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Abstract. The interval-valued time series models have attracted researchers’ attention
recently because of their ability to make good use of the information contained in data and
the correlation between variables. In this paper, a series interval information granules are
generated based on the principle of justifiable granularity, and a threshold fragment model
is established through clustering, which is composed of several functional coefficient au-
toregressive models. Then the volatility characteristics of the modeling object reflected by
the results of the first stage model output are compensated. Furthermore, a differential
compensation model is established by using the broad learning system to modify the pre-
diction results. Finally, the effectiveness of the proposed method is demonstrated through
the application of two medical datasets.
Keywords: Information granule, Time series, Functional coefficient autoregressive, Diff-
erential compensation

1. Introduction. In time series, the value of data is changing dynamically all the time.
The correlation between data at different times represents the development trend of the
observed object. Discovering the patterns contained in time series and predicting its trend
can help people to carry out problems such as traffic flow control [1], air pollution control
[2], medical monitoring and analysis [3], and stock price prediction [4]. However, due to
the influence of noise in reality, the predicted value of time series often has deviation. Due
to the fact that the interval data can effectively describe the changing law of the object,
and can provide a certain tolerance for prediction results, many researchers have turned
to the interval-valued time series modeling.

On the other hand, since the granular computing theory can process data representation
efficiently, and the information granules have certain interpretability, the prediction of
time series combined with granular computing theory has become a hot topic in recent
years. In [5], the original data sequence is granulated as some fuzzy information granules,
which simplifies the dimension of the data. In [6], the Bayesian granularity calculation
method for time series is proposed. In [7], the input data is granulated firstly, and then
the interval boundary in the input space is optimized by an improved genetic algorithm.
In the end, the multi-layer perceptron is adopted to realize the prediction of the interval
time series.
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In addition, in some complex forecasting scenarios, a single forecasting model cannot
fully describe the objects. In order to solve this type of problem, a strategy of multiple
models’ combination for nonlinear time series forecasting has been considered. And the
commonly used combining methods include weight distribution, error compensation, pa-
rameter and structure optimization [8]. Based on the weighted combination method, a dif-
ferential autoregressive moving average-back propagation (BP) neural network prediction
model is proposed to deal with clothing sales data in [9]. A two-stage error compensation
model is proposed in [10], in which the first stage uses a single hidden layer feedforward
neural network for rough compensation, and the second stage uses a semi-mechanical
model for precise compensation. Besides, according to the idea of ensemble learning, the
random forest method combined with a fuzzy Takagi-Sugeno model is used to predict
time series in [11].
It can be seen that although there have been some researches to discuss the interval-

valued time series modeling, how to mine the dynamic association between data and how
to improve the performance of predictions still need to be considered. With the help of
the information granule theory, which is an efficient data representation method, and the
broad learning system, which is a powerful approach in the model identification, in this
paper we design an information granule compensation model to construct an interval time
series prediction model. Besides, the strategies of differential compensation and combined
prediction are integrated for modeling and analyzing the interval time series in order to
improve the accuracy of the model.
The structure of the paper is arranged as follows. In Section 2, we introduce the build-

ing process of information granule by using the principle of justifiable granularity and
the form of functional coefficient autoregressive model. In Section 3, the construction of
segmental compensation model based on the broad learning system is discussed in detail.
In Section 4, two experimental studies on some medical datasets are carried out to verify
the performance of the proposed model. Section 5 gives the conclusion.

2. Preliminary.

2.1. Information granule design. The principle of justifiable granularity is a gener-
al guideline for constructing information granule which has been proposed in [12]. The
meaning of this granularity criterion is outlined as follows.
1) The coverage degree cov measures the amount of data contained in the informa-

tion granule. The more data the information granule contains, the more sufficient the
information granule describes. The indicator coverage can be calculated as

cov = max

(
0, 1/N

∑
xi:xi∈D

f(xi)

)
,

whereD is the dataset, N is the number of data samples inD, and f(xi) is the membership
function for data xi.
For an interval-type information granule [a, b], suppose that χ(xi) is the indicative func-

tion. When xi is within the constructed interval [a, b], χ(xi) takes the value 1; otherwise

it is 0. In other words, the coverage realizes the counting of the data, i.e., cov =
∑N

i=1 χ(xi)

N
,

in which χ(xi) =

{
1, a ≤ xi ≤ b,
0, xi < a or xi > b.

2) The specificity degree sp reflects the information expression of the granule about
sample data. The smaller the information granule is, the less data it contains, and the
more accurate the feature description of the dataset is. On the contrary, the more data
the information granule contains, i.e., the wider the granule’s range is, the weaker its
ability of data features description is.
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As to an interval-type granule, the specificity degree is expressed as

sp =

∫ 1

0

(
1− |m− bα|

range

)
dα,

where bα = f−1(α), and f is the membership function, which is monotonically non-
decreasing. range = |xmax −m|, where xmax is the maximum data value in the interval,
and m is the mean value of the sample data.

It is not difficult to find that there is a contradiction between high coverage and high
specificity. In order to take these two indicators into account, an objective evaluation
function of information granularity has been introduced as

Q = max
σ

(cov ∗ sp), (1)

in which σ are parameters to be estimated, for instance, the end points a and b of an
interval granule. The optimal information granule can be obtained by maximizing the
above information granulation index Q.

2.2. Functional coefficient autoregressive model. As a nonlinear regression model,
the functional coefficient autoregressive model [13] plays an important role in nonlinear
time series prediction. The basic form of it is as follows:

xt = φ1(x
∗
t−1)xt−1 + φ2(x

∗
t−1)xt−2 + · · ·+ φp(x

∗
t−1)xt−p + εt, (2)

x∗
t−1 = (xt−1, xt−2, . . . , xt−p)

T , (3)

where φj(x
∗
t−1) ∈ R (j = 1, 2, . . . , p) is a measurable function. {εt} is a sequence of random

variables, which is a white noise only related to the current moment t and independent of
xt−j. Equation (2) is the generalized form of a functional coefficient autoregressive model,
and different functional coefficient autoregressive models can be constructed by selecting
different φj(·).

It is not hard to see that how to identify the coefficients is the most important process
in establishing a functional coefficient autoregressive model. In general, the identification
includes the linear part and the nonlinear part. For the linear part, the least squares
method can be used to determine the parameters, and then the linear part is shaped as

Y = ΦX + εt. The parameter matrix Φ can be calculated by Φ =
(
XTX

)−1
XTY ,

in which X is the matrix of input data and Y is the vector of output data. As to the
nonlinear part, the genetic algorithm or other optimization algorithm can be chosen to
determine parameters.

3. Interval Time Series Forecasting Model Based on Segmented Compensa-
tion.

3.1. Segmented interval time series modeling. In this paper, the expression of
center-radius data pair is adopted to describe the interval data, such as [x]t = (xc

t , x
r
t )

T .
And in order to predict interval time series more accurately, the fuzzy C-means (FCM)
clustering algorithm is used to divide the prediction model into n sub-models.

First, the input of a clustering algorithm is settled as W = {[x]t, [x]t+1, . . . , [x]t+p},
where [x]j =

(
xc
j, x

r
j

)T
(j = t, t + 1, . . . , t + p) represents a set of center sequence and

radius sequence values. p is the time lag order, which can be determined by the Akaike’s
information criterion (AIC). By using the FCM algorithm, the center of each class and the
membership matrix for all the training data can be obtained. Assume that the number of
clusters is n, in other words, the number of sub-models is n. According to the clustering
results, the matrices W1,W2, . . . ,Wn are used for every sub-model construction. The first
p columns of the input matrix W1,W2, . . . ,Wn represent the input data, and the last
column represents the real output. Every sub-model is set as a threshold autoregressive
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model. The threshold autoregressive model [14] is a type of functional coefficient autore-
gressive model, which has shown good results in fitting nonlinear and periodic problems.
The staged threshold autoregressive model is as follows:

xt =
n∑

k=1

(
φ0 +

p∑
i=1

φ
(k)
i xt−i + εt

)
· χ(λk−1 ≤ zt−d < λk), (4)

χ(λk−1 ≤ zt−d < λk) =

{
1, λk−1 ≤ zt−d < λk

0, otherwise
(5)

where d is the lag order of the threshold term, and zt−d is a mapping function of xt−d

(d < p), which is usually settled as zt−d = xt−d for simplicity. εt is a random noise that
obeys the normal distribution. χ(·) is the indicative function that acts as a switch for the
sub-model selection. Equations (4) and (5) give the definition of the numerical threshold
autoregressive model.
Next, in order to deal with the interval time series prediction, the interval sequence

is used as the input to establish an extended interval threshold autoregressive model as
follows:

xc
t =

n∑
k=1

(
a0 +

p∑
i=1

(
a
(ik)
1 xc

t−i + a
(ik)
2 xr

t−i

)
+ εct

)
· χ(λk−1 ≤ zt−d < λk), (6)

xr
t =

n∑
k=1

(
b0 +

p∑
i=1

(
b
(ik)
1 xc

t−i + b
(ik)
2 xr

t−i

)
+ εrt

)
· χ(λk−1 ≤ zt−d < λk), (7)

in which a
(ik)
1 and a

(ik)
2 represent the i-th order parameter values of the k-th sub-model,

and the interval boundary [x]t at the t-time is optimized by the center and radius values
at previous t− 1 to t− p times.
After the threshold autoregressive model is established, the parameters need to be

identified. As it can be seen that the threshold autoregressive model essentially contains
several piece-wise linear methods, the parameters can be estimated by the least squares

method. Set the input matrix X
(k)
in as

1 xc
t−1 xr

t−1 xc
t−p xr

t−p 0 0 0 0 0
· · · · · ·

0 0 0 0 0 1 xc
t−1 xr

t−1 xc
t−p xr

t−p
...

1 xc
lk,t−1 xr

lk,t−1 xc
lk,t−p xr

lk,t−p 0 0 0 0 0
· · · · · ·

0 0 0 0 0 1 xc
lk,t−1 xr

lk,t−1 xc
lk,t−p xr

lk,t−p

 , (8)

and the functional coefficient matrix as

ϕ(k) =
(
ak0, a

k1
1 , ak12 , . . . , akp1 , akp2 , bk0, b

k1
1 , bk12 , . . . , bkp1 , bkp2

)T
. (9)

Accordingly, the output vector for the training data is denoted as

X
(k)
out =

(
xc
t , x

r
t , . . . , x

c
lk,t, x

r
lk,t

)T
, (10)

where lk is the number of training samples in the k-th sub-model, and εt = (εct, εrt)
T is

the white noise that obeys the normal distribution. According to Equations (8)-(10), the
generalized k-th sub-model can be established as

X̃(k) = ϕ(k)X
(k)
in + εt.

The model parameters can be obtained by a numerical algorithm or an optimization
algorithm. In this paper, the least squares method is used to determine the parameters.
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The objective function is taken as the residual sum of squares, i.e.,

E
(
ϕ(k)

)
= argmin

ϕ(k)

(
X̃(k) −X

(k)
out

)2
.

The parameter matrix ϕ(k) can be expressed by the following formula:

ϕ(k) =

((
X

(k)
in

)T
X

(k)
in

)−1 (
X

(k)
in

)T
X

(k)
out.

3.2. Compensation combination model based on the broad learning system.
The segmented threshold autoregressive model is the first stage of the combined modeling,
which is used to achieve an approximate output to the real data and to obtain a volatility
sequence. The second stage of the complete modeling is the combined compensation model
based on the broad learning system, which realizes the variable-weight compensation of
the volatility sequence.

According to the piece-wise combined compensation model, a volatility sequence, i.e.,

a difference sequence
{
(δct , δ

r
t )

T , t = 1, 2, . . . , N − 1
}
is established.

δct = x̃c
t − xc

t−1, δrt = x̃r
t − xr

t−1,

where x̃c
t and x̃r

t represent the center sequence value and the radius sequence value of the
t-th interval segment. They can be obtained from the first stage model discussed in the
previous section. Here xc

t−1 and xr
t−1 represent the center sequence value and the radius

sequence value of the (t − 1)-th interval segment, which are the actual recorded values.
δct and δrt represent the center and radius volatility values of the segmented threshold
autoregressive model. Since the neural network has a good ability of processing nonlinear
data, the compensated difference sequence is modeled by the broad neural network.

The specific implementation process is as follows.
Step 1. The lag order q of the volatility sequence is determined by the AIC criterion.

Thereupon, the establishment time vector
{
(δct , δ

r
t )

T
}
is obtained, and the vector matrix

Xr is established as

Xr = [[δ]1, [δ]2, . . . , [δ]N−q]
T =


δc1,t δr1,t δc1,t−q+1 δr1,t−q+1· · ·
δc2,t δr2,t δc2,t−q+1 δr2,t−q+1

...
. . .

...
δcN−q,t δrN−q,t . . . δcN−q,t−q+1 δrN−q,t−q+1


where [δ]j =

(
δc1,j, δ

r
1,j, . . . , δ

c
N−q,j, δ

r
N−q,j

)
, j = t, t+ 1, . . . , t− q + 1.

Step 2. Each row of the volatility matrix Xr is an input from a group of samples,
which contains N − q sample data in total. The volatility matrix for sample data is
divided into the training set Xtrain and the testing set Xtest . Next, the training set data
are clustered into n clusters by using the FCM algorithm. And suppose that n sub-classes{
X

(1)
train ,X

(2)
train , . . . ,X

(n)
train

}
are obtained, where the vector matrix X

(k)
train (k = 1, 2, . . . , n)

is taken as the input of the k-th sub-model.
Step 3. Initialize the parameters in the broad structure sub-model, such as the number

of feature layer nodes, and the number of enhancement layer nodes.
Step 4. Initialize the randomization feature layer weight Wim and the enhancement

layer weight Wef . Determine the feature output Z(k) and H(k) of the k-th sub-model

feature layer and enhancement layer as Z(k) = φ
(
[δ]

(k)
t ·W (k)

im

)
, H(k) = ξ

(
Z(k) ·W (k)

ef

)
,

in which [δ]
(k)
t is the input of the volatility sequence for the k-th sub-model. φ and ξ are

some presupposed transformation functions. For the convenience of calculation, the last

columns of W
(k)
im and W

(k)
ef matrices are recorded as the offsets.



904 D. WANG, S. FAN AND W. SONG

Step 5. By the grid searching, the optimal values of parameters in every broad sub-
model can be obtained, which are used as the structural parameters of the next incre-
mental learning.
Step 6. Update the feature nodes by the incremental broad learning system to obtain

the new feature layer output Z̃(k) =
[
Z(k)

∣∣Z(k)
new

]
and the enhancement layer output

H̃(k) = ξ
(
Z(k)

∣∣Z(k)
new ,W

(k)
ef

∣∣W (k)
ef new

)
. By using the gradient descent method, the updated

weight matrix W
(k)
im , W

(k)
ef and W

(k)
m can also be obtained. Hence, the volatility output

value of the k-th sub-model is [
δ̃
](k)
t+1

=
[
Z̃(k)

∣∣H̃(k)
]
W (k)

m ,

in which
[
δ̃
](k)
t

=
(
δ̃ckt, δ̃

r
kt

)T
is the center-radius data pair at the time t.

Step 7. When the combined model is adopted to predict new input data, the distance
between the current prediction and the cluster center of each sub-model is calculated
respectively. The weight of combination is assigned according to this distance. The farther
the distance is, the smaller the weight is. Set dk as the distance from the volatility to the

k-th class center, and the corresponding weight is wk =
1
dk

/∑n
k=1

1
dk
. Then the correction

result of volatility compensation is calculated by the weighted combination:

δ̃ct =
n∑

k=1

wkδ̃
c
kt, δ̃rt =

n∑
k=1

wkδ̃
r
kt.

Step 8. The final results x̂c
t = x̃c

t + δ̃ct and x̂r
t = x̃r

t + δ̃rt are predicted by the threshold
autoregressive sub-model and corrected by the compensation value, where (x̃c

t , x̃
r
t ) is the

prediction result of the threshold autoregression, and (x̂c
t , x̂

r
t ) is the prediction result

corrected by the segmentation combination compensation.

3.3. Evaluation indicators. In this paper, the following two indicators are considered,
which are suitable for evaluating interval values confirmed in some existing literature.
1) Average relative variance (ARV):

ARV =

∑N
i=1

(
yli − ŷli

)2
+
∑N

i=1 (y
u
i − ŷui )

2∑N
i=1

(
yli − ȳli

)2
+
∑N

i=1 (y
u
i − ȳui )

2
,

in which yui and yli represent the real upper and lower bounds of the interval. ŷui and ŷli
represent the upper and lower bounds of the predicted interval. ȳui and ȳli are the mean
values of the upper and lower bounds of the interval. N is the number of the data.
2) Prediction accuracy (PA):

PA =
N∑
t=1

χ(t)

N
× 100%,

where χ(t) is the indicative function, i.e.,

χ(t) =

{
1, if ŷt = yt,

0, if ŷt ̸= yt.

4. Simulation Experiments.

4.1. MIMIC-III public dataset. The MIMIC-III public dataset is a large-scale data-
base of critically ill patients, which records a number of patients’ indicators including vital
signs, medication, and medical records [15]. As the heart rate is often used to evaluate
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the state of patient’s health, and the heart rate abnormal is often a precursor of many
diseases, the heart rate fluctuations of the ICU patients are considered to evaluate the
validity of the proposed model in this experiment. Besides, in order to obtain an accurate
interval prediction result, some related factors that affect the heart rate, such as respira-
tion rate, blood pressure, and oxygen saturation, are considered together in the process
of modeling.

Eight patients are randomly selected from the dataset. A model that contains two
threshold autoregressive sub-models is established to perform the interval prediction of
the heart rate, and then the volatility is input into the broad learning system. For brevity,
in this example the number of the threshold autoregressive sub-models is set to 2. The
time lag order is 3. The number of sub-models in the broad learning system is 2, and the
lag order of the difference sequence model is 2. The evaluation index of the prediction
accuracy is calculated. Table 1 shows the results of the proposed model. It can be seen
from Table 1 that the segmented combined compensation prediction model accurately
predicts the true interval range of the heart rate, and the interval average relative variance
also maintains a small error level.

Table 1. Heart rate prediction evaluation

Patient Prediction accuracy Patient Prediction accuracy
#109 87.1428% #4787 95.8329%
#605 96.1538% #5242 90.9091%
#711 96.6667% #8427 82.7586%
#1709 93.5484% #8492 94.1176%

4.2. Uremic nephropathy patient sign dataset. In the process of dialysis treatment
for uremia patient, it is necessary to monitor the blood pressure in real time. The fluc-
tuation of blood pressure will not only affect the effect of dialysis, but even will cause
serious complications, such as hypotensive shock and cerebral hemorrhage. Under nor-
mal circumstance, the systolic blood pressure is maintained at 90 to 139 mmHg. 140 to
179 mmHg is hypertension, and greater than 180 mmHg is severe hypertension. In this
example, the combined compensation method of segmented interval modeling is used to
predict the blood pressure intervals for some uremic nephropathy patients.

The physical signs of real uremia patients in a hospital are investigated in this example,
including some physiological indicators of 374 patients before and after dialysis from July
2019 to July 2020. Physical signs, such as ultrafiltration volume, body weight, systolic
blood pressure, diastolic blood pressure, heart rate, are used to predict the blood pressure.
The systolic blood pressure after dialysis is selected as the main factor, and the heart rates
before and after dialysis and the weights before and after dialysis are used as secondary
factors. And the average values of evaluation indicators including the ARV and the PA
are calculated. The results are shown in Table 2. Through the comparison to the BP
neural network and the support vector regression (SVR), the prediction model designed
in this paper achieves satisfactory results.

Table 2. Comprehensive evaluation of patients

Evaluation indicator BP SVR
Segment combination
compensation model

Average ARV 8.5642 2.8787 2.5291
Average PA 59.8391% 51.1245% 76.8017%
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5. Conclusions. In this paper, a segmented combined compensation forecasting method
which includes two parts, is designed to carry out the interval time series forecasting. In
the first part, an interval time series is constructed through the information granular
technique and the threshold autoregressive method. In the second part, the volatility se-
quence is compensated by a variable-weight incremental broad learning system. Through
two simulation comparison experiments on medical datasets, the effectiveness of the pro-
posed model is verified. In the future study, the form of combined model and the optimal
algorithm for parameter identification will be investigated and compared further.
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