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Abstract. In this paper, we study S-essential submodules which are a generalization
of essential submodule of modules. Besides giving many examples and properties of S-
essential submodules, we generalize some results on essential submodules to S-essential
submodules. Finally, we can show that for a nonzero right R-module M such that
AnnR(m) ∩ S = ∅ for all m ∈ M − {0}, M has a proper S-essential submodule if
and only if a right R/AnnR(M)-module M has a proper S-essential submodule where
S = {s+AnnR(M)|s ∈ S}.
Keywords: Multiplicatively closed subset, Essential submodule, S-essential submodule,
Essential monomorphism, S-essential monomorphism

1. Introduction and Preliminaries. Throughout this paper, R is an associative ring
with identity and all R-modules will be unitary right R-modules. The annihilator of right
R-module M is denoted by AnnR(M) where AnnR(M) = {r ∈ R|Mr = 0}. From [1], a
nonempty subset S of R is called a multiplicatively closed subset (briefly, m.c.s.) of R, if
0 /∈ S, 1 ∈ S and ss′ ∈ S for all s, s′ ∈ S. In the sequel, unless stated otherwise, S is
always a multiplicatively closed subset of ring R. From [2], a proper submodule N of a
right R-module M is called an essential submodule in M , if N ∩K ̸= 0 for all non-zero
submodule K of M , or equvalently, for submodule K of M such that N ∩K = 0 implies
that K = 0 and we write N ≪e M . Many authors have been interested in studying
defferent definitions generalization of essential submodules (see [3, 4, 5, 6]). Recently, in
[7], Rajaee introduced the notion of S-essential submodule which is a generalization of
essential submodule. A submodule N of right R-module M is called S-essential (S-large)
submodule of M and denote by N ≪S

e M , if for every submodule L of M the equality
N∩L = 0 implies that there exists an s ∈ S such that Ls = 0. He generalized the concepts
of essential submodule of a right R-module M to the S-essential submodule of M where
S is a multiplicatively closed subset of R and provided some useful theorem concerning
this new class of submodules. For the basic concepts and other notations, we refer the
readers to [1, 2, 7, 8].

In this paper, we continue the work of Rajaee [7] and give many other examples. In
Section 2, several properties of these classes of submodules are considered. In Section 3,
we consider some conditions that a right R-module has a proper S-essential submodule.
In Section 4, we conclude this paper with future work.

Let us begin by giving examples of S-essential submodule of right R-module and some
remark of this concept.

Example 1.1. (1) Every essential submodule of right R-module M is an S-essential
submodule of M for all multiplicatively closed subset S of R.

DOI: 10.24507/icicel.17.09.1013

1013



1014 P. SANGCHAN AND S. BAUPRADIST

(2) The converse of (1) is not true in general. For example, let Z be the set of all integers
and Z6 be the set of all integers modulo 6.

(2.1) Consider Z6 as a right Z-module and S = {1, 3, 6, 9, . . .}. Then S is a multi-
plicatively closed subset of Z. Let U be a submodule of Z6 such that

⟨
3
⟩
∩U = 0.

Since
⟨
0
⟩
,
⟨
1
⟩
=

⟨
5
⟩
,
⟨
2
⟩
=

⟨
4
⟩
and

⟨
3
⟩
are of all submodules of Z6, U = 0 or

U =
⟨
2
⟩
.

Case 1. U = 0. Choose s ∈ S. We have Us = 0.
Case 2. U =

⟨
2
⟩
. There is 3 ∈ S and

⟨
2
⟩
3 = 0.

Hence,
⟨
3
⟩
is an S-essential submodule of Z6. However,

⟨
3
⟩
is not an essential

submodule of Z6. Since
⟨
3
⟩
∩
⟨
2
⟩
= 0,

⟨
2
⟩
̸= 0.

(2.2) Consider Z6 as right Z6-module and S =
{
1, 3

}
. Then S is a multiplicatively

closed subset of Z6. Let U be a submodule of Z6 such that
⟨
3
⟩
∩ U = 0. Then

U = 0 or U =
⟨
2
⟩
.

Case 1. U = 0. There is 1 ∈ S and 01 = 0.
Case 2. U =

⟨
2
⟩
. There is 3 ∈ S and

⟨
2
⟩
3 = 0.

From case 1 and case 2,
⟨
3
⟩
≪S

e Z6. Even in this example, we consider Z6 as

right Z6-module. We also concluded that
⟨
3
⟩
is not an essential submodule of Z6.

(2.3) From (2.2), we have 0 is not an S-essential submodule of Z6.
(3) The converse of (1) is true provided that S ⊆ U(R) where U(R) is the set of all units

in R.
(4) In the case that S = {1}, every S-essential submodule of right R-module is an

essential submodule.
(5) If M is a uniserial module then for any nonzero submodule of M is an S-essential

submodule for each multiplicatively closed subset S of R.

Remark 1.1. Let M be a right R-module.

(1) M ≪S
e M .

(2) There exists a right R-module M such that for any submodule U of M , U is an
S-essential submodule (In the future, we will refer to this concept as S-Uniform
modules). We consider, Zn is a right Z-module and n = pα1

1 pα2
2 pα33 . . . pαn

n where pi
are prime numbers and αi are positive integers for all i = 1, 2, 3, . . . , n. Let p =
min{pi|i = 1, 2, 3, . . . , n} and S = {1, p, 2p, 3p, . . .}. Then S is a multiplicatively
closed subset of Z. We know that every submodule of Zn is the form ⟨a⟩ where a
is a positive integer such that a|n. By definition of S, we have n ∈ S and for all
submodule U of Zn, Un = 0. So for any submodule of Zn is an S-essential submodule
of Zn. Hence, 0 is an S-essential submodule of Zn.

(3) If 0 is an S-essential submodule of right R-module M then for any submodule U of
M there exists s ∈ S such that Us = 0.

By the above example, we can conclude that {0} is not an essential submodule of any
right R-module M . However, depending on the multiplicatively closed subset S of a ring
R, {0} will be an S-essential submodule of right R-module M .

2. S-Essential Submodules. In this section, we give an S-essential submodule concept
as a generalization of essential submodule. Also, we generalize some properties of essential
submodules to S-essential submodules.

Proposition 2.1. Let A, B and C be submodules of M . If A ≪ B ≪ C ≪ M and
A ≪S

e M , then B ≪S
e C.

Proof: Suppose that A ≪ B ≪ C ≪ M and A ≪S
e M . Let L ≪ C such that

B ∩ L = 0. Since A ≪ B, A ∩ L = 0. However, A ≪S
e M , there is an s ∈ S such that

Ls = 0. Hence, B ≪S
e C. �
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Corollary 2.1. Let N1 and N2 be submodules of a right R-module M . If N1 ∩N2 is an
S-essential submodule of M , then N1 and N2 are S-essential submodules of M .

Proof: By Proposition 2.1. �
Proposition 2.2. Let M be a right R-module. If A ≪e B ≪ M and A1 ≪S

e B1 ≪ M ,
then A ∩ A1 ≪S

e B ∩B1.

Proof: Suppose that A ≪e B ≪ M and A1 ≪S
e B1 ≪ M . Let L be a submodule

of B ∩ B1 such that (A ∩ A1) ∩ L = 0. Then A ∩ (A1 ∩ L) = 0. Since A ≪e B and
A1 ∩ L ≪ L ≪ B, A1 ∩ L = 0. However, A1 ≪S

e B1 and L ≪ B1, there exists s ∈ S such
that Ls = 0. Hence, A ∩ A1 ≪S

e B ∩B1. �
Proposition 2.3. Let A and B be submodules of a right R-module M . If A ≪S

e B, then
A ∩ C ≪S

e B ∩ C for all submodule C of M .

Proof: Suppose that A ≪S
e B. Let C be a submodule of M and D a submodule of

B ∩ C such that (A ∩ C) ∩D = 0. Then A ∩ (C ∩D) = 0 but A ≪S
e B, there is s ∈ S

such that (C ∩D)s = 0. Since D ⊆ C, Ds = 0. Therefore, A ∩ C ≪S
e B ∩ C. �

Theorem 2.1. Let M be a right R-module such that AnnR(m) ∩ S = ∅ for all m ∈
M − {0} and L1, L2, K1, K2 be submodules of M . If K1 ≪S

e L1 and K2 ≪S
e L2, then

K1 ∩K2 ≪S
e L1 ∩ L2.

Proof: Let X be a submodule of L1 ∩ L2. Suppose that Xs ̸= 0 for all s ∈ S.
Since X ≪ L1 and K1 ≪S

e L1, K1 ∩ X ̸= 0. Assume that there exists s ∈ S such
that (X ∩ K1)s = 0. Since K1 ∩ X ̸= 0, there exists 0 ̸= a ∈ K1 ∩ X, and thus,
as ∈ (K1 ∩ X)s = 0. So as = 0. This is a contradiction with AnnR(a) ∩ S = ∅. So
(K1 ∩ X)s ̸= 0 for all s ∈ S. Since X ∩ K1 ≪ X ≪ L1 ∩ L2 ≪ L2 and K2 ≪S

e L2,
X ∩ (K1 ∩K2) = (X ∩K1) ∩K2 ̸= 0. Therefore, K1 ∩K2 ≪S

e L1 ∩ L2. �
Proposition 2.4. Let M = M1 ⊕ M2 be a right R-module, K1 a submodule of M1 and
K2 submodule of M2. If K1 ⊕K2 ≪S

e M1 ⊕M2, then K1 ≪S
e M1 and K2 ≪S

e M2.

Proof: Suppose that K1 is not an S-essential submodule of M1 or K2 is not an S-
essential submodule of M2.

Case 1. K1 is not an S-essential submodule of M1. There exists a submodule L1 of M1

such that L1 ∩K1 = 0 but L1s ̸= 0 for all s ∈ S. Let l ∈ (K1 +K2) ∩ L1. Then l ∈ L1

and l = k1 + k2 for some k1 ∈ K1 and k2 ∈ K2. So k2 = l − k1 ∈ M1 and we have
k2 ∈ M1 ∩M2 = 0. Then k2 = 0, and thus, l = k1. Then k1 ∈ K1 ∩ L1 = 0. This implies
that l = k1 + k2 = 0. Hence, (K1 +K2) ∩ L1 = 0 but L1s ̸= 0 for all s ∈ S. It concludes
that K1 ⊕K2 is not an S-essential submodule of M .

Case 2. K2 is not an S-essential submodule of M2. This case is similar to case 1.
From case 1 and case 2, we can conclude that K1⊕K2 is not an S-essential submodule

of M . �
Lemma 2.1. Let M be a right R-module and K a submodule of M . If for each 0 ̸= m ∈ M
there exists r ∈ R such that 0 ̸= mr ∈ K, then K is an S-essential submodule of M .

Proof: Let L be a submodule of M such that Ls ̸= 0 for all s ∈ S. Since 1 ∈ S, L ̸= 0.
We can choose l ∈ L − {0}. By assumption, there exixts r ∈ R such that lr ∈ K. So
0 ̸= lr ∈ K ∩ L. That is K ∩ L ̸= 0. Therefore, K is an S-essential submodule of M . �
Lemma 2.2. Let M be a right R-module and K an S-essential submodule of M . For any
m ∈ M , if AnnR(m) ∩ S = ∅, then there exists r ∈ R such that 0 ̸= mr ∈ K.

Proof: Let m ∈ M such that AnnR(m) ∩ S = ∅. Then mRs ̸= 0 for all s ∈ S.
However, K is an S-essential submodule of M , K ∩ mR ̸= 0. There exists r ∈ R such
that 0 ̸= mr ∈ K. �
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Theorem 2.2. Let M = M1 ⊕M2 be a right R-module, K1 a submodule of M1 and K2

a submodule of M2 such that for each m ∈ Mi − {0}, AnnR(m) ∩ S = ∅ where i = 1, 2.
If K1 ≪S

e M1 and K2 ≪S
e M2, then K1 ⊕K2 ≪S

e M1 ⊕M2.

Proof: Suppose that K1 ≪S
e M1 and K2 ≪S

e M2. Let 0 ̸= m ∈ M = M1 ⊕M2. Then
m = m1 +m2 for some m1 ∈ M1 and m2 ∈ M2.
Case 1. There exists i ∈ {1, 2} such that mi = 0.
Subcase 1.1. m1 = 0. Then m2 ̸= 0. By Proposition 2.2, there exists r ∈ R such that

0 ̸= m2r ∈ K2. Then (m1 +m2)r = m1r +m2r = m2r ∈ K1 ⊕K2. By Proposition 2.1,
K1 ⊕K2 is an S-essential submodule of M .
Subcase 1.2. m2 = 0. It is similar to subcase 1.1.
Case 2. mi ̸= 0 for all i ∈ {1, 2}. Since K1 ≪S

e M1 and by Proposition 2.2, there exists
r1 ∈ R such that 0 ̸= m1r1 ∈ K1.
Subcase 2.1. m2r1 ∈ K2. Then m1r1 +m2r1 ̸= 0 and (m1 + m2)r1 = m1r1 + m2r1 ∈

K1 ⊕K2.
Subcase 2.2. m2r1 /∈ K2. It is obvious that m2r1 ̸= 0. Since K2 ≪S

e M2 and by
Proposition 2.2, there exists r2 ∈ R such that 0 ̸= m2r1r2 ∈ K2. Thenm1r1r2+m2r1r2 ̸= 0
and (m1+m2)r1r2 = m1r1r2+m2r1r2 ∈ K1⊕K2. From case 1, case 2 and by Proposition
2.1, we have K1 ⊕K2 is an S-essential of M . �
Proposition 2.5. Let M and N be right R-modules and f : M −→ N an isomorphism.
If B is an S-essential submodule of M , then f(B) is an S-essential submodule of N .

Proof: Suppose that B is an S-essential submodule of M . Let L be a submodule of
N such that f(B) ∩ L = 0. Since f is a monomorphism, B ∩ f−1(L) = 0. However, B
is an S-essential submodule of M , there exists s ∈ S such that f−1(L)s = 0. Suppose
that Ls ̸= 0. There exists l ∈ L such that ls ̸= 0. Since f is an epimorphism, there
exists m ∈ M such that f(m) = l. Then m ∈ f−1(L), and thus, ms = 0. We have
0 = f(ms) = f(m)s = ls. This is a contradiction. Hence, Ls = 0. Therefore, f(B) is an
S-essential submodule of N . �
Proposition 2.6. Let M , N be right R-modules over commutative ring R, A a submodule
of N and φ ∈ HomR(M,N). If A ≪S

e N , then φ−1(A) ≪S
e M .

Proof: Suppose that A ≪S
e N . Let U be a submodule of M such that φ−1(A)∩U = 0.

Then A∩φ(U) = 0. By assumption, there is s ∈ S such that φ(U)s = 0. Thus, φ(Us) = 0.
However, R is a commutative ring, we have Us ≪ Ker(φ) = φ−1(0) ≪ φ−1(A) and hence
Us = Us ∩ φ−1(A) ≪ U ∩ φ−1(A) = 0. Then Us = 0. Therefore, φ−1(A) ≪S

e M . �
Theorem 2.3. Let M be a right R-module. Then the following statements are equivalent.

(i) 0 ≪S
e M .

(ii) For each submodule L of M , L ≪S
e M .

(iii) For each proper submodule L of M , L ≪S
e M .

(iv) For each submodule L of M , L′ ≪S
e M where L′ is a complement of L in M .

(v) For each submodule L of M , there exists s ∈ S such that Ls = 0.

Proof: (i) =⇒ (ii) By Remark 1.1 (3).
(ii) =⇒ (i) It is obvious.
(ii) =⇒ (iii) This is clear.
(iii) =⇒ (ii) By Remark 1.1 (1).
(i) =⇒ (iv) Let L be a submodule of M , L′ a complement of L in M and K a submodule

of M such that L′ ∩ K = 0. By Remark 1.1 (3), there exists s ∈ S such that Ks = 0.
Hence, L′ is an S-essential submodule of M .
(iv) =⇒ (i) Let K be a submodule of M and K ′ a complement of K in M . By assump-

tion, K ′ is an S-essential submodule of M . However, K ∩K ′ = 0, there exists s ∈ S such
that Ks = 0. Hence, 0 is an S-essential submodule of M .
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(i) =⇒ (v) By Remark 1.1 (3).
(v) =⇒ (i) This is clear. �

Corollary 2.2. Let M be a right R-module and L a submodule of M . If a complement
L′ of L is an S-essential submodule of M , then there exists s ∈ S such that Ls = 0.

Proof: Similar in the proof of Theorem 2.3 ((iv) =⇒ (i)). �
Definition 2.1. Let M , N be right R-modules and S a multiplicatively closed subset of
a ring R. A monomorphism f : M −→ N is said to be S-essential monomorphism, if
Im(f) is an S-essential submodule of N .

Recall that an R-homomorphism f : M −→ N of R-modules M and N is said to be
essential monomorphism [10], Im(f) is an essential submodule of N .

Example 2.1. Every essential monomorphism from M to N is an S-essential monomor-
phism from M to N where M and N are right R-modules.

Proposition 2.7. Let M and N be right R-modules. If S ⊆ U(R), then every S-essential
monomorphism from M to N is an essential monomorphism from M to N where U(R)
is the set of all units in R.

Proof: This is clear. �
Theorem 2.4. Let M be a right R-module and K a submodule of M . Then the following
statements are equivalent.

(i) K is an S-essential submodule of M .
(ii) The inclusion map iK : K −→ M is an S-essential monomorphism.
(iii) For each right R-module N and f ∈ HomR(M,N), if (Ker(f)) ∩K = 0, then there

exists s ∈ S such that (Ker(f))s = 0.

Proof: (i) ⇐⇒ (ii) It is obvious.
(i) =⇒ (iii) This is clear.
(iii) =⇒ (i) Let L be a submodule of M such that K∩L = 0 and ηL a natural map from

M to M/L. Then ηL ∈ HomR(M,M/L) and Ker(ηL) = L, and thus, Ker(ηL) ∩K = 0.
By assumption, there exists s ∈ S such that (Ker(ηL))s = 0. So Ls = 0. Hence, K is an
S-essential submodule of M . �
Theorem 2.5. Let L and M be right R-modules and f a monomorphism from L to
M . Then f is S-essential if and only if for each right R-module N and for each R-
homomorphism h : M −→ N such that h ◦ f is a monomorphism there exists s ∈ S such
that (Ker(h))s = 0.

Proof: (=⇒) Let h : M −→ N such that h ◦ f is monomorphism. Let x ∈ Ker(h ◦ f).
Then h(f(x)) = 0 and thus f(x) ∈ Ker(h) ∩ Im(f). So x ∈ f−1(Ker(h) ∩ Im(f)). We
have Ker(h ◦ f) ⊆ f−1(Ker(h)∩ Im(f)). Conversely, let x ∈ f−1(Ker(h)∩ Im(f)). Then
f(x) ∈ Ker(h) and thus h(f(x)) = 0. So x ∈ Ker(h ◦ f). Hence, f−1(Ker(h) ∩ Im(f)) =
Ker(h ◦ f). However, h ◦ f is a monomorphism, f−1(Ker(h) ∩ Im(f)) = 0. Let y ∈
Ker(h) ∩ Im(f). Then h(y) = 0 and f(x) = y for some x ∈ L. Since 0 = h(y) = h(f(x)),
f(x) ∈ Ker(h) ∩ Im(f). So x ∈ f−1(Ker(h) ∩ Im(f)) = 0 and thus y = f(x) = f(0) = 0.
We have Ker(h)∩ Im(f) = 0 but Im(f) ≪S

e M , there exists s ∈ S such that (Ker(h))s =
0.

(⇐=) Let K be a submodule of M such that Im(f) ∩ K = 0. Let π be a canonical
projection map from M to M/K. Let x ∈ Ker(π ◦ f). Then π(f(x)) = 0. So f(x) +K
= K and thus f(x) ∈ K. We have f(x) ∈ Im(f) ∩ K = 0. That is f(x) = 0 but f is
a monomorphism, x = 0. So π ◦ f is a monomorphism and by assumption, there exists
s ∈ S such that (Ker(π))s = 0. Since Ker(π) = K, Ks = 0. Hence, f is an S-essential
monomorphism. �
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Corollary 2.3. Let L, M , N be right R-modules and f : L −→ M , g : M −→ N
be monomorphisms. If g ◦ f is an S-essential monomorphism, then g is an S-essential
monomorphism.

Proof: Suppose that g◦f is an S-essential monomorphism. LetM ′ be a right R-module
and h : M −→ M ′ an R-homomorphism such that h◦g is a monomorphism. Then h◦(g◦f)
is a monomorphism. Since g ◦ f is an S-essential and by Theorem 2.5, there exists s ∈ S
such that (Ker(h))s = 0. By Theorem 2.5, g is an S-essential monomorphism. �
Theorem 2.6. Let L, M , N be right R-modules and f : L −→ M , g : M −→ N
be monomorphisms. If f is an epimorphism and g is an S-essential, then g ◦ f is an
S-essential.

Proof: Let N ′ be a right R-module and h : N −→ N ′ such that h ◦ g ◦ f is a
monomorphism. Then Ker(h ◦ g ◦ f) = 0. Let m ∈ Ker(h ◦ g). So h(g(m)) = 0. Since
f is an epimorphism, there exists l ∈ L such that f(l) = m. However, 0 = h(g(m)) =
h(g(f(l))), l ∈ Ker(h ◦ g ◦ f) = 0 and thus l = 0. We have m = f(l) = f(0) = 0. Thus,
Ker(h ◦ g) = 0. Since g is S-essential and by Theorem 2.5, there exists s ∈ S such that
(Ker(h))s = 0. By Theorem 2.5, g ◦ f is an essential. �
From [9], a right R-module M is called multiplication module, if for every submodule

N of M , there exists an ideal I of R such that N = MI.

Theorem 2.7. Let M be a faithful multiplication module and N a submodule of M such
that N = MI for some ideal I of R. If I is an S-essential ideal of R, then N is an
S-essential submodule of M .

Proof: Suppose that I is an S-essential ideal of R. Let L be a submodule of M such
that N ∩ L = 0. Since M is a multiplication module, there exists ideal J of R such that
L = MJ . Then MI ∩MJ = N ∩ L = 0 but M(I ∩ J) ⊆ MI ∩MJ and thus M(I ∩ J)
= 0. Since M is a faithful module, I ∩ J = 0. By assumption, there exists s ∈ S such
that Js = 0. So Ls = (MJ)s = M(Js) = M0 = 0. Hence, N is an S-essential submodule
of M . �

3. Proper S-Essential Submodules. We finish this paper by finding some conditions
that a right R-module has a proper S-essential submodule.

Example 3.1.

(i) Consider Zp as a right Zp-module where p is a prime number. Then Zp has not proper
S-essential submodule for any multiplicatively closed subset S of Zp.

(ii) Consider Zpq as a right Zpq-module where p and q are distinct prime numbers. Let S
be the set of units of ring R. Then S is a multiplicatively closed subset of Zpq. Then
Zpq has not proper S-essential submodule.

(iii) Consider Z12 as a right Z12-module. We have
⟨
2
⟩
,
⟨
3
⟩
and

⟨
6
⟩
are of all proper

S-essential submodules of Z12 where S =
{
1, 3, 9

}
.

(iv) Consider Z24 as a right Z24-module. We have
⟨
2
⟩
,
⟨
3
⟩
,
⟨
4
⟩
,
⟨
6
⟩
and

⟨
12
⟩
are of all

proper S-essential submodule of Z24 where S =
{
1, 3, 9

}
.

Proposition 3.1. If M = ⊕i∈INi where Ni is a simple submodule of M such that
AnnR(Ni) ∩ S ̸= ∅ for all i ∈ I, then M does not contain proper S-essential submodule.

Proof: Let E be an S-essential submodule of M and i ∈ I. Since AnnR(Ni) ∩ S ̸= ∅,
Nis ̸= 0 for all s ∈ S. However, E is an S-essential submodule of M , E ∩Ni ̸= 0. Since
Ni is a simple submodule of M , E ∩ Ni = Ni and thus Ni ≪ E. So M = ⊕i∈INi ⊆ E.
Hence, E = M . Therefore, M does not contain proper S-essential submodule. �
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Theorem 3.1. Let {Mi}i∈I be a family of right R-modules indexed by a nonempty set I
such that for each m ∈ M − {0}, AnnR(m) ∩ S = ∅ where M = ⊕i∈IMi. If there exists
i ∈ I such that Mi has a proper S-essential submodule, then M has a proper S-essential
submodule.

Proof: Suppose that there exists i ∈ I such thatMi has a proper S-essential submodule
Ei. LetX = ⊕j∈IXj whereXj = Ei, if j = i andXj = Mj, if j ̸= i. LetN be a submodule
of M such that Ns ̸= 0 for all s ∈ S. Let (nj)j∈I be a non-zero element in N .

Case 1. ni = 0Mi
. Then 0 ̸= (nj)j∈I ∈ N ∩X.

Case 2. ni ̸= 0Mi
. Since AnnR(m) ∩ S = ∅ for all m ∈ M − {0}, nis ̸= 0 for all s ∈ S

and thus niRs ̸= 0 for all s ∈ S. However, Xi is an S-essential submodule of Mi, and we
have niR ∩Xi ̸= 0. So X ∩N ̸= 0.

From Case 1 and Case 2, we have X ∩ N ̸= 0. Therefore, X is a proper S-essential
submodule of M . �
Theorem 3.2. Let {Mj}j∈I be a family of right R-modules indexed by a nonempty set I.
If M = ⊕j∈IMj has a proper S-essential submodule, then there exists i ∈ I such that Mi

has a proper S-essential submodule.

Proof: Suppose that M = ⊕j∈IMj has a proper S-essential submodule E and Mj does
not have a proper S-essential submodule for each j ∈ I. Let i ∈ I such that E ∩Mi ̸= Mi

and L a submodule of Mi such that E ∩ Mi ∩ L = 0. So E ∩ L = 0. Since E is an
S-essential submodule of M , there exists s ∈ S such that Ls = 0. We have E ∩Mi is an
S-essential submodule ofMi. This means that for each i ∈ I, E∩Mi is a proper S-essential
submodule of Mi or E ∩Mi = Mi. Let i ∈ I. By assumption, we have E ∩Mi = Mi. So
Mi ⊆ E for all i ∈ I and thus M = E. This is a contradiction. �

Let M be a right R-module and S a multiplicatively closed subset of a ring R such that
AnnR(M)∩S = ∅. Set S = {s+AnnR(M)|s ∈ S}. However, 1+AnnR(M) ∈ S, S ̸= ∅.
Let s1+AnnR(M), s1+AnnR(M) ∈ S. Since S is a multiplicatively closed subset of a ring
R, (s1 + AnnR(M))(s2 + AnnR(M)) = s1s2 + AnnR(M) ∈ S. Since AnnR(M) ∩ S = ∅,
0 /∈ S. Hence, S is a multiplicatively closed subset of a ring, R/AnnR(M).

Theorem 3.3. Let M be a nonzero right R-module such that AnnR(m) ∩ S = ∅ for all
m ∈ M − {0}. The following statements are equivalent.

(i) M has a proper S-essential submodule.
(ii) A right R/AnnR(M)-module M has a proper S-essential submodule where S = {s+

AnnR(M)|s ∈ S}.
Proof: (i) =⇒ (ii) Let E be a proper S-essential submodule of M and N a submodule

of right R/AnnR(M)-module M such that Ns ̸= 0 for all s ∈ S. Then N ̸= 0. Choose
0 ̸= n ∈ N . Since AnnR(m)∩S = ∅ for all m ∈ M−{0}, nRs ̸= 0 for all s ∈ S. However,
E is an S-essential submodule of M , we have nR ∩ E ̸= 0. Choose 0 ̸= nr ∈ nR ∩ E.
Then 0 ̸= n(r +AnnR(M)) = nr ∈ nR ∩E ⊆ N ∩E and thus N ∩E ̸= 0. Hence, E is a
proper submodule of right R/AnnR(M) module M and E is an S-essential submodule of
M .

(ii) =⇒ (i) Let E be an S-essential submodule of right R/AnnR(M) module M and N
a submodule of M such that Ns ̸= 0 for all s ∈ S. Then N ̸= 0. Let n ∈ N − {0}. Since
AnnR(m)∩S = ∅ for all m ∈ M−{0}, ns ̸= 0 for all s ∈ S and thus n(s+AnnR(M)) ̸= 0
for all s ∈ S. So nR/AnnR(M)(s + AnnR(M)) ̸= 0 for all s ∈ S. However, E is an S-
essential submodule of right R/AnnR(M) module M , nR/AnnR(M)∩E ̸= 0. There exists
r ∈ R such that 0 ̸= n(r +AnnR(M)) ∈ E. So nr ∈ E ∩N and then E ∩N ̸= 0. Hence,
E is an S-essential submodule of M . �

4. Conclusion. In this paper, we proved that the direct summand and intersection of
S-essential submodules is also an S-essential submodule. Moreover, we showed that K
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is an S-essential submodule of M if and only if the inclusion map iK : K −→ M is S-
essential monomorphism if and only if for each right R-module N and f ∈ HomR(M,N),
if (Ker(f)) ∩ K = 0 then there exists s ∈ S such that (Ker(f))s = 0. In addition, the
study revealed that monomorphism f from right R-module L to right R-module M , f
is S-essential if and only if for each right R-module N and for each R-homomorphism
h : M −→ N such that h ◦ f is monomorphism there exists s ∈ S such that (Ker(h))s =
0. Finally, for a nonzero right R-module M such that AnnR(m) ∩ S = 0 for all m ∈
M − {0}, we can show that M has a proper S-essential submodule if and only if a right
R/AnnR(M)-moduleM has a proper S-essential submodule where S = {s+AnnR(M)|s ∈
S}.
In the future work, we would like to introduce and study the concept of S-uniform

modules where S is a multiplicatively closed subset of a ring R. A right R-module M is
called S-uniform module, if for any nonzero submodule of M is an S-essential submodule
of M . The notion is natural generalizations of the classical notion of uniform module.
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vol.48, no.8, pp.3398-3407, 2020.
[9] Z. A. El-Bast and P. F. Smith, Multiplication modules, Communication in Algebra, vol.16, no.4,

pp.755-779, 1988.
[10] H. Zhu and X. Xu, On Radical-injective modules, International Journal of Pure and Applied Math-

ematics, vol.41, no.6, pp.793-796, 2007.


