
ICIC Express Letters ICIC International c⃝2023 ISSN 1881-803X
Volume 17, Number 9, September 2023 pp. 1039–1049

REAL-TIME LOCALIZATION OF MOBILE ROBOT
USING OBSERVERS FROM LIDAR MEASUREMENT

Masahiko Shirasaya, Shohei Ueno, Yutaka Osawa and Takami Matsuo∗

Department of Mechatronics
Oita University

700 Dannoharu, Oita 870-1192, Japan
{ v21e6010; ueno-shohei; v21e6005 }@oita-u.ac.jp; ∗Corresponding author: matsuo@oita-u.ac.jp

Received December 2022; accepted February 2023

Abstract. In this paper, we propose a linear velocity estimator using the driftless adap-
tive observer with wheel encoder readings and a localization method using a nonlinear
observer with landmark position signals obtained by LiDAR measurements. The proposed
method is verified by MATLAB simulations and experiments with the RoboCar 1/10
manufactured by ZMP Inc., Japan.
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1. Introduction. SLAM (Simultaneous Localization and Mapping) is a method combin-
ing the odometry’s estimation and observations of the environment to keep the position
error bounded, such as visual SLAM and LiDAR SLAM. Odometry is a simple and easy
method to estimate the position and orientation of mobile robot. Odometry calibration
consists of the identification of a set of kinematic parameters of wheeled mobile robots
by using encoders measurements at the wheels and allows us to reconstruct the position
and orientation of a vehicle body [1, 2]. The odometry is affected by three main sources
of error: systematic errors such as of the modeling error, nonsystematic errors caused by
wheel slippage or uneven ground, numerical drift related to discrete-time integration [2].
A systematic method for odometry calibration of differential-drive mobile robots using
the kinematic equations and the least-squares method was proposed [2]. LiDAR odometry
algorithms are extensively studied for vehicular positioning [3]. Gaussian filter-based and
particle filters-based approaches are used in SLAM. The Kalman filter and the extended
Kalman filter are widely used for multi-sensor data fusion in SLAM [1, 4, 5, 6]. Zhang
et al. [7] proposed a localization method to estimate the pose of self-driving cars using a
3D-LiDAR sensor. Two separate Kalman filters are used to fuse the low-cost global posi-
tioning systems and map-matching results [7]. The observer-based approaches for SLAM
have been presented using three dimensional Lie Groups [8, 9]. Medromi et al. [10] pre-
sented the state estimation of a mobile robot using the observer for bilinear systems and
ultrasonic sensors. Nonaka and Watanabe [11] proposed a nonlinear observer for caster
wheel odometers which estimates the translational and the rotational velocities of the
mobile robots.

In this paper, we propose a linear velocity estimator using the driftless adaptive observer
[12] and a localization method using a nonlinear observer with LiDAR measurements. The
proposed two observer-type estimators have simpler forms and lower computational cost
than the observers and the Kalman filters. In the usual LiDAR measurements, the planar
coordinates have been used. To avoid the discontinuity of arctangent calculation, we use
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the Cartesian coordinates. Moreover, the experimental validation of the proposed LiDAR-
based localization using a landmark is performed using the RoboCar 1/10 manufactured
by ZMP Inc., Japan [13].
This paper is organized as follows. Section 2 introduces the kinematic model and the

observation equation. Section 3 proposes two observers to estimate the linear velocity and
the position of the mobile robot. Section 4 shows the simulation and the experimental
results. Conclusion is given in Section 5.

2. Kinematic Model and Observation. Figure 1 shows a mobile vehicle mounted the
LiDAR (Light Detection and Ranging) scanner (or Laser scanner) [1, 14]. The notations
are defined as follows:
(xc, yc, ϕc): the center position and orientation of the vehicle,
(xL, yL): the position of LiDAR sensor,
Bi: the i-th landmark,
(xi, yi): the position coordinates of the i-th landmark,
(ri, ψ(β,i)): the measurement of the LiDAR sensor,
(zxi

, zyi): the position coordinates of the i-th landmark in the sensor reference frame,
α: the steering angle,
νc: the linear speed,
L: the distance between the wheel axes.

Figure 1. Mobile robot coordinates

The angle of the i-th landmark is given by

ψi = ψβ + ϕc

The kinematics of vehicle in the map coordinates [1, 14] is given by ẋc

ẏc

ϕ̇c

 =


νc cos(ϕc)

νc sin(ϕc)
νc
L

tan(α)

 (1)

The LiDAR sensor extracts the planar landmarks. The measurement vector is given by
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[
ri
ψβ,i

]
=


√

(xi − xL)2 + (yi − yL)2

atan

(
(yi − yL)

(xi − xL)

)
− ϕc

+ γhi
(2)

where γhi
is a measurement noise. The position coordinates of the i-th landmark can be

written by [
xi
yi

]
=

[
cosϕc − sinϕc

sinϕc cosϕc

] [
zxi

zyi

]
+

[
xL
yL

]
(3)

The observation equation is given by[
zxi

zyi

]
=

[
cosϕc sinϕc

− sinϕc cosϕc

] [
xi − xL
yi − yL

]
(4)

The linear speed of the vehicle, νc, is expressed as

νc = θTω(t) (5)

θ =

 rR
2
rL
2

 , ω(t) =

[
ωR

ωL

]
(6)

where rR, rL and ωR, ωL are the right and the left radii and the angular velocities of the
right and the left wheels, respectively.

We assume that

• The radii, rR, rL are unknown,
• The signals ωR, ωL are available,
• The signals

(
ri, ψ(β,i)

)
and (xi, yi) are available,

• The distance between the center and the sensor is zero,
• The parameters α and L are known, and
• The displacement along the trajectory (i.e., arc length), q(t) is obtained by the
odometer.

Our aim is as follows:

• The linear speed νc using the signals ωR, ωL and q(t) is estimated via the driftless
adaptive observer, and

• The position and orientation of the vehicle are estimated using the estimated linear
speed and the measurement of a landmark with the LiDAR sensor via a nonlinear
observer.

3. Speed Estimation and Localization by Observers.

3.1. Linear speed estimation by driftless adaptive estimator. The relationship
between the arc length q(t) and the linear speed νc is given by

q̇(t) = νc (7)

The state space equation of the wheel rotational kinematics can be expressed in the
driftless form:

q̇(t) = ω(t)Tθ (8)

y(t) = q(t) + ν(t) (9)

where y(t) is the measurement output and ν(t) is the measurement noise. We estimate
the unknown parameter θ by using the driftless adaptive observer proposed in [12]. The
observer and the parameter update law are given by

˙̂q = −k0ē(t) + ωT (t)θ̂ + zT (t)
˙̂
θ (10)

ż(t) = −k0z(t) + ω(t) (11)

ē(t) = q̂(t)− y(t) (12)
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˙̂
θ = −γ(t)z(t)ē(t) (13)

γ̇ = −γ2(t)ν(t) (14)

ν(t) = − δ2
γ(t)

+ δ1ē
2(t) (15)

where q̂(t) is the estimate of the arc length, z(t) is the state variable filter, γ(t) is an
adaptive gain, and δ1, δ2 are positive constants. The estimate of the linear speed is given
by

ν̂c(t) = ˙̂q(t) (16)

3.2. Position estimation by nonlinear observer. Using the estimate of the linear
speed and defining the state variable as

X(t) =

 xc(t)

yc(t)

ϕc(t)

 (17)

we have the state space equation of the mobile kinematics:

Ẋ =

 ẋc

ẏc

ϕ̇c

 = F (X) =

 f1 (ϕc, ν̂)

f2 (ϕc, ν̂)

f3 (ϕc, ν̂, α)

 =


cos(ϕc)

sin(ϕc)
1

L
tan(α)

 ν̂c(t) (18)

In the usual SLAM setting, the planar coordinates for the measurements have been used.
To avoid the discontinuity of arctangent calculation, we use the Cartesian coordinates.
Assuming that the LiDAR is mounted at the center of the vehicle and the measurement
information is provided by single landmark, the output equation is given by

Z =

[
z1
z2

]
= H(X) + γm =

[
cosϕc sinϕc

− sinϕc cosϕc

] [
xi − xc
yi − yc

]
+ γm (19)

where γm is a measurement noise. We employ the observer to estimate the position and
the orientation of the vehicle as

˙̂
X = F

(
X̂

)
+K

(
Z −H

(
X̂

))
(20)

Ẑ = H
(
X̂

)
(21)

where K is the observer gain, X̂ and Ẑ are the estimates of the states and outputs,
respectively. The observer gain is derived from the linearized state space and output

equations. We assume that the operation point,
[
x̂c0 ŷc0 ϕ̂c0

]
, satisfies

∆x̂c = x̂c − x̂c0 (22)

∆ŷc = ŷc − ŷc0 (23)

∆ϕ̂c = ϕ̂c − ϕ̂c0 (24)

We have the following linearized equations:
∆ ˙̂xc

∆ ˙̂yc

∆
˙̂
ϕc

 =

 0 0 −ν̂c sin ϕ̂c0

0 0 ν̂c cos ϕ̂c0

0 0 0


 ∆x̂c

∆ŷc

∆ϕ̂c

+K

z − [
−1 0 0
0 −1 0

] ∆x̂c

∆ŷc

∆ϕ̂c




K =

 k11 k12
k21 k22
k31 k32
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The stability condition is 0 0 −ν̂c sin ϕ̂c0

0 0 ν̂c cos ϕ̂c0

0 0 0

−K

[
−1 0 0
0 −1 0

]

Selecting K as

K =

 k11 k12
k21 0
k31 0


the characteristic equation is given by

λ3 − k11λ
2 +

(
k31ν̂c sin ϕ̂c0 − k12k21

)
λ− k12k31ν̂c cos ϕ̂c0 = 0

The observer gain K is chosen as

k11 = −δ1 = −0.012

k12 = δ2sgn
(
ν̂c cos ϕ̂c0

)
= 0.01sgn

(
ν̂c cos ϕ̂c0

)
k21 = −δ3sgn

(
ν̂c cos ϕ̂c0

)
= −0.001sgn

(
ν̂c cos ϕ̂c0

)
k31 = −δ4sgn

(
ν̂c sin ϕ̂c0

)
= −0.001sgn

(
ν̂c sin ϕ̂c0

)
where the signum function is used to avoid changing the sign of coefficients of the char-
acteristic equation.

4. Simulation and Experimental Results. The performance verification of the pro-
posed method is done by computer simulations and experiments.

4.1. Simulation result. We verify the performance of the nonlinear observer via MAT-
LAB/Simulink. To estimate the position of the vehicle, we use single landmark such as
x1 = 1, y1 = 3. The measurement noise of the LiDAR sensor is the white Gaussian
noise of the mean zero and the variation 0.01. First, we select the following simulation
parameters: νc = 0.1, α = 0.2, sin 0.1t, L = 0.3, and then the linear velocity is changed
to νc = 1. Figures 2-6 are the results for νc = 0.1. Figures 2 and 3 show the position
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Figure 2. The position and
the orientation for νc = 0.1,
(top) x(t), (middle) y(t), (bot-
tom) ϕ(t)
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Figure 3. The estimates of
position and the orientation
for νc = 0.1, (top) x̂(t), (mid-

dle) ŷ(t), (bottom) ϕ̂(t)
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Figure 4. The outputs in
Cartesian coordinates for νc =
0.1, (top) z1(t), (bottom) z2(t)
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Figure 5. The estimates of
the outputs for νc = 0.1, (top)
ẑ1(t), (bottom) ẑ2(t)
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Figure 6. The vehicle trajectory (solid line) and its estimate (dotted line)
for νc = 0.1

and the orientation of the vehicle, and their estimates. Figures 4 and 5 show the outputs
converted from Polar Coordinates to Cartesian Coordinates and their estimates. Figure
6 shows the trajectory of the vehicle and its estimate. Figures 7-11 are the results for
νc = 1. The proposed observer is less susceptible to noise in both fast and slow speed
cases.

4.2. Experimental result. We verify the performance of the nonlinear observer by using
the RoboCar from ZMP Inc. depicted in Figure 12 [13]. A monocular camera and a laser
range sensor are mounted on a 1/10 scale vehicle of an automobile, and the behavior and
mileage of the vehicle can be grasped by the acceleration/gyro sensor and encoder [13].
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Figure 7. The position and
the orientation for νc = 1,
(top) x(t), (middle) y(t), (bot-
tom) ϕ(t)
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Figure 8. The estimates of
position and the orientation
for νc = 1, (top) x̂(t), (middle)

ŷ(t), (bottom) ϕ̂(t)
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Figure 9. The outputs in
Cartesian coordinates for νc =
1, (top) z1(t), (bottom) z2(t)
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Figure 10. The estimates of
the outputs for νc = 1, (top)
ẑ1(t), (bottom) ẑ2(t)

The velocity and the steering angle are selected as νc = 50 [mm/s], α = −10 [deg].
Figures 13 and 14 show the position and the orientation of the RoboCar, and their esti-
mates. The transformed outputs by the LiDAR measurements are shown in Figure 15.
Their estimates by the nonlinear observer are shown in Figure 16. Figure 17 shows the
trajectory and its estimate by the nonlinear observer. When the steering angel is small,
the estimator works well. As the angle increased, however, the error in the estimated
value becomes large.

Then, we constructed a route as shown in Figure 18 to verify the effectiveness of the
method over long distances. In Figure 18, “L” mark indicates single landmark and “S”
and “G” marks indicate the start point and the goal point. The landmark position is
obtained by detecting the corner using the point cloud data with LiDAR measurement.
Figure 19 shows the true trajectory and its estimate. Comparing Figure 18 and Figure
19, the estimation calculation is finished before the RoboCar reaches the goal. Since it
becomes more difficult to measure single landmark as the RoboCar moves away from the
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Figure 11. The vehicle trajectory (solid line) and its estimate (dotted
line) for νc = 1

Figure 12. The RoboCar 1/10 from ZMP Inc. [13]
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Figure 13. The position and
the orientaion of the RoboCar,
(top) x(t), (middle) y(t), (bot-
tom) ϕ(t)
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Figure 14. The estimates of
position and the orientaion of
the RoboCar, (top) x̂(t), (mid-

dle) ŷ(t), (bottom) ϕ̂(t)
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Figure 15. The outputs of
the RoboCar in Cartesian co-
ordinates, (top) z1(t), (bot-
tom) z2(t)
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Figure 16. The output esti-
mates of the RoboCar, (top)
ẑ1(t), (bottom) ẑ2(t)

Figure 17. The vehicle trajectory (solid line) of the RoboCar and its
estimate (dotted line)

landmark point, only up to the point where single landmark point can be measured can
be estimated. It is necessary to improve the data by adding more landmarks in the future.

5. Conclusion. In this paper, we proposed a real-time localization algorithm consisting
of a driftless adaptive observer to estimate the radii of the wheels and a nonlinear observ-
er to estimate the position and the orientation. To avoid the discontinuity of arctangent
calculation, we used the Cartesian coordinates for the LiDAR measurements. We demon-
strated that the proposed estimator worked well in the case of small steering angles. The
introduction of the Ackerman vehicle model is a next step of the future study.
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Figure 18. Actual driving route

Figure 19. The vehicle trajectory (solid line) and its estimate (dotted line)
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