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Abstract. In this paper, we examine a design method for control system considering
a deterioration of the plant for a single-input/single-output minimum-phase biproper
plant. In a practical control system design, we need to consider making the control system
stable for a structural change of plant and/or faults of plants such as loss of sensors,
and actuators. In order to overcome this problem, we present the parameterization of all
stable stabilizing controllers for the plant with the fault and deterioration. In addition, we
propose a design method of control system for the plant with the fault and deterioration.
Keywords: The parameterization problem, Fault tolerant control, A stability for a
deterioration of the plant, Minimum phase system

1. Introduction. Several automated systems often have an event of failure of system
components such as actuators, and sensors. The fault and failure of system components
often make the system vulnerable; the fault and failure often make the control system
unstable, and/or lead to lack of several performances of control system such as track-
ing characteristics [1]. This is particularly important for safety-critical systems, such as
aircraft, spacecraft, nuclear power plants, and chemical plants processing hazardous ma-
terials. In such systems, the consequences of a minor fault in a system component can
be catastrophic [2]. The control for the plant with faults such as safety-critical systems
is required to make a control system have a fault tolerance in the meaning of keeping
stability and performances of the system for faults. This control is referred to as the falt-
tolerant control [3]. The fault tolerant control is studied by several researchers [1, 2, 3, 4].
Neumann provides a concept of the fault tolerance, which is to construct a more reliable
system through depulication by using less reliable components [5]. Owens considers the
fault tolerant control system as a control system which prossesses integrity or which has
control loops which prosses loop integrity [6]. In [7, 8], the fault tolerant control system is
considered as the reliable control system. Stengel points out that the fault tolerant con-
trol sometimes is equaivalent to reliable control but there are some differences, and gives
definition of reliability [9]. Blanke et al. demonstrate the principle involved in the system-
atic design and development of a real fault tolerant control application [10]. According to
[11], the main task of the fault tolerant control is the design of a controller with suitable
structure to guarantee stability and satisfactory performance, not only when all control
components are operational, but also in the case when sensors, actuators malfunction.

According to [1, 2, 4, 12, 13, 14, 15], fault tolerant control systems can be categorized
into two main classes: active fault tolerant control system and passive fault tolerant con-
trol system. Active fault tolerant control system reacts to each fault differently [16]. The
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reaction of the active fault tolerant control system to faults occurs by the information re-
ceived from the detection system in the control system. The active fault tolerant control
system is constructed by three components: a fault diagnosis system to detect faults, a
fault compensator system to supervise faults, and a control system. If a fault detection
by fault diagnosis is accurate, the active fault tolerant control system is robust against
the imperfect fault detection information, and the time for fault recovery is less than the
available time for recovery, the active fault tolerant control system maintains the stabili-
ty and satisfactory performance of the system for faults. Some studies consider a design
method of the active fault tolerant control system from several viewpoints of sliding mode
control [17, 18, 19, 20], robust control [22, 23], predictive control [24], linear quadratic
control [25], fuzzy logic control [26, 27], adaptive control [28, 29], Lyapunov-based control
[30, 31], and so on. The design method of active fault tolerant control system considers to
apply to several applications: near space hypersonic vehicle [27], spacecraft [32], electric
vehicles [33], flight control system [20, 21, 26, 34], and so on.
However, the active fault tolerant control system has following disadvantages: 1) since

several steps such as fault detection, and supervision can be based on excessive compu-
tations and are needed to take lots of time, active fault tolerant control systems could be
its slow response; 2) since active fault tolerant control system is sensitive to the result
obtained from fault detection and isolation, it is difficult to design the control system for
nonlinear system with uncertainties [35]. These disadvanteges often lead to reducing par-
formances of the control system in the meaning of the tracking performance, disturbance
attenuation, and so on, for the known faults and failure such as deterioration of the plant.
In contrast to the active fault tolerant control system, the passive fault tolerant control

system is designed from the view point, which has redundancy of the control system
and robust stability to possible system faults [27]. The passive fault tolerant control
system is designed to make the system robustly stable for a set of model of plants. The
studies of the passive fault tolerant control system are started from [8, 36, 38]. Vidyasagar
and Viswanadham consider a problem to stabilize the control system for some plants,
which describe a nominal plant and represent plants changed by faults, by a controller
[36]. Vidyasagar and Viswanadham clarify this problem to be attributed to the strongly
stabilization problem [36, 37]. The strong stabilization problem is a problem to make the
control system stable by using a stable controller. By using results of [36, 38], the passive
fault tolerlant control system can be constructed by solving the simultaneous stabilization
problem by the plant if a nominal plant and all plants, which represent plants changed
by faults, are given. However, the necessary and sufficient condition of the simultaneous
stabilization problem for three or more plants is not clarified [38]. The result of [38] is
difficult to apply to the system with faults what is described as three or more plants. In
order to make a control system stable for the plant with faults, it is required to describe
the plant with faults as one plant [38]. One of modifications in this paper is to provide a
new description of the plant presenting faults due to a design method of the passive fault
tolerant control system.
If a plant with a failure process is described, then we could systematically obtain all

stabilizing controller for a control system with a fault tolerance for its plant. A problem
to obtain all stabilizing controllers for the plant is called the parameterization problem
[38, 39, 40, 41, 42]. For a stable plant, the parameterization of all stabilizing controllers
has a structure identical to that of internal model control [40]. Glaria and Goodwin
derive a parametrization of all internally stabilizing controllers for single-input/single-
output minimum phase system [41]. However, the result of [41] remains a problem that
the parameterization of all internally stabilizing controllers given by the result of [41]
includes improper controllers. Since the controller is required to be proper, the result of
[41] cannot use practical applications. Yamada and Moki consider these problems, and give
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the parameterization of all proper internally stabilizing controllers for single-input/single-
output minimum phase plants [42, 43]. By using the results of [42, 43], we can design the
internally stabilizing controller for the single-input/single-output minimum phase system.

If all stabilizing controllers for two plants, which are the normal plant and the plant
presenting the faults and/or deterioration, are obtained, we could allow the systematic
design of a control system for the plant able to cause a fault and/or deterioration. One
of motivations is to obtain a parameterization of all stabilizing controllers to make the
control system stable, for the nominal plant and plant presenting, simultaneously.

In this paper, we consider the problem to obtain the parameterization of all the stabi-
lizing controllers for the plant with the fault and deterioration. In addition, we propose
a design method for control system for the plant with the fault and deterioration. This
paper is organized as follows. In Section 2, we formulate the problem considered in this
paper. In Section 3, we present the parameterization of all stable stabilizing controllers
for the plant with the fault and deterioration. In Section 4, we propose a design method
of control system for the plant with the fault and deterioration. In Section 5, a numerical
example is shown to illustrate the effectiveness of the proposed method. Section 6 gives
concluding remarks.

Notations
R the set of real numbers.

[a, b] the closed interval defined as [a, b] := {x ∈ R|a ≤ x ≤ b, a ∈ R, b ∈ R}
(a, b) the open interval defined as (a, b) := {x ∈ R|a < x < b, a ∈ R, b ∈ R}
C the set of complex numbers.

R(s) the set of real relational functions with s.

RH∞ the set of stable proper real relational functions.

U the set of unimodular function with s, that is, U := {A(s) ∈ RH∞|A−1 ∈ RH∞}
ℜ{·} real part of ·.
δ(·) the relative degree of ·

2. Problem Formulation. Consider the control system described as{
y(s) = G(s)u(s)

u(s) = C(s)(r(s)− y(s)) + d(s)
, (1)

where G(s) ∈ R(s) is the plant, C(s) is a controller, r(s) ∈ R(s) is the reference input,
y(s) ∈ R(s) is the output, and d(s) ∈ R(s) is the disturbance. The plant G(s) ∈ R(s) is
assumed to be of minimum phase and biproper. The plant G(s) is denoted by

G(s) = G1(s) (1− τG2(s)) , (2)

where G1(s) ∈ R(s) is of minimum phase and biproper, G2(s) ∈ U satisfies

|G2(jω)| < 1 (∀ω ∈ R), (3)

and τ ∈ R is an arbitrary real number included in [0, 1]. G1(s) means the plant before
affecting a fault, deterioration, and so on. On the other hand, G2(s) means the element
of perturbation adding to G1(s) by the fault, deterioration, and so on. τ in (2) means a
changing rate of the plant by affecting the fault, deterioration, and so on. C(s) ∈ R(s) is
the controller to stabilize G1(s) ∈ R(s).

The problem considered in this paper is to propose a design method of control system
in (1).

3. Parameterization of All Stabilizing Controllers. In this section, we clarify the
parameterization of all stabilizing controllers C(s) for the plant G(s) in (2).

According to [41, 43], the parameterization of all stabilizing controllers C(s) for the
plant G(s) in (2) is summarized as Theorem 3.1.
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Theorem 3.1. [41, 43] The control system in (1) is internally stable if and only if C(s)
is written by

C(s) =
1

Q(s)
− 1

G1(s)(1− τG2(s))
, (4)

where Q(s) is any minimum-phase and biproper rational function.

Proof: Proof is obvious from Theorem 1 in [43]. �
Note that stabilizing controller C(s) in (4) is related to τ . Therefore, when τ in (4)

is changed, in some cases, the control system in (1) is unstable. If the controller C(s)
stabilizes the control system in (1) independent from τ , it is useful. In the next section,
we examine a design method for control system in (1) independent from τ .

4. Controller Design Independent from τ . In this section, we examine a design
method of stabilizing controller C(s) independent from τ . From (2) and (3), there exists
W (s) ∈ RH∞ satisfying ∣∣∣∣ τG2(jω)

1− τG2(jω)

∣∣∣∣ ≤ |W (jω)| ∀ω ∈ R. (5)

By using W (s) satisfying (5), we clarify stability condition, which is independent from τ .
The stability condition is summarized as the following theorem.

Theorem 4.1. Assume that C(s) stabilizes G1(s). The control system in (1) is internally
stable, if C(s) given by

C(s) =
1

Q(s)
− 1

G1(s)
(6)

satisfies ∥∥∥∥ Q(s)

G1(s)
W (s)

∥∥∥∥
∞

< 1, (7)

where Q(s) is minimum phase and biproper rational function.

To prove Theorem 4.1, a necessary lemma is shown.

Lemma 4.1. Assume that G(s) has no zeros in the closed right half plane and the p-th
number of pole in the closed right half plane, G1(s) has no zeros in the closed right half
plane and the p1-th number of pole in the closed right half plane. The Nyquist plot of
1 − τG2(s) for −∞ ≤ ω ≤ ∞ encircles the origin (0, 0) p − p1 times in the counter-
clockwise direction.

The proof of Lemma 4.1 is shown as follows.
Proof: From the assumption that G(s) and G1(s) are biproper and of minimum phase,

G(s) and G1(s) are denoted by

G(s) =
k
∏n

i=1(s+ µi)∏p
i=1(s− γi)

∏n
i=p+1(s+ γi)

, (8)

and

G1(s) =
k1

∏n1

i=1(s+ µ1i)∏p1
i=1(s− γ1i)

∏n1

i=p1+1(s+ γ1i)
, (9)

respectively, where ℜ{γi} > 0 (i = 1, 2, . . . , n), ℜ{γ1i} > 0 (i = 1, 2, . . . , n1), ℜ{µi} > 0
(i = 1, 2, . . . , n) and ℜ{µ1i} > 0 (i = 1, 2, . . . , n1). From (2), (8) and (9), 1 − τG2(s) is
written by

1− τG2(s) =
G(s)

G1(s)
=

k
∏n

i=1(s+ µi)∏p
i=1(s− γi)

∏n
i=p+1(s+ γi)

∏p1
i=1(s− γ1i)

∏n1

i=p1+1(s+ γ1i)

k1
∏n1

i=1(s+ µ1i)
. (10)
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This yields

∠(1− τG2(s)) =
n∑

i=1

∠(s+ µi) +

p1∑
i=1

∠(s− γ1i) +

n1∑
i=p1+1

∠(s+ γ1i)−
p∑

i=1

∠(s− γi)

−
n∑

i=p+1

∠(s+ γi)−
n1∑
i=1

∠(s+ µ1i). (11)

From (11) and Cauchy’s argument principle, the Nyquist plot of 1 − τG2(s) for −∞ ≤
ω ≤ ∞ encircles the origin (0, 0) p− p1 times in the counter-clockwise direction. �

In this way, the proof of Lemma 4.1 has been shown.
Using Lemma 4.1, we will prove Theorem 4.1.
Proof: The characteristic polynomial of the control system in (1) is given by 1 +

G(s)C(s). If the Nyquist plot of 1+G(s)C(s) for −∞ < ω < ∞ encircles the origin (0, 0)
p − zc times in the counter-clockwise direction, then the control system in (1) is stable.
Here, zc denotes the number of zeroes of C(s) in the closed right half plane. From simple
manipulation, the characteristics polynomial is rewritten by

1 +G(s)C(s) = (1 +G1(s)C(s)) (1− τG2(s))

(
1 +

1

1 +G1(s)C(s)

τG2(s)

1− τG2(s)

)
(12)

C(s) =
kc

∏zc
i=1(s− µci)

∏nc

i=zc+1(s+ µci)∏nc

i=1(s+ γci)
(13)

1 +G(s)C(s)

= 1 +
k
∏n

i=1(s+ µi)∏p
i=1(s− γi)

∏n
i=p+1(s+ γi)

kc
∏zc

i=1(s− µci)
∏nc

i=zc+1(s+ µci)∏nc

i=1(s+ γci)
(14)

1 +G1(s)C(s)

= 1 +
k
∏n1

i=1(s+ µ1i)∏p1
i=1(s− γ1i)

∏n1
i=p1+1(s+ γ1i)

kc
∏zc

i=1(s− µci)
∏nc

i=zc+1(s+ µci)∏nc

i=1(s+ γci)
(15)

From the assumption that C(s) stabilizes G1(s), the Nyquist plot of 1 + G1(s)C(s) for
−∞ ≤ ω ≤ ∞ encircles the origin (0, 0) p1 − zc times in the counter-clockwise direction.
This means that if the Nyquist plot of

(1− τG2(s))

(
1 +

1

1 +G1(s)C(s)

τG2(s)

1− τG2(s)

)
encircles the origin p − p1 times in the counter-clockwise direction for any τ ∈ [0, 1],
then the control system in (1) is internally stable. From Lemma 4.1, the Nyquist plot of
1 − τG2(s) for −∞ ≤ ω ≤ ∞ encircles the origin p − p1 times in the counter-clockwise
direction. Therefore, the control system in (1) is internally stable if the Nyquist plot of

1 +
1

1 +G1(s)C(s)

τG2(s)

1− τG2(s)
(16)

for −∞ ≤ ω ≤ ∞ does not encircle the origin (0, 0) any times. Substituting (6) to (16),
we have

1 +
1

1 +G1(s)C(s)

τG2(s)

1− τG2(s)
= 1 +

Q(s)

G1(s)

τG2(s)

1− τG2(s)
. (17)

From the assumption that Q(s) satisfies (7), it is obvious that the Nyquist plot of

1 +
Q(s)

G1(s)

τG2(s)

1− τG2(s)

for −∞ ≤ ω ≤ ∞ does not encircle the origin (0, 0) any times for any τ ∈ [0, 1].
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From above discussion, Theorem 4.1 has been proven. �

5. Numerical Example. In this section, we show a numerical example to illustrate
features of the proposed method.
Consider the problem to design the control system in (1) for G(s) in (2). Here, G1(s)

and G2(s) in (2) are given by

G1(s) =
s+ 1

s− 2
(18)

and

G2(s) =
0.09s+ 1

s+ 2
, (19)

respectively.
The gain plot of G2(s) is shown in Figure 1. Here, the solid line shows the gain plot of

G2(s). Figure 1 shows that G2(s) satisfies |G2(jω)| < 1 (∀ω ∈ R). From Figure 1, W (s)
satisfying (5) is designed by

W (s) =
s+ 10

s+ 1
. (20)

In order to confirm that W (s) in (20) satisfies (5), we show the gain plot of W (s) and
τG2(s)/(1 − τG2(s)) as Figure 2. Here, the solid line shows the gain plot of W (s), and
broken lines show the gain of τG2(s)/(1− τG2(s)) for τ = 0, 0.01, 0.02, . . . , 1.0. Figure 2
shows that W (s) in (20) satisfies (5).
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Figure 1. The gain plot of G2(s)

Q(s) in (6) satisfying (7) is settled as

Q(s) =
s(s+ 1)2

(s+ 10)2(s+ 2)
. (21)

In order to confirm that Q(s) in (21) satisfies (7), we show the gain of 1/W (s) and
Q(s)/G1(s) shown in Figure 3. Here, the solid line shows the gain plot of Q(s)/G1(s) and
the broken line shows that of 1/W (s). From Figure 3, Q(s) satisfies (7).
Using Q(s) in (21), the controller is given by (6) and obtained as

C(s) =
−0.000024189(s− 950800)(s+ 4)(s+ 2.174)(s+ 1)

s(s+ 1)3
. (22)
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When the reference input r(t) is given by

r(t) = 1, (23)

the response of the output y(t) for G(s) in (2), in the cases of τ = 0, 0.01, 0.02, . . . , 1.0 is
shown in Figure 4.

Figure 4 shows the control system in (1) is stable independent from τ .
When the disturbance d(t) is given by

d(t) = 1, (24)

the response of the output y(t) for the disturbance d(t) is shown in Figure 5.
From Figure 5, the control system in (1) is stable independent from τ . Figure 4 and

Figure 5 show that for G(s) in (2), the proposed method is effective to make the control
system in (1) internally stable.
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0 0.5 1 1.5
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

t[sec]

y(
t)

Figure 5. The response of the output y(t) for the disturbance d(t) in the
cases of τ = 0, 0.01, 0.02, . . . , 1.0

6. Conclusion. In this paper, we have considered a parameterization of the all stabilizing
controllers for the plant with the fault and deterioration for a single-input/single-output
minimum phase system considering deterioration. To obtain this parameterization of all
stabilizing controllers for plant with fault and deterioration, we have proposed a new
description of its plant. It has been clarified that by using the proposed description of
the plant, the parameterization of all stabilizing controllers for the plant with fault and
deterioration is obtained. Furthermore, to illustrate feature of the proposed method, we
have shown a numerical example. However, a design procedure of a controller to satisfy the
proposed parameterization is not clarified. In addition, an application of the result of this
paper is also not clarified. These will be explained in another papers. As for applications
of the results of this paper, it will be explained in future papers.
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