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Abstract. The use of multi-robots to replace humans in multi-person collaborative tasks
such as picking up and delivering items can avoid the risk of cross-contamination of staff
during the epidemic, while also reduce the heavy workload of staff to some extent. Often,
each person performs a different task in multi-person collaborative tasks, such as push-
ing, lifting and carrying. So the use of multi-robots with different affordances can better
replace the work of human. How to rationally assign tasks to robots, plan delivery routes
and improve service efficiency is one of the key technologies in delivery robot research. In
this paper, based on multi-agent environment with different affordances, CQL multi-agent
deep reinforcement learning algorithm of current distributed multi-robot control method
is combined to study path planning and cooperative scheduling in multi-robot system and
optimize the cooperation of multi-robot.
Keywords: Affordance-heterogeneous multi-robot systems, CQL, Multi-agent deep re-
inforcement learning

1. Introduction. The demand for robots is no longer just for single robots, but also
for multi-robot systems, thanks to the advancement of robotics and the continued rise
in social demand. This is because some tasks cannot be undertaken by a single robot
and research shows that the development of individual robots is far more complex and
expensive than the development of robotic systems for highly dynamic and complex tasks.
At the same time, with the advent of robotic production lines and the need for flexible
processing plants, there is a growing desire for multi-robot systems for autonomous op-
erations. In the 1980s, some researchers in robotics applied the theory of multi-agent
from artificial intelligence to the study of multi-robot systems [1-5], thus starting the
research of multi-robot technology in the field of robotics. Previously, only single-robot
systems or Distributed Problem-Solving systems (DPS) that do not involve robots have
been studied. If the study of individual robots is likened to the imitation of an individual,
the study of multiple robots is the imitation of a social group. Multi-robot systems have
many advantages over single robots, mainly in terms of wider application areas, higher
efficiency, improved system performance, inherent parallelism, good fault tolerance, lower
cost, ease of development, distributed perception and collaboration, scalability, and help
in studying group intelligence.
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In recent years, many researchers have carried out in-depth research on multi-robot
systems. Wu et al. [11] developed a simulation environment for heterogeneous robots to
carry cooperatively, and applied DDQN (Double Deep Q-Network) algorithm combined
with spatial intention mechanism to the simulation environment, so as to improve the
performance of agents. Although the algorithm used by Wu et al. has successfully trained
multi-agents to complete the handling task, the algorithm still has some shortcomings: the
decision algorithm (DDQN) cannot best dispatch all agents. Based onWu et al., this paper
adds CQL (Conservative Q-Learning) method to train multi-agents. In addition, MAPPO
(Multi Agent Proximal Policy Optimization) algorithm is added into the experiment for
comparison, and the results show that the improved method has better performance than
the original method and MAPPO algorithm.
In the second chapter, multi-agent system is introduced. In the third chapter, distribut-

ed control method and multi-agent task modeling are first introduced. Then, the CQL
algorithm is introduced. In Chapter 4, relevant experiments and experimental results and
analysis are presented. Finally, Chapter 5 concludes the paper.

2. Problem Statement and Preliminaries. The technology of multi-agent systems
is developing rapidly, but most of the research is based on multi-agent environments with
the same affordance, such as starcraft game environments and multi-agent particle envi-
ronments [6-10]. Wu et al. [11] developed a new multi-agent environment, in which agents
have different affordances, such as lifting objects. This environment is more suitable for
real environments such as logistics factories, and more complex than other virtual environ-
ments (such as multi-particle environments) that simulate factories. Therefore, research
in this environment is more meaningful. However, the training effect of multi-agent al-
gorithm realized in this environment is not ideal. Based on the multi-agent simulation
environment with different affordances, this paper studies the path planning and cooper-
ative scheduling of multi-agent to optimize the multi-agent algorithm.
Path planning is the process of finding a feasible optimal path between task points

during movement and avoiding collisions during travel [12]. Path planning is based on
the correctness of the searched paths, the safety of the robots during operation and the
parallelism of the robots in the system. Path planning algorithms are mainly divided into
two types: traditional algorithms [13,14] and intelligent heuristic algorithms. Traditional
algorithms first load environmental information and then construct paths based on the
environmental information. These methods are simple, operate with high reliability and
can effectively solve the single robot path planning problem. In multi-robot system path
planning problems, traditional methods are no longer effective in solving problems of
excessive computational complexity, so intelligent heuristic algorithms are beginning to
be used.
Intelligent heuristics mainly include particle swarm algorithms, ant colony algorithms,

genetic algorithms, etc. The ant colony algorithm is an iterative random search algorithm
that simulates natural organisms. The basic idea is to imitate the process of ants going
out for food in nature, by sensing the changes in the pheromone concentration released by
ants in the surrounding environment, gradually move to the path with higher pheromone
concentration based on self-recognition, and find the shortest path to the target location
through multiple iterations of search. Jiang and Zhang proposed an artificial potential
field method combined with ant colony algorithm for path planning of mobile robots in
static environments to ensure the global search efficiency of the algorithm while avoiding
stagnation of the algorithm [15]. Wang proposed a Mixed Max-Min Ant System (MM-
MAS) for local search, which first finds an approximate optimal solution of a local path
using the MMMAS algorithm, and then converts the local paths with four adjacent ver-
tices in the approximate optimal solution into local optimal paths with four vertices and
three unequal lines to obtain a better approximation [16]. Luo et al. established a two-step
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planning fusion optimization method for robot path planning in complex environments
where the correctness of the solution cannot be guaranteed. The suboptimal solution of
the planning result is first found by the Dijkstra algorithm, and then the approximate
optimal solution of the path planning is found on the basis of the suboptimal solution by
the exact tracing of the ant colony algorithm [17]. Zhe and Fang addressed the problem of
local optimality of ant colony algorithms by subjecting pheromones to statistical analysis
to enhance the diversity of the algorithm, so that the improved algorithm can effectively
jump out of the local optimal solution [18]. The basic idea of the particle swarm algorithm
is to simulate the action of a group of animals and to use the sharing of information be-
tween individuals to bring the whole group from disorder to order in order to obtain
an optimal solution. Tanweer et al. proposed a new self-regulating particle swarm op-
timization algorithm that introduces learning schemes to search for the best results in
path planning, which uses both self-regulation of inertia weights and self-awareness of
the overall search direction [19]. Yan and Hucy introduced an elite ant colony algorithm
pheromone selection method based on the original pheromone update affordance to solve
the problem that the standard particle swarm optimization algorithm tends to fall into
local optimum. This allows the overall effect of the algorithm to maintain a relatively
high convergence rate, but also to reduce the possibility of falling into a local optimum
solution to a certain extent, making the robot path planning more accurate [20]. Pu et
al. proposed a path planning method based on the fusion of improved particle swarm
algorithm and ant colony algorithm for multi-objective optimization in path planning of
mobile robots, which enables the robot to improve its search capability and stability while
ensuring no collision [21].

3. Control Design.

3.1. Distributed control method. The structure of the distributed control method is
shown in Figure 1. It removes some of the affordances of the centralized central controller,
which is only responsible for sending robot tasks and monitoring robot status. Task al-
location, path planning, and conflict resolution are all carried out in the robot’s internal
processor system. Robots calculate independently and synchronize task assignment results
by communicating with neighboring robots to achieve consistency within the system. This
method of control will be slightly less effective than centralized, but will require much
less communication bandwidth. In addition, each robot retains a complete set of “central
controllers”, so that when one robot crashes, the impact on the others is minimal and
does not cause the entire multi-robot system to crash, but task conflict resolution takes
more time. This paper uses this improved control for the subsequent assignment of tasks.

Figure 1. The structure of the distributed control method
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3.2. Multi-robot task assignment modelling. Firstly, we assume that there are n
robots in the multi-robot system that need to handle m tasks. These mobile robots can
perform a single task or multiple tasks, and the set of mobile robots can be represented
as S = {Robot1,Robot2, . . . ,Robotn}, tasks can be represented as T = {task 1, task 2, . . . ,
taskm}, Ai = {task 1, task 2, . . . , taskm} represents the combination of robot i and task.
The robots all perform their tasks independently and do not consider collaboration. The
task assignment goal is to achieve the maximum benefit value for all tasks performed
by the robot within the constraints, i.e., the global benefit. Global benefits comprise the
benefits of task allocation and path planning. The task allocation model can be described
as

F (x) = max
N∑
i=1

M∑
j=1

Rij (Lij, θ) · sij (1)

where L is the task effectiveness variable, and Lij represents the value of task j for robot
i which is related to the path length of the task. Rij denotes mission proceeds, and θ is
the set of variables that affect the effectiveness of the task. sij is the judgmental formula
for performing tasks, sij = 1 represents robot i performing task j, and sij = 0 represents
robot i not performing task j. N = {1, 2, 3, 4, . . . , n} is the robot index collection. M =
{1, 2, 3, 4, . . . ,m} is the collection of task indexes.

3.3. Conservative Q-Learning for DDQN. In this paper, we use the convolutional
neural network (CNN) [22] to process the robot vision information and feed the vision
information to the Conservative Q-Learning for DDQN algorithm after processing. CNN
is shown in Figure 2.

Figure 2. CNN diagram

The key of offline reinforcement learning algorithm is to avoid the overestimation prob-
lem caused by distribution deviation. The CQL algorithm directly starts from the value
function, aiming to find the lower bound estimate of the original value function, and then
uses it to optimize the policy with a more conservative policy value. Conservative Q-
Learning for DDQN (CQL+DDQN) adopts the training framework of DDQN algorithm,
and adopts the updating mode of Q function of CQL.
In Figure 3, we show that the resulting Q-function, Q̂π := limk→∞ Q̂k, lower-bounds

Qπ at all (s, a).

4. Main Results. The simulation environment is a number of robots with different
affordances (pushing, grasping, collecting, throwing) transporting scattered objects to a
specified location in an enclosed space or collected by a collecting robot. The process of
robot generate action is shown in Figure 4. And the simulation environment is shown in
Figure 5.
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Figure 3. Conservative Q-Learning for DDQN (CQL+DDQN) algorithm

Figure 4. Interaction process between robot and environment

“Lift” robots “Push” robots

Figure 5. Partially affordance-heterogeneous robot simulation diagram

In this paper, we have performed simulations for four scenarios: À four “lift” robots
working together; Á four “rescue” robots working together; Â two “lift” robots working
together with two “push” robots; Ã two “lift” robots working together with two “throw”
robots. Experiments using the MAPPO algorithm [23] are used as comparison experi-
ments. The experimental results showed that the training effect of the four groups was
improved under the restriction of 164000 rounds of training steps.

Figure 6 shows the change curve of total cubes during training in four simulation
environments. It is not difficult to find that CQL converges faster than others in all
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À Á

Â Ã

Figure 6. Experimental results

simulation environments. And the MAPPO algorithm does not perform well in all four
environments.
All experiments were performed on the same device with a GPU of 3090, and the

hyperparameters such as the learning rate during algorithm training were consistent with
the experimental settings of Wu et al.

5. Conclusions. This paper adds the state-of-the-art multi-agent deep reinforcement
learning algorithm CQL to the distributed multi-robot control method to achieve an au-
tonomous learning method for robots without human manipulation, which can more accu-
rately and faster recognize blocks of objects. The multi-robot learns autonomously from
the reward values fed back by the environment and eventually succeeds in transporting
multiple object blocks to the target areas.
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