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Abstract. This paper investigates the adaptive fuzzy control for a class of multi-input
and multi-output (MIMO) nonlinear systems which inputs are under the quantization
action. The quantizer is assumed to be of the hysteresis type. Fuzzy logic systems (FLSs)
are employed to identify the unknown nonlinearities. After constructing observers to
estimate the unavailable states, a backstepping control scheme is developed. By usage of
the finite-time Lyapunov stability theory, a fuzzy output-feedback controller is presented,
which guarantees the semi-global practical finite-time stability (SGPFS) of all the signals
in the closed-loop systems. And at the same time, the design controller also enables the
tracking error converges to a small neighborhood of the origin in finite time.
Keywords: Adaptive control, Backstepping technique, Fuzzy logical systems, Finite-
time stability, Output-feedback control

1. Introduction. Since Peter Dorator put forward the concept of short-term stability
in 1961 [1], finite-time control strategy has become a research hotspot. A great number
of works have been widely carried out [1, 2, 3, 4, 5, 6]. However, these studies assume
system states are known. These control methods are no longer applicable when system
states are unavailable. Then the output-feedback control is worth considering. However,
some existing observer design methods for Lipschitz continuous systems are not suitable
for finite-time systems. Many scholars continue to study and seek different solutions. In
[7], a finite-time observer for double integral systems by using homogeneous properties is
designed, which is difficult to be extended to higher-order systems. In [8], a finite-time
output-feedback control is discussed for a class of norm second-order nonlinear systems by
using the power addition integral method, but the designed observer is complex. In [9], the
observer-based adaptive control strategy is formed without the linear growth conditions
for nonlinear terms. In [10, 11], the fuzzy state observer is constructed for MIMO nonlin-
ear systems. The authors of [12] propose the finite-time prescribed performance control
method, which not only solved the unmeasured states case but also simultaneously settled
the issue of the explosion of complexity.

Motivated by the above observations, this note concentrates on the finite-time output-
feedback controller design for a class of MIMO nonlinear systems with the quantization
action. By applying the finite-time Lyapunov stability theorem and the backstepping
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method, state observers are constructed and the output-feedback control scheme is dis-
cussed to ensure the performance of the system in finite time. By combining with convex
combination method, the stability analysis depends on the solvability of a set of linear
matrix inequalities, which can greatly reduce the computational complexity. In contrast
with the existing finite-time control methods, the current work is more adaptable to the
realistic systems.
The rest of this paper is organized as follows. In Section 2, some preliminaries are given.

Finite-time control design is completed in Section 3. A simulation example is discussed in
Section 4. At last, we conclude this work.

2. Problem Statement and Preliminaries. The following MIMO nonlinear systems
with the ith (i = 1, 2, . . . , N) subsystem are considered:

ẋi,j = fi,j (x̄i,j) + xi,j+1 + di,j(x), 1 ≤ j ≤ ni − 1,

ẋi,ni
= fi,ni

(x) + q(ui) + di,ni
(x),

yi = xi,1

(1)

where x̄i,j = [xi,1, xi,2, . . . , xi,j]
T ∈ Rj, (i = 1, . . . , N ; j = 1, . . . , ni). di,j(·) is the external

disturbance satisfying di,j(·) ≤ d̄i,j with d̄i,j being positive constant. fi,j (x̄i,j) is contin-
uously differentiable with fi,j(·) = 0. The output yi ∈ R can be measured directly only.
ui ∈ R is the controller to be designed to the ith subsystem which is supposed to be
limited by a large positive constant Mi. The system input q(ui) under the quantization
action is defined as follows:

q(ui) =


µmi

sgn(u),
µmi

1+δq
< |ui| ≤ µmi

, u̇i < 0, or µmi
< |ui| ≤

µmi

1−δq
, u̇i > 0,

µmi
(1 + δq) sgn(ui), µmi

< |ui| ≤
µmi

1−δq
, u̇i < 0, or

µmi

1−δq
< |ui| ≤

µmi (1+δq)

1−δq
,

0, 0 ≤ |ui| < µmin

1+δq
, u̇i < 0, or µmin

1+δq
≤ |ui| ≤ µmin, u̇i > 0,

q(ui(t
−)), u̇i = 0

where µmi
= ρ1−iµmin, mi = 1, 2, . . ., δq = 1−ρ

1+ρ
. µmin > 0 determines the dead-zone

range of q(ui). 0 < ρ < 1 denotes the quantization density, q(ui) is in the set U =
{0,±µmi

,±µmi
(1 + δq)}.

Assumption 2.1. For 1 ≤ i,m ≤ N , 1 ≤ j ≤ ni, 1 ≤ n ≤ nm, there exist known
constants apq and apq such that apq ≤

∂fi,j
∂xm,n

≤ apq. ni and nm stand for the number of state

variables in the ith and jth subsystems, respectively. p =
∑i−1

k=0 nk+j and q =
∑m−1

k=0 nk+n
with n0 = 0.

Remark 2.1. Since fi,j(x) =
[
∂fi,j
∂x1,1

, . . . ,
∂fi,j

∂xN,nN

]
x. By Assumption 2.1, there exists con-

stant hi,j > 0 such that |fi,j(x)| ≤ hi,j||x||. Then Φi,j(w) = hi,jw, with w ∈ R, is the
bounding function of fi,j(·).

Assumption 2.2. The desired trajectories of the ith subsystem ydi and its k-order deriv-

ative y
(k)
di are continuous and bounded. That is, |ydi| < ȳdi and

∣∣∣y(k)di

∣∣∣ < ȳdi, with ȳdi being

a positive constant.

The quantized input q(ui) can be represented as q(ui) = H(ui)ui(t) + L(t), where

1− δq ≤ H(ui) ≤ 1+ δq, |L(t)| ≤ µmin. With ρ(t) ≤ 1+δq
1−δq

−1, one has q(ui) = (1− δq) (1+

ρ(t))ui(t) + L(t). Furthermore, the systems (1) can be rewritten as the following form
(for 1 ≤ i ≤ N){

ẋi = Aixi + Liyi + Fi(x) + di +Bi (1− δq)ui(t) +Bi [(1− δq) ρ(t)ui(t) + L(t)] ,

yi = CT
i xi

(2)
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where Fi(x) = [fi,1(xi,1), . . . , fi,ni
(x)]T , Li = [li,1, . . . li,ni

]T , Bi = [0, . . . , 0, 1]Tni×1, C
T
i =

[1, 0, . . . , 0]1×ni
, di = [di,1, . . . , di,ni

]T , and Ai =

[
Lni−1 Ini−1

−li,ni
0

]
with Lni−1 = [−li,1, . . . ,

−li,ni−1]
T . The vector Li is chosen suitably such that Ai is a strict Hurwitz matrix.

3. Finite-Time Fuzzy Control Design and Stability Analysis. In this section,
the state observer is constructed firstly. Let x̂i,j denote the estimation of xi,j and ei,j =
xi,j − x̂i,j denotes the estimation error. The state observer for the ith subsystem can be
designed as {

˙̂xi,j = x̂i,j+1 + li,jei,1, 1 ≤ i ≤ N, 1 ≤ j ≤ ni − 1,

˙̂xi,ni
= ui + li,ni

ei,1
(3)

The state observer (3) can be rewritten as ˙̂xi = Aix̂i + Liyi + Biui. Furthermore, the
observer error equation can be got: ėi = Aiei + Fi(x) + di + Biui + Bui, with ei =

[ei,1, . . . , ei,ni
]T . Let ui = (1− δq)ui(t)−ui(t), ui = (1− δq) ρ(t)ui(t)+L(t), e =

[
eT1 , . . . ,

eTN
]T
, A = diag[A1, . . . , AN ], F (x) =

[
F T
1 (x), . . . , F

T
N (x)

]T
, B = diag[B1, . . . , BN ], D =[

dT1 , . . . , d
T
N

]T
. The whole observer-error equation can be expressed by ė = Ae + F (x) +

D +B(ū+ u).
Next up, the coordinate transformation zi,j = χ̂i,j − αi,j−1 is needed, where αi,0 = ydi.

αi,j (1 ≤ j ≤ ni) is the control signal. Consider the following Lyapunov function candidate

V = Ve +
∑N

i=1 Vz +
∑N

i=1 Vθ with Ve = eTPe, Vz = 1
2

∑ni

j=1 z
2
i,j, Vθ = 1

2ri
θ̃2i . θ̃i will be

defined later. First, the time derivative of Vz is calculated as

V̇z = zi,1 (zi,2 + αi,1 + li,1ei,1 − ẏdi) +

ni−1∑
j=2

zi,j

(
αi,j −

j−1∑
k=1

∂αi,j−1

∂x̂i,k
x̂i,k+1

− ∂αi,j−1

∂θ̂i

˙̂
θi −

j−1∑
k=0

∂αi,j−1

∂ydi(k)
y
(k+1)
di

)
+

ni−1∑
j=2

zi,jei,1

(
li,j −

j−1∑
k=1

∂αi,j−1

∂x̂i,k
li,k

)

+

ni−1∑
j=2

zi,jzi,j+1 + zi,ni
(vi − α̇ni−1 + li,ni

ei,1) (4)

By using the completion of squares, one has zi,1li,1ei,1 ≤ 1
2βi,1

l2i,1z
2
i,1+

βi,1

2
e2i,1 and zi,jei,1

(
li,j−∑j−1

k=1
∂αi,j−1

∂x̂i,k
li,k

)
≤ 1

2βi,j
z2i,j

(
li,j −

∑j−1
k=1

∂αi,j−1

∂x̂i,k
li,k

)2
+ 1

2
βi,je

2
i,1. Moreover, let f̄i,1(Zi,1) =

1
2βi,1

zi,1l
2
i,1+ czi,1ϕ

2
i,1

(
θ̂i,1

)
− ẏdi+

1
2
zi,1+ cψi,1z

2(2γ−1)−1
i,1 , f̄i,j(Zi,j) = −

∑j−1
k=1

∂αi,j−1

∂x̂i,k
x̂i,k+1−

∂αi,j−1

∂θ̂i

˙̂
θi +

1
2βi,j

zi,j

(∑j−1
k=1

∂αi,j−1

∂x̂i,k
li,k − li,j

)2
+ 1

2
zi,j + cψi,jz

2(2γ−1)−1
i,j −

∑j−1
k=0

∂αi,j−1

∂ydi(k)
y
(k+1)
di +

zi,j−1 + czi,jϕ
2
i,j

(
θ̂i,j

)
, and f̄i,ni

(Zi,ni
) = −α̇i,ni−1 + li,ni

ei,1 + zi,ni−1 + czi,ni
ϕ2
i,ni

(
θ̂i,ni

)
+

1
2
zi,ni

+ cψi,ni
z
2(2γ−1)−1
i,ni

. γ = 2ς−1
2ς+1

, with ς ≥ 2 being a positive integer. c, ϕi,j

(
θ̂i,j

)
and

ψi,j will be defined later. Now, considering these f̄i,j(·)s and substituting the above two
inequalities into (4), one has

V̇z ≤
ni∑
j=1

zi,j
(
αi,j + f̄i,j(zi,j)

)
+

ni−1∑
j=1

1

2βi,j
e2i,1 − c

ni∑
j=1

z2i,jϕ
2
i,j

(
θ̂i,j

)
−

ni∑
j=1

1

2
z2i,j − c

ni∑
j=1

ψi,jz
2(2γ−1)
i,j (5)
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The unknown functions f̄i,j(zi,j)s can be modeled by the FLSs W T
i,jSi,j(Zi,j) based on

Lemma 4 in [13]. For any given εi,j > 0, such that f̄i,j(Zi,j) = W T
i,jSi,j(Zi,j) + δi,j(Zi,j).

δi,j ≤ εi,j denotes the approximation error. Si,j(Zi,j) is the basis function vector. Using
completion of squares again, one has

zi,j f̄i,j ≤
1

2a2i,j
z2i,jθiS

T
i,j(Zi,j)Si,j(Zi,j) +

1

2
a2i,j +

1

2
z2i,j +

1

2
ε2i,j, 1 ≤ i ≤ N, 1 ≤ j ≤ ni (6)

where the unknown constant θi = max1≤j≤ni
{θi,j} with θi,j = ∥Wi,j∥2. Construct the

finite-time fuzzy control signals as follows (for i = 1, . . . , N ; j = 1, . . . , ni):

αi,j = − 1

2a2i,j
zi,j θ̂iSi,j(Zi,j)

TSi,j(Zi,j)− ki,jz
2γ−1
i,j (7)

where ki,j and ai,j are positive design parameters. θ̂i is the estimation of θi. The evaluated

error is θ̃i = θi − θ̂i. For any initial condition θ̂i(t0) ≥ 0, the solution θ̂i(t) ≥ 0 holds for

t ≥ t0. In the following text, it is assumed that θ̂i(t) ≥ 0. Then substituting (7) and (6)
into (5), one has

V̇z ≤ −
ni∑
j=1

ki,jz
2γ
i,j +

ni∑
j=1

1

2a2i,j
z2i,j θ̃iS

T
i,j(Zi,j)Si,j(Zi,j) +

ni∑
j=1

1

2

(
a2i,j + ε2i,j

)
+

ni−1∑
j=1

1

2
βi,je

2
i,1 − c

ni∑
j=1

z2i,jϕ
2
i,j

(
θ̂i,j

)
− c

ni∑
j=1

ψi,jz
2(2γ−1)−1
i,j (8)

Next up, calculate the derivative of Ve = eTPe.

V̇e = eT
(
PA+ ATP

)
e+ 2eTP (F (x)− F (x̂)) + 2eTPF (x̂) + 2eTPD

+2eTPB (ū+ u) (9)

With the fact P > 0, we have 2eTP (F (x)− F (x̂)) = 2eTPJe ≤ eT
[
PJ + JTP

]
e, where

J =
[

∂fi,j
∂xm,n

]
is a Jacobian matrix, which has g rows and g columns. According to As-

sumption 2.2, every nonzero element in the matrix has its own upper and lower bounds.
Namely, there exists a function 0 ≤ µpq(t) ≤ 1 such that

∂fi,j
∂xm,n

= µpqapq + (1 − µpq)āpq.

Thus, J can be reformulated as J =
∑g

p=1

∑g
q=1

[
µpqF pq + (1− µpq)F pq

]
, 0 < αpq < 1,

where F pq and F pq are constant matrixes and they have only one nonzero element apq and
āpq at their pth row and qth column, respectively.
Next up, from Remark 2.1 and Lemma 3 in [14], one has 2eTPF (x̂) ≤ ε0e

T e +

c
(∑N

i=1

∑ni

j=1 |zi,j|2ϕ2
i,j

(
θ̂i,j

))
+ c

(∑N
i=1

∑ni

j=1 |zi,j|2(2γ−1)ψ2
i,j

)
+
∑N

i=1 c0ȳdi, with c0 =

ε−1
0 ∥P 2∥

∑ni−1
j=1 h2i,j and c = gc0. ϕi

(
θ̂i

)
= 1

2a2i
|zi|θ̂is2+1 and ψi = ki; for i = n, ϕi

(
θ̂i

)
= 1

and ψi = 1. Furthermore, for any positive constant τ , based on Assumption 2.1, one has
2eTPD ≤ τeT e+ 1

τ
∥P∥2

∑N
i=1

∑ni

j=1 d̄
2
ij, 2e

TPBū ≤ τeT e+ 1
τ
∥P∥2

∑N
i=1 δ

2
qM

2
i , 2e

TPBu ≤
τeT e+ 1

τ
∥P∥2

∑N
i=1(2δqMi + µmin)

2, 2eTPBu ≤ τeT e+ 1
τ
∥P∥2

∑N
i=1(2δqMi + µmin)

2. Let

δ0 =
1
τ
∥P∥2

∑N
i=1

∑ni

j=1 d̄
2
ij +

1
τ
∥P∥2

∑N
i=1

(
β
i
− 1
)2
W 2

i + 1
τ
∥P∥2

∑N
i=1 δ

2
qM

2
i +

∑N
i=1 c0ȳdi

and P̄ = PA + ATP + PJ + JTP + (ε0 + 3τ)I. Substituting the above four inequalities
into (9) we have

V̇e ≤ eT P̄ e+ δ0 + c

(
N∑
i=1

ni∑
j=1

|zi,j|2(2γ−1)ψ2
i,j

)
+ c

(
N∑
i=1

ni∑
j=1

z2i,jϕ
2
i,j

(
θ̂i,j

))
(10)

Notice V̇θ = − 1
ri
θ̃i
˙̂
θi, and let θ̂ satisfy the following differential equations:
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˙̂
θi =

ni∑
j=1

ri
2a2i,j

z2i,jSi,j(Zi,j)
TSi,j(Zi,j)− σiθ̂i (11)

where ri and σi are positive design parameters. Taking (10) and (8) into account, the
derivative of the whole Lyapunov candidate is as follows.

V̇ ≤ eT
(
P̄ + β

)
e−

N∑
i=1

ni∑
j=1

ki,jz
2γ
i,j + δ̄0 +

N∑
i=1

σi
ri
θ̃iθ̂i (12)

where β = diag
[∑N

i=1

∑ni−1
j=1

1
2
γi,j, 0, . . . , 0

]
. δ̄0 = δ̄ +

∑N
i=1

∑ni

j=1
1
2

(
a2i,j + ε2i,j

)
.

At this stage, the main results are summarized in the following theorem.

Theorem 3.1. Based on Assumptions 2.1 and 2.2 and the following inequality (13), the
control signals αi,j (7), state observer systems (3) and adaptive laws θi (11), are designed
for considering nonlinear MIMO system (1). All the signals of the close-loop nonlinear
MIMO system are SGPFS, and tracking errors can converge to a small neighbourhood of
the origin in finite time.

PA+ ATP + PJpq + JT
pqP + ε0I + 3τI + β < 0, 1 ≤ p, q ≤ g (13)

where g =
∑N

i=1 ni and P is a definitive positive matrix. Jpq is a constant matrix which
element at the pth row and the qth column is āpq or apq and others are zero.

Proof: According to Lemma 3 in [15], (13) is equivalent to the following inequity P̄ +
β < 0. It means that there exists a constant µ > 0, such that eT

(
P̄ + β

)
e < − µ

λM (P )
eTPe,

where λM(P ) is the maximal eigenvalue of matrix P . Next, using θ̃θ̂ ≤ −1
2
θ̃2 + 1

2
θ2, we

can obtain

V̇ ≤ − µ

λM(P )
eTPe−

N∑
i=1

ni∑
j=1

kminz
2γ
i,j −

N∑
i=1

σmin

2ri
θ̃2i +

N∑
i=1

σi
2ri

θ2i + δ̄0 (14)

where kmin =
∑1≤j≤ni

1≤i≤N {ki,j}, σmin =
∑

1≤i≤n{σi}. By Lemma 3 in [13], let m = 1 − γ,

n = γ, w = e
γ

1−γ
ln γ, ξ = 1, κ =

∑ni

j=1
1
2ri
θ̃2i , we have

(
eTPe

)γ ≤ (1 − γ)e
γ

1−γ
ln γ + eTPe

and − α
λM (P )

eTPe ≤ − α
λM (P )

(
eTPe

)γ
+ α

λM (P )
(1 − γ)e

γ
1−γ

ln γ. In the same way, we have(∑ni

j=1
1
2ri
θ̃2i

)γ
≤ (1−γ)e

γ
1−γ

ln γ+
∑ni

j=1
1
2ri
θ̃2i and−σmin

∑ni

j=1
1
2ri
θ̃2i ≤ −σmin

(∑ni

j=1
1
2ri
θ̃2i

)γ
+σmin(1 − γ)e

γ
1−γ

ln γ. Moreover, let k̄ = 2γkmin and using Lemma 2 in [13], we have

− kmin

∑ni

j=1 z
2γ
i,j ≤ −k̄

(
1
2

∑ni

i=j z
2
i,j

)γ
. Define λ = min

{
k̄, α

λM (P )
, σmin, i = 1, 2, . . . , n

}
, η =(

α
λM (P )

+ σmin

)
(1− γ)e

γ
1−γ

ln γ +
∑n

i=1
biσi

2ri
θ2i + δ̄0. Submitting the above three inequalities

into (14), one has

V̇n ≤ −λV γ + η (15)

Let Treach = 1
(1−γ)θ0λ

[
V 1−γ

(
z(0), θ̃(0)

)
−
(

η
(1−θ0)λ

) 1−γ
γ

]
and by Lemma 1 in [13], for

t ≥ Treach, we have V γ
(
z(t), θ̄(t)

)
≤ η

(1−θ0)λ
. That is to say, all the signals in the systems

are SGPFS. Moreover, for t ≥ Treach, we can obtain |y − ydr| ≤ 2
(

η
(1−θ0)λ

) 1
2γ
, which

means the tracking error converges to a small neighborhood of the origin after a finite
time Treach. The proof is finished.
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4. Simulation Example. Consider the following MIMO systems:
ẋi,1 = xi,2 + fi,1(xi,1) + di,1(x),

ẋi,2 = 0.6q(ui) + fi,2(x) + di,2(x),

yi = xi,1

(16)

where i = 1, 2, f1,1 = 0.5 cos(x11) cos(0.5x11), f1,2 = −2.5 sin(x1,2) sin(x1,2), f2,1 =
0.5 sin2(x21), f2,2 = −1.5 sin(x2,2) cos(x2,2), and di,1 = 0.22 sin(t), di,2 = −0.05 sin(t).
where q(ui) is the quantized input with δq = 0.3 and µmin = 0.1. The reference signals
are selected as yd1 = sin(0.5t) + 0.5 sin(t) and yd2 = sin(0.5t) + 0.5 sin(1.5t).
It is noticed that, the finite-time control method proposed in [6] cannot be utilized

to control above system, because the system states xi,2 are unmeasured. The observer-
based finite-time control strategies in [12] cannot guarantee the system performance of
(16), because the inputs of the system (16) are quantized. In our simulation, we apply
seven fuzzy sets over the interval [−1.5, 1.5] for each state variable. The initial conditions

are chosen as xi,1(0) = x̂i,1(0) = 1, xi,2(0) = x̂i,2(0) = −0.5, θ̂i,j(0) = 0.2. The design
parameters are chosen as ε0 + 3τ = 0.01, β = 0.01I, γ = 20/21, ki,j = 10, ai,1 = 0.8,
ai,2 = 1, σi,1 = 1, σi,2 = 2, ri,1 = 20, ri,2 = 25. For the given constant matrix Jp,q, by
solving LMIs, we can get l1,1 = 22.8, l1,2 = 138.8, l2,1 = 15.2, l2,2 = 48.9 and the positive
definite matrix P = diag[P1, P2] as

P1 =

[
2.6369 −0.4104
−0.4104 0.0823

]
, P2 =

[
2.4963 −0.7205
−0.7205 0.2601

]
Figures 1 and 3 reveal the system outputs follow the desired reference signals in a

bounded set in finite time. And all the figures show the closed-loop signals are SGPFS.
So the proposed fuzzy finite-time adaptive controllers are effective.
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Figure 1. x1,1, yd1, x̂1,1

0 5 10 15 20 25
−6

−5

−4

−3

−2

−1

0

1

2

3

 Time(sec)

 

 
x1,2

x̂1,2

Figure 2. x1,2, x̂1,2

5. Conclusion. In this note, the finite-time control problem for a class of nonlinear
systems with input quantization is discussed. By usage of backstepping technique and the
universal approximation of FLSs, an adaptive practical finite-time control strategy based
on observer is proposed. The limitation of linear growth condition for nonlinear terms in
existing results is further relaxed. Under the proposed control scheme, the tracking errors
can converge to a small neighborhood of origin in finite time, which is verified by the
example in simulation part. It is worth noting that the system studied in this paper is
genial. It is more interesting how to extend the finite-time control method proposed in
this paper to the practical engineering systems, which will be one of our future research
directions.



ICIC EXPRESS LETTERS, VOL.17, NO.9, 2023 1027

0 5 10 15 20 25
−1.5

−1

−0.5

0

0.5

1

1.5

 Time(sec)

 

 
x2,1
x̂2,1
yd2

Figure 3. x2,1, yd2, x̂2,1
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Figure 4. x2,2, x̂2,2
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Figure 5. θ̂i (i = 1, 2)
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