effect without
violating state constraints.
2) Distinct from [11,12], CFC technology with error compensation mechanism over-

comes the “complexity of differentiation” difficulty of backstepping method and eliminates
the adverse effect of accumulated filtering error on the control system, which will further
improve the tracking performance of the system.
3) By designing reduced-order observer, the developed scheme need not measure the

value of angle speed signal, which will reduce hardware complexity and increase reliability
for PMSMs.
The rest of sections are organized as follows. In Section 2, the system statement is given.

In Section 3, the observer is designed. In Section 4, command filtering-based full-state
constrained adaptive fuzzy controller is devised and the stability analysis is presented.
Numerical simulation results and conclusions are shown in Sections 5 and 6, respectively.

2. System Statement. In the d-q rotating coordinate, the system model of PMSMs can
be described as follows [13]:

dΘ

dt
= w

J
dw

dt
=

3

2
np [(Ld − Lq)idiq + Φiq]−Bw − TL

Lq
diq
dt

= −Rsiq − npwLdid − npwΦ + uqLd

did
dt

= −Rsid + npwLqiq + ud

(1)

where the physical meaning of symbols is shown in Table 1.

Table 1. The physical meaning of symbols

Θ: the angular position w: the angular velocity
np: the pole pair B: the viscous friction velocity
J : the rotor moment of inertia TL: the load torque
Rs: the stator resistance Φ: the flux linkage
id and iq: the stator currents ud and uq: the stator voltages

In order to simplify the control model, the following notations are introduced: x1 = Θ,

x2 = w, x3 = iq, x4 = id, a1 = 3npΦ

2
, a2 = 3np(Ld−Lq)

2
, b1 = −Rs

Lq
, b2 = −npLd

Lq
, b3 = −npΦ

Lq
,

b4 =
1
Lq
, c1 = −Rs

Ld
, c2 =

npLq

Ld
, c3 =

1
Ld
. Thus, we can get

ẋ1 = x2

ẋ2 =
a1
J
x3 +

a2
J
x3x4 −

B

J
x2 −

TL
J

ẋ3 = b1x3 + b2x2x4 + b3x2 + b4uq
ẋ4 = c1x4 + c2x2x3 + c3ud

(2)
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The control goal of PMSMs is to construct the controller uq and ud to realize the
tracking of rotor position signal x1 to the given signal xd. Meanwhile, make sure that
all closed loop signals are bounded, and the full-state constraints of the system are not
violated, i.e., |xi| ≤ kci , where kci is a constant, i = 1, 2, 3, 4.

Lemma 2.1. [11] The command filter is defined as

ṗ1 = ηnp2,

ṗ2 = −2ξηnp2 − ηn(p1 − α1)
(3)

where α1 and pi (i = 1, 2) stand for the input and output signals of the filter, respectively.
And if α1 satisfies |α̇1| < ρ1, |α̈1| < ρ2 for all t ≥ 0, where ρ1 > 0, ρ2 > 0 and p1(0) =
α1(0), p2(0) = 0, then for any µ > 0, there exist ηn > 0 and ξ ∈ (0, 1] such that
|p1 − α1| ≤ µ, and |ṗ1|, |p̈1|, |

...
p1| are bounded.

3. Reduced-Order Observer Design. Second-order observer is designed to estimate
the rotor angular velocity of PMSMs. From the system (2), we can obtain that ẋ1 = x2

ẋ2 = f2(Z) + x3
y = x1

(4)

where the unknown nonlinear functions f2(Z) = −x3 + 1
J
a1x3 − TL

J
+ a2

J
x3x4 − B

J
x2,

Z = [x1, x̂2, x3, x4, x1d, ẋ1d]
T . Define U2 = π2 and H2(Z) = φ(Z). The FLS is employed to

approximate f2(Z). For any given τ2 > 0, there always exists an FLS πT2 φ(Z) such that
f2(Z) = πT2 φ(Z) + µ2(Z), where the approximation error µ2(Z) satisfies |µ2(Z)| < τ2. So
Equation (4) can be rewritten as{

ẋ1 = x2

ẋ2 = πT2 φ(Z) + µ2(Z) + x3
(5)

Then the reduced-order observer is designed as
˙̂x1 = x̂2 + d1 (y − ŷ)

˙̂x2 = π̂T2 φ(Z) + d2 (y − ŷ) + x3

ŷ = x̂1

(6)

where π̂2 = π2 − π̃2 is the estimation of π2.
Define the observer error e = [e1, e2]

T , where e1 = x1− x̂1, e2 = x2− x̂2. By subtracting
the expressions on both sides of the equal sign of Equations (5) and (6), one has

ė = De+ ε+ ω (7)

where D =

(
−d1 1
−d2 0

)
, ε = [0, µ2(Z)]

T , ω =
[
0, π̃T2 φ(Z)

]T
. Select the appropriate d1

and d2 to guarantee that D is a strict Hurwitz matrix. Thus, for any given QT = Q > 0,
there always exists GT = G > 0 satisfying that DTG+GD = −Q.

Construct a Lyapunov function candidate as V0 = eTGe and differentiate it with respect
to e.

V̇0 = ėTGe+ eTGė = −eTQe+ 2eTG(ε+ ω) (8)

Utilizing the Young’s inequality: 2eTGε ≤ ∥e∥2 + ∥G∥2τ 22 , 2eTGω ≤ ∥e∥2 + ∥G∥2π̃T2 π̃2,
we can conclude that

V̇0 ≤ −λmin(Q)e
T e+ 2∥e∥2 + ∥G∥2τ 22 + ∥G∥2π̃T2 π̃2 (9)

4. Command Filtering-Based Full-State Constrained Adaptive Fuzzy Con-
trollers Study. The following system tracking error zi and the compensated tracking
error si are defined:
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z1 = x1 − xd, z2 = x̂2 − x1,m, z3 = x3 − x2,m, z4 = x4

s1 = z1 − ς1, s2 = z2 − ς2, s3 = z3 − ς3, s4 = z4 − ς4
(10)

where xd stands for the given reference signal, αi and xi,m (i = 1, 2) are the input and
output signals of the filter, respectively. The filtering errors xi,m−αi are handled by error
compensation mechanism and ςi represent the error compensation signals. Then, define
a compact set Ωs := {|si| < kbi , i = 1, . . . , 4}, where kbi is a positive constant.

Step 1: Consider the BLF V1 = log
k2b1

k2b1
−s21

+V0. Then, the time derivative of V1 can be

obtained as
V̇1 = V̇0 +Ks1(z2 + (x1,m − α1) + α1 + e2 − ẋd − ς̇1) (11)

where Ks1 = s1
/(
k2b1 − s21

)
and Ksi = si

/(
k2bi − s2i

)
with i = 2, 3, 4, which will be used

in the following steps. Choose the virtual control function and the compensating signal
as

α1 = −k1z1 + ẋd −
1

2
Ks1

ς̇1 = −k1ς1 + ς2 + (x1,m − α1)
(12)

where the control gain k1 > 0 and ς(0) = 0. Substituting Equation (12) into Equation
(11) results in

V̇1 ≤ V̇0 − k1Ks1s1 +Ks1s2 +
∥e∥2

2
(13)

Step 2: Consider Lyapunov function as V2 = V1 +
1
2
log

k2b2
k2b2

−s22
+ 1

2r1
π̃T2 π̃2 with r1 > 0,

and then its time derivative can be presented as

V̇2 = V̇1 +Ks2

(
z3 + x2,m + d2e1 + π̂T2 φ(Z)− ẋ1,m − ς̇2

)
−Ks2 π̃

T
2 φ(Z)

+
π̃T2
r1

(
r1Ks2φ(Z)− ˙̂π2

)
(14)

Adopt the virtual control function, the compensating signal and the adaptive law as

α2 = −k2z2 − d2e1 − π̂T2 φ(Z) + ẋ1,m − Ks2

2
−Ks1

(
K2
b2
− s22

)
ς̇2 = −k2ς2 + ς3 + (x2,m − α2) (15)

˙̂π2 = r1Ks2φ(Z)−m1π̂2

Substituting Equation (15) into Equation (14), one has

V̇2 ≤ V̇0 − k1Ks1s1 − k2Ks2s2 +Ks2s3 +
∥e∥2

2
+
π̃T2 π̃2
2

+
m1

r1
π̃T2 π̂2 (16)

Step 3: Premeditate the following candidate as V3 = V2 +
1
2
log
(

k2b3
k2b3

−s23

)
and the time

derivative V3 is

V̇3 ≤ V̇0 − k1Ks1s1 − k2Ks2s2 +Ks3s2 +Ks3 (b4uq − ς̇3 + f3(Z)− ẋ2,m)

+
∥e∥2

2
+
π̃T2 π̃2
2

+
m1

r1
π̃T2 π̂2 (17)

Design the real control law uq and the compensating signal as

uq =
1

b4

(
−k3z3 −

1

2l23
Ks3χ̂H

T
3 H3 + ẋ2,m − Ks3

2
−Ks2

(
k2b3 − s23

))
ς̇3 = −k3ς3

(18)

Then, one has

V̇3 ≤ V̇0−
3∑
i=1

kiKsisi+
1

2l23
K2
s3

(
∥U3∥2 − χ̂

)
HT

3 H3+
∥e∥2

2
+
π̃T2 π̃2
2

+
m1

r1
π̃T2 π̂2+

l23 + τ 23
2

(19)
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Step 4: Select barrier Lyapunov function V4 = V3+
1
2
log
(

k2b4
k2b4

−s24

)
. Then the derivation

of V4 is
V̇4 = V̇3 +Ks4 (c3ud + f4(Z)− ς̇4) (20)

Design the control function ud and the compensating signal ς4 as

ud =
1

c3

(
−k4z4 −

1

2l24
Ks4χ̂H

T
4 H4 −

Ks4

2

)
ς̇4 = −k4ς4

(21)

Define χ = max
{
∥U3∥2, ∥U4∥2

}
and χ̃ = χ− χ̂. Then, we can certify

V̇4 ≤ V̇0 −
4∑
i=1

kiKsisi +
4∑
i=3

1

2l2i
K2
si
χ̃HT

i Hi +
∥e∥2

2
+
π̃T2 π̃2
2

+
m1

r1
π̃T2 π̂2 +

4∑
i=3

l2i + τ 2i
2

(22)

Step 5: The Lyapunov function of the whole system is chosen as V = V4 +
1

2r2
χ̃2.

Then, the V̇ is given by

V̇ ≤ V̇0 −
4∑
i=1

kiKsisi +
χ̃

r2

(
4∑
i=3

1

2l2i
r2K

2
si
HT
i Hi − ˙̂χ

)
+

∥e∥2

2
+
π̃T2 π̃2
2

+
m1

r1
π̃T2 π̂2

+
4∑
i=3

l2i + τ 2i
2

(23)

Then we choose the adaptive laws as

˙̂χ =
4∑
i=3

1

2l2i
r2K

2
si
HT
i Hi −m2χ̂ (24)

Then, we can certify

V̇ ≤ −
(
λmin(Q)−

5

2

)
eT e−

4∑
i=1

log
k2bi

k2bi − s2i
−
(
m1

2r1
− 1

2
− ∥G∥2

)
π̃T2 π̃2

− m2

2r2
χ̃2 + ∥G∥2 τ 22 +

m1

2r1
πT2 π2 +

m2

2r2
χ2 +

4∑
i=3

l2i + τ 2i
2

≤ − a0V (t) + b0 (25)

where λmin(Q)−5
2
> 0, m1

2r1
−1

2
−∥G∥2 > 0, and a0 = min

{
λmin(Q)− 5

2

λmax(G)
, 2r1

(
m1

2r1
− 1

2
− ||G||2

)
,

2k1, 2k2, 2k3, 2k4,m2

}
, b0 = ∥G∥2τ 22 + m1

2r1
πT2 π2 +

m2

2r2
χ2 +

∑4
i=3

l2i+τ
2
i

2
.

Multiplying both side by ea0t, Equation (25) can be represented as d(V ea0t)/dt ≤
b0e

a0t and integrating it over (0, t], we can certify that

V (t) ≤
(
V (0)− b0

a0

)
e−a0t +

b0
a0

≤ V (0) +
b0
a0
, ∀t ≥ t0 (26)

It can be concluded from the above formula that lim
t→∞

log

(
k2bi

k2bi
−s2i

)
≤ 2b0

a0
⇒ lim

t→∞
|s1| ≤

kb1
√
1− e(−2b0/a0).

Next, choose the Lyapunov function as V̄ = 1
2
ς21 +

1
2
ς22 +

1
2
ς23 +

1
2
ς24 . Then, one has

˙̄V = ς1ς̇1 + ς2ς̇2 + ς3ς̇3 + ς4ς̇4

= −k1ς21 + ς1ς2 + ς1(x1,m − α1)− k2ς
2
2 + ς2ς3 + ς2(x2,m − α2)− k3ς

2
3 − k4ς

2
4 (27)

According to Lemma 2.1, |xi,m − αi| ≤ ψ, i = 1, 2. By using |ςi|ψ ≤ 1
2
ς2i + 1

2
ψ2 and

ςiςi+1 ≤ 1
2
ς2i +

1
2
ς2i+1 with i = 1, 2, we can obtain
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˙̄V ≤ −(k1 − 1)ς21 −
(
k2 −

3

2

)
ς22 −

(
k3 −

1

2

)
ς23 − k4ς

2
4 + ψ2 ≤ −a1V̄ + b1 (28)

where a1 = min{2k1−2, 2k2−3, 2k3−1, 2k4}, b1 = ψ2. Thus, we can get lim
t→∞

|ςi| ≤
√

2ψ2

a1
.

According to the constructed system error, it can be concluded that |z1| ≤ |s1| + |ς1| <
kb1

√
1− e(−2b0/a0) +

√
2ψ2

a1
, when t tends to ∞.

Remark 4.1. In the light of the definition of a0, a1, b0 and b1, after the parameters m1

and m2 are selected, the sufficiently large k1, r1, r2 and sufficiently small li can guarantee
that z1 converges to the small neighborhood of the origin.

5. Simulation Results. The parameters of PMSM are selected in Table 2.

Table 2. The parameters of PMSMs

J = 0.003798 Kg·m2 B = 0.001158 N·m/(rad/s) Φ = 0.1245 Wb

Lq = 0.00315 H Ld = 0.00285 H & np = 3 Rs = 0.68 Ω

Choosing the reference signal as x1d = sin(t) + 0.5 ∗ sin(0.5 ∗ t), the initial condition

is [0.2, 0, 0, 0], load torque TL =

{
5.0, 0 ≤ t < 15
7.1, t ≥ 15

and the fuzzy membership functions

µF j
i
= exp

[
−(x+n)2

2

]
where j = 1, 2, 3, . . . , 11, i = 2, 3, 4 and n = −5,−4,−3, . . . , 5.

The control parameters are selected as k1 = 5, k2 = 20, k3 = 100, k4 = 50, m1 =
m2 = 1, r1 = r2 = 10, l2 = l3 = 1. Besides, the parameters of the command filters are
ξ = 0.5, ηn = 500, kb1 = 0.3, kb2 = kb3 = kb4 = 2. The states of PMSMs are restricted in
|x1| ≤ 1.5, |x2| ≤ 10, |x3| ≤ 10, |x4| ≤ 10.
Figure 1 shows the tracking curve of rotor position. It can be seen from Figure 1 that

the control schemes can track the given signal quickly and accurately. Figure 2 shows the
observation results of the reduced-order observer. It can be seen from the figure that the
parameters d1 and d2 selected in this paper can make the observer obtain good estimation.

6. Conclusion. For the speed sensorless PMSMs with full-state constraints, an adaptive
fuzzy controller based on CFC is proposed in this chapter. BLF is introduced to design
the controller to ensure that all system states are always in a given range, and a fuzzy

Figure 1. The trajectory of x1 and x1d
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Figure 2. The trajectory of x1 and x̂1

reduced order observer is established to estimate the PMSMs rotor angular velocity. In
addition, the CFC scheme is used to solve the problem of “complexity of differentiation”,
and an error compensation link is constructed to eliminate the adverse effect of filtering
error.

REFERENCES

[1] W. Qian, S. K. Panda and H.-X. Xu, Torque ripple minimization in PM synchronous motors using
iterative learning control, IEEE Trans. Power Electron., vol.19, no.2, pp.272-279, 2004.

[2] X. Sun, H. Yu, J. Yu and X. Liu, Design and implementation of a novel adaptive backstepping control
scheme for a PMSM with unknown load torque, IET Electr. Power Appl., vol.13, no.4, pp.445-455,
2019.

[3] O. Barambones and P. Alkorta, Position control of the induction motor using an adaptive sliding-
mode controller and observers, IEEE Trans. Ind. Electron., vol.61, no.12, pp.6556-6565, 2014.

[4] T. Liang and S. Wen, Adaptive transition control on full speed range for sensorless permanent magnet
synchronous motor, International Journal of Innovative Computing, Information and Control, vol.17,
no.4, pp.1137-1152, 2021.

[5] M. Morawiec, The adaptive backstepping control of permanent magnet synchronous motor supplied
by current source inverter, IEEE Trans. Ind. Inform., vol.9, no.2, pp.1047-1055, 2013.

[6] M. Chen, S. Ge and B. Ren, Adaptive tracking control of uncertain MIMO nonlinear systems with
input constraints, Autom., vol.47, no.3, pp.452-465, 2011.

[7] J. Yu, B. Chen and H. Yu, Fuzzy-approximation-based adaptive control of the chaotic permanent
magnet synchronous motor, Nonlinear Dyn., vol.69, no.3, pp.1479-1488, 2011.

[8] M. Chen and J. Yu, Adaptive dynamic surface control of NSVs with input saturation using a dis-
turbance observer, Chinese Journal of Aeronautics, vol.28, no.3, pp.853-864, 2015.

[9] D. Swaroop, J. K. Hedrick, P. P. Yip and J. C. Gerdes, Dynamic surface control for a class of
nonlinear systems, IEEE Trans. Autom. Control, vol.45, no.10, pp.1893-1899, 2000.

[10] J. A. Farrell, M. Polycarpou, M. Sharma and W. J. Dong, Command filtered backstepping, IEEE
Trans. Autom. Control, vol.54, no.6, pp.1391-1395, 2005.

[11] W. J. Dong, J. A. Farrell, M. M. Polycarpou and M. Sharma, Command filtered backstepping, IEEE
Trans. Control Syst. Technol., vol.20, no.3, pp.566-580, 2011.

[12] C. Fu, Q. Wang, J. Yu and C. Lin, Neural network-based finite-time command filtering control for
switched nonlinear systems with backlash-like hysteresis, IEEE Trans. Neural Netw. Learn. Syst.,
DOI: 10.1109/TNNLS.2020.3009871, 2020.

[13] Y. Liu, J. Yu, H. Yu, C. Lin and L. Zhao, Barrier Lyapunov functions-based adaptive neural control
for permanent magnet synchronous motors with full-state constraints, IEEE Access, vol.5, pp.10382-
10389, 2017.


