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Abstract. The digital image acquisition of blood smears using a microscope may result
in low-contrast images. Low contrast images make identifying Plasmodium-infected cells
difficult, which can lead to false diagnoses. Several methods of contrast improvement in
malaria images can cause color changes in the processed image. In this paper, we pro-
posed an improved method to enhance the contrast of color malaria images while retaining
the coloring structure of the original image. The proposed method used the average val-
ue of local and global features to reduce the total dependency on each color component.
Furthermore, the color preservation framework was used to improve the maintenance
of color information. Based on the experimental results using the MP-IDB dataset, the
proposed IMLCS-CPF method gave the best PNSR and AMBE values compared to LCS,
MLCS, and IMLCS methods. Visually, the proposed method provided better contrast en-
hancement while preserving the color information of the original image, thus clarifying
the appearance of Plasmodium and erythrocytes in the image of thin blood smears. The
enhanced images are expected to help improve the performance of visual examination
of malaria through a microscope or facilitate the segmentation process in an automatic
malaria diagnosis system.
Keywords: Malaria, Plasmodium, Contrast enhancement, Color preservation

1. Introduction. Malaria is an infectious disease caused by Plasmodium parasites and
transmitted by female Anopheles mosquitoes in countries with tropical and subtropical
climates [1]. Headaches, fever, and fatigue are typical symptoms of malaria, but in severe
cases, malaria can cause seizures and coma, leading to death [2]. According to the World
Health Organization (WHO), in 2020, there were an estimated 241 million malaria cases
in 85 countries with malaria endemicity, up from 227 million cases in 2019, with the
majority of this rise coming from the African Region [3]. Plasmodium parasites that cause
malaria in humans are Plasmodium vivax, Plasmodium falciparum, Plasmodium malariae,
Plasmodium ovale, and Plasmodium knowlesi. During the infection phase in peripheral
blood, each of these plasmodia goes through four life-cycle stages: ring, trophozoite,
schizont, and gametocyte [4].

The gold-standard malaria diagnosis is based on a visual microscopic examination of
thick and thin blood smears [5]. The advantages of using a microscope are that it can
detect all Plasmodium species, calculate the level of parasitemia, observe drug resistance,
and lower cost than other techniques. However, the primary drawbacks of this method
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are the extensive training needed for a microscopist to read malaria slides proficiently, the
high costs associated with training and employing, maintaining skills, and the significant
amount of manual labor required. These problems have encouraged attempts to perform
the diagnosis of malaria automatically. Automatic malaria diagnosis has several advan-
tages: it gives blood film interpretation that is more reliable and consistent, allows more
patients to be handled, and reduces diagnostics costs [2]. Automatic malaria diagnosis
consists of five primary steps: image acquisition, preprocessing, segmentation, feature
extraction, and classification [6,7]. The digital image acquisition of blood smears using a
microscope may result in low-contrast images because of the lack of lighting. Low con-
trast images make identifying Plasmodium-infected cells difficult, which can lead to false
diagnoses [8]. Therefore, contrast enhancement is required at the preprocessing stage to
improve the quality of an image [9].
Various contrast enhancement methods have been developed and applied to malaria

images. The local histogram equalization [10] and gamma equalization [11,12] were used
to enhance the visibility of red blood cells (RBC) and parasites on grayscale microscop-
ic malaria images. Histogram equalization (HE) works by remapping the pixel intensity
in the image using a probability distribution [13]. The use of HE can increase the con-
trast, but the mean brightness of the resulting image becomes in the middle of the gray
level range [14]. In gamma equalization, to get the best contrast, it is necessary to ex-
periment on several images to obtain the optimal gamma value. In addition to grayscale
images, contrast enhancement methods were also used on the green channel of malaria
images, such as Contrast Limited Adaptive Histogram Equalization (CLAHE) [15] and
adaptive histogram equalization [16]. Contrast improvement in malaria images has also
been carried out on color images which consist of red, green, and blue (RGB) channels.
Some approaches that have been used include modified global contrast stretching (MGCS)
[17,18], modified linear contrast stretching (MLCS) [19], power law transformation [20],
and histogram matching [21]. Compared to MGCS, the contrast resulting from MLCS is
better, but there is a color difference in the MLCS image with the input image because
the enhancement process is based on the local values of each channel. Power law trans-
formation has the same problem as gamma equalization. It takes some experiments that
can be affected by the image used. In histogram matching, the resulting contrast depends
on the image used as a reference.
In actual malaria diagnosis, the examination is carried out through color images. There-

fore, contrast enhancement on the RGB malaria images becomes essential. In this study,
we propose an improvement to the MLCS to increase the contrast of color malaria images
while retaining the coloring structure of the original image. The contributions of the pa-
per are 1) the contrast enhancement of malaria images using improved MLCS (IMLCS)
by reducing dependence on the local features of each channel to minimize color changes
in the resulting image, 2) the use of the color-preserving framework for color restoration
[22], the color preservation framework can maintain color information from the input im-
age so that it can be used to overcome the problem of changing the coloration of the
contrast-enhanced image, and 3) analyzing the performance comparison of IMLCS with
the color preservation framework (IMLCS-CPF) with LCS, MLCS, and IMLCS methods.
The proposed IMLCS-CPF method is expected to improve the performance of visual ex-
amination of malaria through a microscope or facilitate the segmentation process in an
automatic malaria diagnosis system.
The rest of this work is organized as follows. Section 2 describes the proposed method in

detail. Section 3 shows the dataset description and discussion of the experimental results.
Finally, Section 4 concludes the proposed work.

2. Proposed Method. The proposed method was implemented in two main steps: 1)
contrast enhancement of colored malarial microscopic raw images using improved MLCS;
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Figure 1. Flow chart of the proposed method

2) color restoration to maintain the color structure of the input image using the color
preserving framework. The flow chart of the proposed method is shown in Figure 1.

The detailed steps of the proposed method in Figure 1 are described as follows.
Step 0: The input image fRGB(x, y) is a low contrast malaria image. fR(x, y), fG(x, y),

fB(x, y) are the red, green, and blue components of fRGB(x, y), respectively.
Step 1: In this step, contrast enhancement was performed using improved MLCS based

on the original MLCS in [19]. In the original MLCS, the determination of the minimum
and maximum values depends entirely on the local features of each color component.
This total dependency can result in a different coloring structure between the input and
output image resulting from the enhancement process. Therefore, in improved MLCS, the
dependence on local features is reduced to minimize color changes in the image resulting
from the enhancement process. The dependency on local features is reduced by calculating
the average value obtained from the sum of local features for each color component and
global features for all color components. The procedures for performing the improved
MLCS technique are as follows.

1) Select the minimum (minp) and maximum percentage (maxp) values. minp and maxp
values are used as percentage limits that must be met to determine the minimum and
maximum intensity for each color component.

2) Calculate the fR(x, y) histogram, i.e., the red component.
3) Initialize the num pixelleft and num pixelright variables with an initial value of 0.

num pixelleft is the total number of pixels starting from an intensity value of 0, while
num pixelright is the total number of pixels starting from an intensity value of 255.

4) Initialize the current pixel variable with a value of 0.
5) Count num pixelleft using Equation (1).

num pixelleft = num pixelleft + num pix[current pixel] (1)

num pix[current pixel] is the number of pixels at the intensity of current pixel.
6) Check the probability of num pixelleft using Equation (2), whether it satisfies the

value of minp.
num pixelleft

Total number of pixels in the image
∗ 100 ≥ minp (2)

If the condition in Equation (2) is satisfied (true), set the minimum value of the red com-
ponent (minR) equal to the value of the current pixel variable; else, set current pixel =
current pixel+1. Repeat steps 5) and 6) until the condition in Equation (2) is satisfied.

7) Initialize the current pixel variable with a value of 255.
8) Count num pixelright using Equation (3).

num pixelright = num pixelright + num pix[current pixel] (3)
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9) Check the probability of num pixelright using Equation (4), whether it satisfies the
value of maxp.

num pixelright
Total number of pixels in the image

∗ 100 ≥ maxp (4)

If the condition in Equation (4) is satisfied (true), set the maximum value of the red com-
ponent (maxR) equal to the value of the current pixel variable; else, set current pixel =
current pixel− 1. Repeat steps 8) and 9) until the condition in Equation (4) is satisfied.
10) Repeat steps 2)-9) to calculate the minimum and maximum values of the green and

blue components (minG, maxG, minB, maxB).
11) Specify minRGB and maxRGB values. minRGB is obtained from the smallest minR,

minG, and minB values. maxRGB value is obtained from the largest maxR, maxG, and
maxB values.
12) Calculate the new minimum and maximum values for the red component to reduce

the dependence on local features using Equations (5) and (6). It is done to minimize color
changes in the contrast-enhanced image.

new minR =
minR +minRGB

2
(5)

new maxR =
maxR +maxRGB

2
(6)

13) Calculate the new minimum and maximum values for green and blue components
(new minG, new maxG, new minB, new maxB) as in Equations (5) and (6).
14) Stretch the contrast of the pixels on the red component using linear contrast stretch-

ing (LCS) equation (7) [23].

outR(x, y) = 255 ∗
[
(inR(x, y)− new minR)

new maxR − new minR

]
(7)

outR(x, y) is the new pixel value, and inR(x, y) is the input pixel value at the (x, y)
position.
15) Do the same for the green and blue components to produce outG(x, y) and outB(x, y)

using Equation (7) with the input pixel values, new min, and new max of the green and
blue components.
16) Combine outR(x, y), outG(x, y), and outB(x, y) to form a contrast-enhanced image.
In this study, the minp and maxp values used in Equations (2) and (4) are 1%. These

value are based on the previous experiment that tested three sets of minp and maxp values:
Set 1 is minp = 1% and maxp = 1%, Set 2 is minp = 1% and maxp = 10%, and Set 3 is
minp = 0.5% and maxp = 10% [19]. Set 1 uses a small percentage value of 1% to obtain
a minimum and maximum pixel intensity different from the LCS method. Set 2 and 3 to
measure the effect of stretching on the histogram pixels on the left and right sides. Based
on the distribution separation measure, Set 1 gave the best results compared to Set 2 and
Set 3.
Step 2: The proposed method is not only to increase the image contrast but also to

preserve the color information of the processed image. In this step, the color preservation
framework was used to improve the maintenance of color information using Equation (8)
[22].

PRC IMG = δ(INT IMG) + (1− δ)(INT IMG) (8)

INT IMG is the contrast enhanced image generated from Step 1, INT IMG is the raw malaria
image, and PRC IMG is the resulting color preservation image. The determination of the
optimum gamma value is based on the following rules: 1) the range of the gamma value is
0 ≤ δ ≤ 1, 2) if δ = 0, then PRC IMG = INP IMG and this is a condition where maximum
color preservation occurs without any contrast enhancing in the PRC IMG , 3) if δ = 1,
then PRC IMG = INT IMG and this is a condition where minimum color preservation occurs
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with contrast enhancement in the PRC IMG . The proposed method should provide better
color preservation, so the choice of δ value should result in a lower AMBE measurement
than the previous method. AMBE measurement is described in Section 3 of this paper.

3. Experiments. In this section, we demonstrate the performance of the proposed meth-
ods, namely improved MLCS (IMLCS) and IMLCS with color preserving framework
(IMLCS-CPF), compared to previous linear-based contrast enhancement methods, like
LCS and MLCS. This experiment used a public dataset from the Malaria Parasite Image
Database (MP-IDB) for image processing and analysis [24]. The dataset has been acquired
using a Leica DM2000 optical laboratory microscope at 100x magnification. The original
image resolution of the dataset is 2592× 1944 pixels. For testing the image enhancement
method in this study, the Region of Interest (ROI) of Plasmodium was manually cropped
with a resolution of 800×600 pixels. Figure 2 presents ROI images of Plasmodium malar-
iae, falciparum, and vivax.

Figure 2. ROI Plasmodium malariae, falciparum, and vivax

Figure 3 shows enhancement results of various methods for Plasmodium malariae (left
column), falciparum (middle column), and vivax (right column) images. The results of
the LCS (a-c) and MLCS (d-f) methods can enhance the contrast image so that the
appearance of Plasmodium and erythrocytes becomes clear. However, the LCS and MLCS
methods resulted in color changes in Plasmodium and erythrocytes so that the information
on the texture and structure of the original color could be changed. The results of the
proposed IMLCS (g-i) and IMLCS-CPF methods (j-l) can enhance the contrast of the
given image, but the IMLCS-CPF method is better at retaining color information.

Table 1 shows the measurement results of absolute mean brightness error (AMBE) and
peak signal to noise ratio (PSNR) values for 12 Plasmodium images. AMBE is used to
compute the difference in mean brightness between original and enhanced images. In
the case of contrast enhancement, an image should retain its original brightness. The
lower value of AMBE indicates good brightness preservation on the enhanced image. The
AMBE value can be obtained using Equation (9) [25]. E(Ir) and E(Ie) are the mean
brightness of the original and enhanced images, respectively.

AMBE = |E(Ir)− E(Ie)| (9)

The PSNR value is used to measure image quality. The higher value means that the
enhanced image has better image quality. Mathematical expression to compute PSNR
between original and enhanced images is given in Equation (10) [25].

PSNR = 10 log10
(L− 1)2

MSE
(10)

L represents discrete gray levels, and in the case of an 8-bit image, L − 1 = 255. MSE
is mean square error, calculated using Equation (11) [25]. X(i, j) and Y (i, j) represent
pixel intensity values at location (i, j) in the original and enhanced images, respectively.
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MSE =
1

MN

M∑
i=1

N∑
j=1

|X(i, j)− Y (i, j)|2 (11)

In Table 1, the IMLCS method produces a better AMBE average value than the LCS
and MLCS. However, in Image7, MLCS gives a better AMBE value than IMLCS. The
IMLCS method combined with CPF can provide better AMBE values than the IMLCS,
MLCS, and LCS methods in Image7. Furthermore, we can see that the proposed IMLCS-
CPF method has the smallest AMBE values in all 12 images. Based on Table 1, the

(a) Malariae LCS (b) Falciparum LCS (c) Vivax LCS

(d) Malariae MLCS (e) Falciparum MLCS (f) Vivax MLCS

(g) Malariae IMLCS (h) Falciparum IMLCS (i) Vivax IMLCS

(j) Malariae IMLCS-CPF (k) Falciparum IMLCS-CPF (l) Vivax IMLCS-CPF

Figure 3. Enhancement results of Plasmodium malariae, falciparum, and
vivax images using LCS, MLCS, IMLCS, and IMLCS-CPF methods. For
these resulting images, we have considered minp = 1%, maxp = 1%, and
δ = 0.6.
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Table 1. AMBE and PSNR values for LCS, MLCS, IMLCS, IMLCS-CPF
methods

Images
AMBE PSNR

LCS MLCS IMLCS
IMLCS-
CPF

LCS MLCS IMLCS
IMLCS-
CPF

Image1 58.115 57.771 26.567 15.54 13.397 13.218 16.855 21.401
Image2 56.65 57.511 25.887 15.123 13.556 13.218 16.696 21.243
Image3 57.796 57.875 26.72 15.63 13.624 13.408 16.76 21.308
Image4 45.249 45.933 13.203 7.593 14.337 13.508 16.098 20.606
Image5 24.711 22.797 22.84 14.141 19.545 18.662 19.075 23.303
Image6 14.713 11.342 10.712 6.865 21.935 20.591 21.964 26.164
Image7 11.243 4.901 6.054 3.208 21.195 19.355 22.353 26.827
Image8 33.409 33.961 25.332 15.613 18.374 17.182 18.895 23.113
Image9 15.371 14.004 0.476 0.142 18.699 17.95 21.186 25.595
Image10 21.688 18.554 10.773 6.896 20.377 19.361 24.579 28.676
Image11 15.043 16.406 3.667 2.6 18.163 16.738 21.739 26.015
Image12 54.109 55.539 23.409 13.715 13.438 13.044 15.721 20.246
Average 34.008 33.050 16.303 9.756 17.22 16.353 19.327 23.708

proposed IMLCS-CPF method using δ = 0.6 has the lowest average AMBE value among
the other techniques, which means that the IMLCS-CPF can maintain the color informa-
tion of the original image in the enhanced image. δ < 0.6 will result in a smaller AMBE
value, but the quality of the contrast enhancement will decrease. Meanwhile, δ > 0.6 will
reduce the color preservation ability. The PSNR value of the IMLCS-CPF method also
gives the highest value. It indicates that the IMLCS-CPF method produces better con-
trast enhancement than the LCS, MLCS, and IMLCS methods. From the measurement
results of AMBE and PSNR values, the proposed IMLCS-CPF method can produce a
good contrast enhancement while preserving the color information of the original image.
It has also been proven in the image resulting from the IMLCS-CPF method in Figures
3(j)-3(l). The appearance of the texture and morphology of the Plasmodium becomes
clearer while maintaining the coloring structure from the original image so that the image
resulting from the contrast enhancement looks natural.

4. Conclusions. We proposed an improved method to enhance the contrast of color
malaria images while retaining the coloring structure of the original image. From the
experimental results, the AMBE value of the proposed method is less compared to LCS,
MLCS, and IMLCS methods. The proposed method also has a better PSNR value than
the other methods. Based on the AMBE and PSNR values analysis, the proposed IMLCS-
CPF method provides good contrast enhancement while preserving the color information
of the original image. Hence, this method can clarify the appearance of Plasmodium
and erythrocytes in the image of thin blood smears so that the enhanced images would
become helpful in improving the performance of visual examination of malaria through
a microscope or facilitate the segmentation process in an automatic malaria diagnosis
system.
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