
ICIC Express Letters ICIC International c⃝2023 ISSN 1881-803X
Volume 17, Number 9, September 2023 pp. 1029–1037

HIGH-SPEED PROCESSING OF SHORTEST PATH MAZE SEARCH
BY MITIGATION METHOD HARDWARE

Shunsuke Inoue and Naohiko Shimizu∗

School of Information and Telecommunication Engineering
Tokai University

2-3-23, Takanawa, Minato-ku, Tokyo 108-8619, Japan
is382405@hope.tokai-u.jp; ∗Corresponding author: nshimizu@keyaki.cc.u-tokai.ac.jp

Received January 2023; accepted March 2023

Abstract. We have designed hardware that improves the accuracy of the evaluation of
the positional energy of the shortest path maze search. The results of tests on mazes with
various patterns showed that the method was 37.2 to 57.8 times faster for 16 ∗ 8 mazes
and 46.6 to 75.8 times faster for 16 ∗ 16 mazes, and 56 to 156 times faster for 32 ∗ 16
mazes. The accuracy of the evaluation of positional energy improved.
Keywords: FPGA, Hardware, Gauss-Seidel method, Parallel processing, High-speed
processing, Shortest path search, Maze seach

1. Introduction. The path planning method is to find the shortest path between two
locations. We use the shortest route search for logistics. The car navigation system uses
route finding. VLSI (Very-large-scale integration) studies the use of pathfinding [1]. The
world uses path planning in many different areas. Reinforcement learning is a shortest-
path search method. Often unsupervised learning in mazes fails the search [7]. Unsuper-
vised learning works based on experience. Unsupervised learning in maze search repli-
cates good experiences. Exploring the maze is not a good experience. Maze search for the
shortest path requires planning. The Dijkstra method is a path-planning method [2]. The
Dijkstra method is a sequential process. The Dijkstra method is fast in path planning.
The Dijkstra method only works in sequential processing. There is a method based on
breadth-first search [8]. Breadth-first search is a parallel process [8]. Breadth-first search
is not comparable to the Dijkstra method. The GEMAR method is a parallel process [4].
The GEMAR method is not comparable to the Dijkstra method. The mitigation method
searches for the shortest path. The mitigation method is maze shortest path planning.
Mitigation methods are faster due to parallel processing. We have parallelized the mitiga-
tion method on FPGA. Murata and Mitani compared the A* algorithm with the Dijkstra
method [5]. Yuriko et al. have accelerated pathfinding using the HDA* method [9]. The
HDA* method uses parallel processing for high-speed processing [9]. A* method moves
faster than Dijkstra method [5, 9]. There are papers comparing the Dijkstra method [6].
There was a comparative study of search methods [6]. The Dijkstra method is slow with
a simple maze [6]. We measured the processing of the Dijkstra method. We measured the
processing of the mitigation method. The processing times of the two were compared [3].
Accuracy was further improved in this study. Our contribution was to compare the Di-
jkstra and mitigation methods. We propose a mitigation method for speeding up. As a
result, the proposed method was effective. In Chapter 2, we wrote about the maze search
problem. In Chapter 3, we wrote about the theory of mitigation. In Chapter 4, we wrote
about parallel processing of mitigation methods. We discussed the verification results in
Chapter 5. We wrote the summary in Chapter 6.

DOI: 10.24507/icicel.17.09.1029

1029

1030 S. INOUE AND N. SHIMIZU

2. Shortest Path Maze Search Problem. The input to the maze search problem in
Figure 3 is map information. Next, the system calculated and output the routes for the
start and end points of the map. The maze is a rectangular map of horizontal W squares
∗ vertical H squares. The maze consists of four types of information: walls and roads,
starts, and goals. As shown in Figure 1, the point marked by the circle is the starting
point. The point marked by the square is the goal point. The walls are gray and the roads
are white. We considered finding the shortest path from the start point to the end point
on the map in Figure 1. Specify an address from the top left to bottom right for each
square in the map in Figure 1. The mitigation method calculates the potential energy
value of each cell as shown in Figure 2. Compute the potential energy from the goal for
each square as shown in Figure 2. The steepest gradient method computes the path. In
the maze, the current location can only go in 4 directions. The steepest descent method
is the method of moving in the direction of lower potential energy in Figure 5. The initial
value of potential energy is the road with the maximum start value, target 0, and median
as shown in Figure 4. Calculate the Euclidean distance using the Gauss-Seidel method.
The outermost square of the maze is the wall.

Figure 1. Map size

Figure 2. Map potential energy Figure 3. Block diagram of
maze search system

Figure 4. Initial potential energy Figure 5. Route selection

ICIC EXPRESS LETTERS, VOL.17, NO.9, 2023 1031

3. Mitigation Method. Mitigation methods include opening the road. When perform-
ing the road opening method, the system also calculates the potential energy. In Table 1,
the input gear from the starting goal opens up the squares of the path (Figure 6). The
road release method ends when the squares release from both the start and finish lines.
We then wall the path surrounded by paths in only one direction. We then perform the
calculation until the position-energy difference is zero. The mitigation method uses the
Gauss-Seidel method to estimate potential energy. In Figure 8, n with the black circle is
the potential energy at point n, and Yn is the path mean potential energy around point n.
Also, Xn does not calculate fixed value walls, start points, and goal points. Also, Xn does
not calculate or update at fixed walls, starting points, and goal points. Yn is the average
of the maximum and minimum values of the non-wall values (start and goal points). Also,
the mitigation method does not calculate the potential energy of the starting point, goal

Table 1. Road opening method

Road opening method
1. The walls except for the start goal of the map represent the walls.
2. Find the street number that is the way on the map entered.
3. We make a street from a wall if the number we find surrounded by a street is not a

street and is in one direction.
4. Check to see if the paths connect from both the start and finish lines.
5. If it connects, go to the next step. If it does not connect, go back to 2.
6. If there is no wall around the road in one direction, enclose it with a wall.

Figure 6. Opening of a road

Figure 7. Calculated potential energy (before)

1032 S. INOUE AND N. SHIMIZU

Figure 8. Calculated potential energy (after)

Figure 9. Gauss-Seidel method

Figure 10. Gauss-Seidel method caculation plot

point, and wall. The mitigation method finds the average X of cells that are not adjacent
to each cell. By finding the average X, you can search for the shortest path maze with the
steepest descent method. In the steepest descent method, after calculating the potential
energy of each square as shown in Figure 5, it proceeds in the direction with the lowest
potential energy. It also reduces the number of calculations and the order of calculations.
The Gauss-Seidel method obtains the average Yn of the potential energies of “0” and “1”
as shown in Figure 9 and Figure 10. The mitigation method calculates potential energy
in the following process. The Gauss-Seidel method uses a single core to calculate two
adjacent squares alternately, as shown in Figures 9 and 10. Previously, in the case of a
non-wall in four directions and three or more directions, as in Figure 7, the average value
of the non-wall squares was Yn. However, to improve accuracy, the position energy was
evaluated as the average of the maximum and minimum values in the four directions, as
shown in Figure 8.

1) For the potential energy X11 at address 11 in Figure 8, find the average value Y11 of
the non-wall positions X12 and X21. It also finds the average Yn of potential energies
around the potential energies Xn of other paths. Two or more non-wall values near 11
(near n)

Y11 =
X21 +X12

2
(1)

2) Find the absolute value Z11 of the potential energy difference between X11 and Y11. It
also finds the difference Zn between the absolute values of the potential energies of Xn

and Yn (path position n).
Z11 = |Y11 −X11| (2)

3) Find the sum Z of all Zn values.

Z =

(W∗H−1)/2∑
n=0

Zn (3)

ICIC EXPRESS LETTERS, VOL.17, NO.9, 2023 1033

4) If Z is non-zero, rewrite Xn as Yn and do the same from step 1).

X11 = Y11 (4)

In Formula (1) of step 1), find the average Yn of the non-wall values (starting point,
goal point, road) around point n. In Formula (2) of step 2), find the absolute value Zn of
the Xn difference value of Yn. In Formula (3) of step 3), find the total Z of Zn in all cells.
In Formula (1) of step 1), find the average Yn of the maximum and minimum non-wall
surface values (start point, goal point, road) around point n. In Formula (2) of step 2),
find the average Yn of the maximum and minimum non-wall surface values (start point,
goal point, road) around point n. In Formula (4) of step 4), if Z is 0 or more, replace Xn

with Yn. If Z is 0, the mitigation method ends and the steepest descent method performs
the route maze search. Iterating calculates potential energy Xn until Z reaches 0.

4. Parallel Processing of Mitigation Methods. The black circle n in Figure 14 is
the potential energy at address n. The mitigation hardware performs parallel processing
in the circuit and produces an average Yn of non-wall potential energy around the address
n. The mitigation method performs parallel processing, as shown in Figures 15, 11, 12
and 13. Then run the pipeline process for the two clocks split in Figure 16 as shown in

Figure 11. Processing of each square

Figure 12. Processing when the road opening

1034 S. INOUE AND N. SHIMIZU

Figure 13. Calculation process for positional energy

Figure 14. Calculation address n Figure 15. Parallel processing

Figure 16. Clock split Figure 17. Pipeline processing

Figure 17 to calculate the previous Z while calculating the average Yn of the values not
displayed on the wall.

5. Verification and Comparison. When the map is large, parallel operations increase,
and the FPGA mitigation method is faster than the Central Processing Unit (CPU)
Dijkstra method. We verified the algorithms of the 16 ∗ 8 square map of Figure 20, the

Figure 18. Map 32 ∗ 16 Figure 19. Map 16 ∗ 16

ICIC EXPRESS LETTERS, VOL.17, NO.9, 2023 1035

Figure 20. Map 16 ∗ 8

Figure 21. Improved evaluation of positional energy

Table 2. CPU performance

CPU
13thGen Intel(R)

Core(TM)i9-13900K
Clock frequensy 5.8GHz

RAM 64GB (DDR5 4800MHz)
Primary cache 1.9MB

OS
Windows10 WSL2
(Ubuntu 20.04)

language C
core 1core

16 ∗ 16 square map of Figure 19, and the 32 ∗ 16 square map of Figure 18. The results
confirmed that the search system using the 16∗ 8 square map of Figure 20 and the 16∗ 16
square map of Figure 19 is effective. The number of vertices in Dijkstra’s algorithm is
W ∗ H and the distance between adjacent vertices is 1. The FPGA used is Cyclone V
5CGXFC9E6F35C7 as shown in Table 4. We used 42 cores in a 16 × 8 square, 98 cores
in a 16 × 16 square, and 210 cores in a 32 × 16 square in parallel processing. It does
not calculate to the outer squares. The CPU in Table 2 is an Intel core i9 13900K. The
maximum clocked CPU frequency is 5.8GHz. The language used was the C language.
We converted NSL2vl to Verilog HDL in an environment using NSL (Next Synthesis
Language). We converted as shown in Figure 22. The logic synthesis tool used was Intel
Quartus Prime2 lite Edition. It is also a 32∗16 square as shown in Figure 23. The results
of tests on mazes with various patterns showed that the method was 37.7 to 57.8 times
faster for 16 ∗ 8 mazes and 46.6 to 75.8 times faster for 16 ∗ 16 mazes, and 56 to 156
times faster for 32 ∗ 16 mazes (Figure 23, Table 3). The Dijkstra algorithm includes data
loading time, but not hardware. We compared cases of different map sizes. The larger the
map, the more parallel operations and the faster the process. The larger the number of
signed integer bits used for position energy, the larger the clock delay (Table 4). Multiple
shortest paths allow for accurate positional energy evaluation (Figure 21).

1036 S. INOUE AND N. SHIMIZU

Figure 22. Development environment

Figure 23. Performance

Table 3. FPGA CPU performance MI: Mitigation Method (FPGA), DI:
Dijkstra Method, S: start, G: goal, M: MHz, G: GHz

16 ∗ 8
S = 33 S = 17
G = 65 G = 56 G = 109

Time MI 0.14 us DI 6 us MI 0.64 us DI 37 us MI 0.86 us DI 32 us
DI/MI A: 42.9 B: 57.8 C: 37.2
FMAX 61.4 M 5.8 G 61.4 M 5.8 G 60.8 M 5.8 G

16 ∗ 16
S = 18 S = 17
G = 22 G = 151 G = 238

Time MI 0.14 us DI 9 us MI 1.7 us DI 129 us MI 1.8 us DI 84 us
DI/MI D: 64.3 E: 75.8 F: 46.6
FMAX 56.1 M 5.8 G 55.8 M 5.8 G 46.2 M 5.8 G

32 ∗ 16
S = 34 S = 33
G = 38 G = 271 G = 477

Time MI 0.12 us DI 20 us MI 8.9 us DI 499 us MI 9.6 us DI 564 us
DI/MI I: 156 J: 56.0 K: 58.8
FMAX 48.8 M 5.8 G 48.8 M 5.8 G 48.3 M 5.8 G

ICIC EXPRESS LETTERS, VOL.17, NO.9, 2023 1037

Table 4. FPGA performance S: start, G: goal

16 ∗ 8 16 ∗ 16 32 ∗ 16
A B C D E F I J K

S 33 17 18 17 34 33
G 65 56 109 19 119 237 35 239 477

FPGA
Cyclone V

5CGXFC9E6F35C7

Circuit scale
(ALMs)

A: 9034/113,560 (8%)
B: 10,210/113,560 (9%)
C: 16,152/113,560 (9%)

D: 26,740/113,560 (24%)
E: 26,640/113,560 (23%)
F: 27,461/113,560 (24%)

I: 58,220/113,560 (51%)
J: 58,132/113,560 (50%)
K: 58,121/113,560 (50%)

Number of
integer bit of

potential energy
8bit 9bit 10bit

FPGA operationg
clock perationg
clock (clock)

8 31 51 8 96 100 6 432 466

Number of parallel
processing cores

42 core 98 core 210 core

Set up slack −16.1 ns −15.7 ns −16.0 ns −16.4 ns −17.2 ns −16.7 ns −20.4 ns −20.0 ns −20.0 ns

6. Conclusion. We proposed a mitigation method to find the shortest path. Mitigation
FPGA runs up to 156 times faster than Dijkstra for 32 ∗ 16 squares, up to 75.8 times
faster for 16 ∗ 16 squares, and 57.8 times faster for 16 ∗ 8 squares. We have improved the
accuracy of the evaluation of the positional energy of the mitigation method. Therefore,
when multiple shortest paths exist, we have correctly evaluated all potential energies.
A future issue is to compare this with the evaluation of positional energy by parallel
processing in a single direction.

REFERENCES

[1] D. Wang, J. Feng, W. Zhou, X. Hao and X. Zhang, FCRoute: A fast FPGA connection router using
soft routing space pruning algorithm, Journal of Latex Class Files, vol.14, no.8, 2021.

[2] E. W. Dijkstra, A note on two problems in connexion with graphs, Numer. Math., vol.1, pp.269-271,
DOI: 10.1007/BF01386390, 1959.

[3] S. Inoue and N. Shimizu, Acceleration of shortest path maze search, Parthenon Society, vol.48,
pp.26-32, 2022.

[4] S. Lin, J. Liu, E. F. Y. Young and M. D. F. Wong, GAMER: GPU-accelerated maze routing, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol.42, no.2, pp.583-593,
DOI: 10.1109/TCAD.2022.3184281, 2023.

[5] Y. Murata and Y. Mitani, A study of shortest path algorithms in maze images, SICE Annual
Conference, Tokyo, Japan, pp.32-33, 2011.

[6] M. N. Sagming, R. Heymann and E. Hurwitz, Visualising and solving a maze using an artificial
intelligence technique, 2019 IEEE AFRICON, Accra, Ghana, pp.1-7, DOI: 10.1109/AFRICON46755.
2019.9134044, 2019.

[7] C. J. Watkins and P. Dayan, Technical note: Q-learning, Machine Learning, vol.8, pp.279-292, DOI:
10.1023/A:1022676722315, 1992.

[8] D. Merrill, M. Garland and A. Grimshaw, Scalable GPU graph traversal, ACM SIGPLAN Notices,
vol.47, no.8, pp.117-128, 2012.

[9] E. Yuriko, S. Ryuuichi and S. Masaaki, Consideration of dedicated hardware for pathfinding pro-
cessing, IPSJ SIG Technical Report, Research Report of Information Processing Society of Japan,
2020-EMB-53, vol.19, pp.1-8, 2020.

