
ICIC Express Letters ICIC International c⃝2023 ISSN 1881-803X
Volume 17, Number 9, September 2023 pp. 997–1003

APACHE STORM-BASED DISTRIBUTED SAMPLING LIBRARY
FOR DATA STREAMS

Hyojong Moon, Myeong-Seon Gil and Yang-Sae Moon∗

Department of Computer Science and Engineering
Kangwon National University

1 Gangwondaehakgil, Chuncheon-si, Gangwon-do 24341, Korea
{moonhyojong; gils }@kangwon.ac.kr; ∗Corresponding author: ysmoon@kangwon.ac.kr

Received November 2022; accepted January 2023

Abstract. Recently, large data streams are rapidly generated in various fields such as
Internet of Things (IoT) and social network services (SNS). Analyzing all such data
streams is very inefficient, and we generally pre-process the data to reduce its huge value.
In this paper, we first present a distributed processing-based sampling library for effective
use of large data streams. We then apply and implement the proposed library to Apache
Storm, a real-time distributed processing system. To validate the efficiency of the sam-
pling library, we extract samples from real data streams and compare the graphs of the
extracted samples with the original population. Experimental results show that the sample
data using the proposed library presents a similar pattern reflecting the characteristics of
the original data well. We believe that our library is an excellent result for easily sampling
large data streams in a distributed environment.
Keywords: Data stream, Sampling, Distributed processing, Apache Storm

1. Introduction. A data stream [1] is a set of data items that are constantly generated
at high speed. Because these data streams are rapidly generated and accumulate continu-
ously, we need a high processing cost to utilize the data. Accordingly, many interests in a
sampling technique that can effectively reduce the amount of data streams are increasing.

Sampling [2-4] is a statistical technique that extracts a sample representing a population
(original data). Typical sampling algorithms include Systematic [5], Reservoir [6], and
Binary Bernoulli [7] sampling. Along with these sampling techniques, a computational
environment essential for data stream processing is a distributed processing system. In
distributed processing, a number of servers connected by a network communicate with
each other and process multiple tasks simultaneously. Specifically, Apache Storm [8],
Apache Spark [9], and Apache Flink [10] are distributed processing systems applicable
to the stream environment, and in this paper we present a real-time sampling library
based on Storm1 .

The proposed Storm-based sampling library consists of four detailed steps. First, when
the original data stream is input through the Source-In step, the parameters required
for each sampling are defined in the Parameter-Setting step. Next, the original data is
actually sampled in the Sampling-Execution step, and the result is converted and output
in the data stream format in the Sample-Out step. These steps of our sampling library
are described in detail in Section 3.

The proposed real-time sampling library is evaluated through various experiments using
real data. In the experiment, we evaluate whether each algorithm in the sampling library
has sampled well the data representing the population. As a result of the experiment, we

DOI: 10.24507/icicel.17.09.997
1We provide the library in the github (https://github.com/dke-knu/i2am/tree/master/i2am-app/

SamplingAlgorithm).

997



998 H. MOON, M.-S. GIL AND Y.-S. MOON

confirmed that the samples extracted from each sampling algorithm and the population
showed very similar patterns even in a distributed environment. Based on these results,
we believed that the proposed sampling library is an excellent research that allows users
to more easily use sampling techniques through a real-time distributed processing system.
Contributions of the paper can be summarized as follows. First, we propose a new

sampling library that supports stream purification in a distributed environment. Second,
we design and implement each sampling algorithm in Apache Storm using its components
of spouts and bolts. Third, through actual data-based experiments, we show that the
proposed library performs sampling well while reflecting the characteristics of the original
data.
The rest of the paper is organized as follows. Section 2 describes the related work on

Apache Storm and sampling algorithms. Section 3 presents the proposed library for stream
data sampling in a distributed environment. Section 4 shows the results of experimental
evaluation. Finally, Section 5 concludes the paper.

2. Related Work. Apache Storm [8,11-13] is an open-source distributed framework de-
veloped by Twitter. The definition of the work required for the data input-processing-
output process in Storm is called a topology. This topology consists of a combination of
multiple spouts and bolts. Figure 1 shows the operating structure of the Storm based
on spouts and bolts, and this structure becomes a topology. In the topology, the spout
receives data from the data stream source, converts the data into tuples which are data
types used by Storm, and transfers the tuples to the next bolt. The bolt receives data
from the spout or the previous bolt, processes the task defined by users, and passes the
results to the next bolt or the final output. For the detailed operating process of Apache
Storm, refer to [8].

Figure 1. The operating structure of Apache Storm

Sampling is a statistical technique for selecting data that well reflects the characteris-
tics of a given population. Figure 2 shows sampling algorithms that are frequently used
in specific areas such as statistics and dynamic streams. As shown in the figure, the sam-
pling techniques can be divided into sampling specialized for batch processing of the entire
population, sampling specialized for the data stream environment, and sampling used for
multimedia data. Among the sampling algorithms, clustering and stratified sampling spe-
cialized for batch processing classify the entire data into relevant groups and sample the
data for each group. In addition, sampling algorithms specialized for data streams that
focus on processing speed include Reservoir [6], Binary Bernoulli [7], and KSample [14].
In this paper, we focus on sampling algorithms suitable for the data stream environment
from the existing algorithms and compose them into a sampling library. For example, since
statistics-based algorithms often require the entire population for sampling, we choose the
systematic sampling that does not use the entire population. Finally, we have selected
seven algorithms: statistically-based Systematic [5], stream-based Reservoir, Hash [15],
Priority [16], Binary Bernoulli, KSample, and UC KSample [18]. In particular, Binary



ICIC EXPRESS LETTERS, VOL.17, NO.9, 2023 999

Figure 2. Sampling algorithms for each field

Bernoulli and UC KSample are new algorithms that improve sampling performance in a
stream environment. However, most of the selected algorithms do not support the dis-
tributed stream environment. To solve this problem, in this paper, we design and imple-
ment each algorithm with Apache Storm, and propose a new library that integrates these
algorithms. We explain the algorithms and our library in more detail in Section 3.

3. Storm-Based Sampling Library. Before explaining the proposed sampling library,
we briefly describe each sampling algorithm implemented in the library. We target seven
sampling algorithms in this paper, and the description of each algorithm is as follows.

• Systematic Sampling : Select the k-th data item as a sample from the input popula-
tion.

• Reservoir Sampling : It is based on simple random sampling, but it has a fixed
number of samples and performs random sampling so that the sample size does not
increase even when the population size increases.

• Priority Sampling : It is a stream sampling algorithm similar to Reservoir, and a
sample extraction method that applies an additional variable called data frequency
to simple random sampling.

• Hash Sampling : It is an effective technique for sampling text data. In Hash Sampling,
a specific data field is converted to a number using a hash function, and if the value
is less than a specified value, a sample is selected.

• Binary Bernoulli Sampling : As a method of sampling data streams with the same
probability in a multi-source environment, we use an improved algorithm [17] that
solves the existing Binary Bernoulli bottleneck and network delay problem.

• KSample: It selects a sample while maintaining a sampling rate in the data stream
environment in which the population continuously increases.

• UC KSample [18]: It is a recent algorithm that guarantees the reliability of samples
by improving the problem that the existing KSample does not guarantee uniformity
reliability.

In particular, we optimize each algorithm to operate in Storm’s distributed processing
environment, and use the improved algorithms for high sampling accuracy. For example,
in the case of Hash Sampling, in which the sampling result varies depending on the hash
function, three hash functions with different characteristics are provided to improve the



1000 H. MOON, M.-S. GIL AND Y.-S. MOON

sampling accuracy. In addition, the Binary Bernoulli and KSample algorithms, which are
stream-based sampling techniques, construct a library using the latest advanced algo-
rithms.
To integrate these sampling algorithms into a library that can be used to process data

streams, we use Apache Storm. The proposed sampling library consists of four stages,
and the overall operation structure of these stages is shown in Figure 3. First, in the
Source-In step, the sampling library converts the data stream received through the spout
into a tuple, and transmits it to the next bolt. Next, the Parameter-Setting step defines
necessary parameters before starting sampling, and transmits the data to the next step.
The transmitted data is sampled through the sampling algorithm bolt selected by the
user in the Sampling-Execution step. The extracted sample is output in the form of a
data stream in the Sample-Out step, or stored in a storage device set by the user.

Figure 3. Overall structure of Storm-based sampling library

We describe in detail the Storm components of each step. Declaring bolt manages
the parameters required for the sampling algorithms. This bolt collects and defines the
necessary parameters for each sampling algorithm, and delivers the defined parameters
to the sampling algorithm bolt. As shown in Figure 3, in this paper we adopt Redis
[19] as an in-memory DBMS for parameter sharing of each algorithm. In the case of the
Systematic, KSample, and UC KSample algorithms, because the algorithm bolt reads the
user-specified values from Redis without additional parameter settings, the spout delivers
data directly to the sampling algorithm bolt without going through the Declaring bolt.
The sampling algorithm bolt is a component that samples an input data stream through

a selected sampling algorithm. As mentioned above, seven algorithms of Reservoir, Pri-
ority, Hash, Binary Bernoulli, Systematic, KSample, and UC KSample are processed by
each corresponding bolt. Here, the Reservoir, Priority, Hash, and Binary Bernoulli sam-
plings use a fixed sample size (number), and they extract a sample of a user-specified size
from a window designated for processing the stream. On the other hand, KSample and
UC KSample use a fixed sampling rate, and they extract samples as much as the sample
rate set by the user. When sampling is completed in the sampling algorithm bolt, the bolt
sends the sample to the passing bolt in the Sample-Out step.
The passing bolt converts the extracted list structure sample into a data stream and

delivers it to the output bolt. Since the samples received from the sampling algorithm
bolt are used as a list structure for internal operation, the process of converting back to
the data stream should be necessary. Therefore, the passing bolt converts the sample into
a data stream, and the output bolt serves to output the received data stream to a storage
location.



ICIC EXPRESS LETTERS, VOL.17, NO.9, 2023 1001

As explained so far, we designed a new sampling library by analyzing existing data
stream-based sampling algorithms applicable to the data stream environment. We also
improved and optimized the algorithms for distributed processing systems. If we need
to add a new sampling technique, we can support the function easily in the proposed
sampling library by implementing the algorithm as a new Storm bolt.

4. Performance Evaluation. In the experiment, we evaluate whether the proposed
sampling library accurately samples the original data even in the Storm-based distribut-
ed environment. The hardware platform consists of one master node (Xeon E5-2630V3
2.4GHz, 8core) and eight slave nodes (Xeon E5-2630V3 2.4GHz, 6core), each of which
is equipped with 32GB RAM and 256GB SSD. The software platform of nine nodes is
CentOS Linux 7.2.1511. The data used in the experiment is the closing price data of
Apple’s stock from 2010 to 2018. Figure 4 shows an example of stock data used in the
experiments.

Figure 4. An example of Apple’s stock data

The parameters of each algorithm are shown in Table 1. All parameters in the table are
user-defined. Since the proposed library uses stream data, real-time input data is collected
and sampled in a fixed size buffer called window. Among the parameters, WindowSize
means the size of this fixed buffer, and SampleSize means the number of data to be
sampled in the window. In this paper, we perform experiments by fixing the WindowSize
and SampleSize to 2000 and 500, respectively.

Table 1. Parameters for each sampling algorithm

Algorithm name Parameter (Value used in the experiment)
Reservoir WindowSize (2000), SampleSize (500), SampleKey (id)
Priority WindowSize (2000), SampleSize (500), SampleKey (id)
Hash WindowSize (2000), SampleSize (500), SampleKey (id)

Systematic Interval (5)

Binary Bernoulli
WindowSize (2000), SampleSize (500), SampleKey (1st-id),
PreSampleKey (2nd-id)

KSample SamplingRate (10)
UC KSample SamplingRate (10), UCLowerBound (0.7)

Figure 5 shows the original data (population) and the sampled data extracted by each
sampling. The graph on the top-left is the original Apple’s stock data, and the other graphs
are sampled data extracted by seven sampling algorithms. Comparing the population
shown with the sample extracted, we can intuitively confirm that the trend and shape of
the original and sampled data are very similar. As a result of analyzing the distribution
between the actual original and sampled data based on JSD (Jensen-Shannon Divergence),



1002 H. MOON, M.-S. GIL AND Y.-S. MOON

Figure 5. Population and sample graph for each sampling algorithm

the error rate range for each algorithm is only 0.1% to 1.6%. This indicates that each
algorithm in the sampling library proposed performs relatively accurate sampling on data
streams even in the top of the Storm’s distributed environment.

5. Conclusions. Since the amount of data streams is constantly increasing, we need an
efficient pre-processing method that can reduce the processing cost of such data streams.
In this paper, we designed an integrated library of sampling algorithms that can be applied
to the stream environment to efficiently process these data streams, and implemented
them in Apache Storm, a real-time distributed processing system. As a result of the
experiments with the proposed sampling library using real data, we confirmed that it
shows similar patterns when comparing the trends and shapes of the original data and the
sampled data. From these results, we can see that the proposed sampling library performs
accurate sampling even in the distributed environment. Using the Storm-based sampling
library proposed in this paper, we believe that Näıve users without expert knowledge of
sampling algorithms can more easily purify data streams in the distributed environment.
In the future, we plan to design and implement an integrated purification library by
improving the performance speed and function of the proposed library and building a
filtering library that effectively purifies the data streams according to the user’s intention.

Acknowledgment. This work was partly supported by Institute of Information & com-
munications Technology Planning & evaluation (IITP) grant funded by the Korea govern-
ment (MSIT) (No. 2021-0-00859, Development of a Distributed Graph DBMS for Intelli-
gent Processing of Big Graphs) and the National Research Foundation of Korea (NRF)
grant funded by the Korea government (MSIT) (No. NRF-2022R1A2C1003067).

REFERENCES

[1] J. Leskovec, A. Rajaraman and J. D. Ullman, Mining of Massive Datasets, Cambridge University
Press, 2014.



ICIC EXPRESS LETTERS, VOL.17, NO.9, 2023 1003

[2] G. Cormode and N. Duffield, Sampling for big data: A tutorial, Proc. of the 20th ACM SIGKDD
International Conf. on Knowledge Discovery and Data Mining, New York, NY, DOI: 10.1145/2623
330.2630811, 2014.

[3] M. S. Mahmud, J. Z. Huang, S. Salloum, T. Z. Emara and K. Sadatdiynov, A survey of data
partitioning and sampling methods to support big data analysis, Big Data Mining and Analytics,
vol.3, no.2, pp.85-101, 2020.

[4] R. Jayaram and D. Woodruff, Perfect Lp sampling in a data stream, SIAM Journal on Computing,
vol.50, no.2, pp.382-439, 2021.

[5] D. R. Bellhouse and J. N. Rao, Systematic sampling in the presence of a trend, Biometrika, vol.62,
pp.694-697, 1975.

[6] J. S. Vitter, Random sampling with a reservoir, ACM Transactions on Mathematical Software, vol.11,
pp.37-57, 1985.

[7] G. Cormode, S. Muthukrishnan, K. Yi and Q. Zhang, Optimal sampling from distributed streams,
Proc. of the 21st ACM SIGMOD-SIGACT-SIGART Symp. on Principles of Database Systems, In-
dianapolis, IN, pp.77-86, 2010.

[8] Apache Storm, http://storm.apache.org/, 2023.
[9] Apache Spark, http://spark.apache.org/, 2023.
[10] Apache Flink, http://flink.apache.org/, 2023.
[11] A. Muhammad and M. Aleem, BAN-Storm: A bandwidth-aware scheduling mechanism for stream

jobs, Journal of Grid Computing, vol.19, no.3, pp.1-16, 2021.
[12] S. Son and Y.-S. Moon, Locality/fairness-aware job scheduling in distributed stream processing

engines, Electronics, vol.9, no.11, Article No. 1857, 2020.
[13] S. Son, H. Im and Y.-S. Moon, Stochastic distributed data stream partitioning using task locality:

Design, implementation, and optimization, The Journal of Supercomputing, vol.77, no.10, pp.11353-
11389, 2021.

[14] T. R. Kepe, E. C. Almeida and T. Cerqueus, KSample: Dynamic sampling over unbounded data
streams, Journal of Information and Data Management, vol.6, no.32, pp.32-47, 2015.

[15] T. Zseby, M. Molina, N. Duffield, S. Niccolini and F. Raspall, Sampling and Filtering Techniques for
IP Packet Selection RFC 5475, Technical Report, IETF, 2009.

[16] E. Cohen, Stream sampling for frequency cap statistics, Proc. of the 21st ACM SIGKDD Interna-
tional Conf. on Knowledge Discovery and Data Mining, New York, NY, pp.159-168, 2015.

[17] W. Cho, M.-S. Gil, M.-J. Choi and Y.-S. Moon, Storm-based distributed sampling system for multi-
source stream environment, International Journal of Distributed Sensor Networks, vol.14, no.11,
DOI: 1550147718812698, 2018.

[18] H. Kim, M.-S. Gil, Y.-S. Moon and M.-J. Choi, Variable size sampling to support high uniformity
confidence in sensor data streams, International Journal of Distributed Sensor Networks, vol.14,
no.4, DOI: 1550147718773999, 2018.

[19] Redis, http://redis.io/, 2023.


