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ABSTRACT. Applying wearable sensors to recognize human activities has developed as an
emergent topic in the field of research on artificial intelligence. This is because human
activity recognition (HAR) implementations extend from intelligent and sophisticated
healthcare applications to other areas like innovative home surveillance systems and ex-
ercise performance monitoring devices. Exercise activity recognition (EAR) is a subclass
of HAR investigating complicated human movement sequences. Literature evaluations
indicate that understanding multi-modal sensors of diverse data kinds has various ob-
stacles. We investigated multi-modal FEAR utilizing deep learning techniques utilizing
sensor data from many body areas. Focusing on accelerometer data, we proposed the hy-
brid model with the combination of a deep convolutional neural network (CNN) and long
short-term memory (LSTM) neural network (called CNN-LSTM) for effectively recogniz-
ing fitness activities. The trained deep learning classifier’s accuracy, loss, and F1-score
were determined using a public standard EAR dataset (MEx dataset) to assess the newly
proposed classifier. We inferred from experimental findings that the proposed CNN-LSTM
could classify exercise activities utilizing accelerometer data from object location with the
most significant accuracy (97.28%) and F1-score (97.20%), surpassing existing baseline
classifiers.

Keywords: Exercise activity recognition, Deep learning, Wearable sensor, Accelerome-
ter, Multi-modal HAR

1. Introduction. In the realm of human-computer interaction, there has been a signifi-
cant amount of attention given to the human activity recognition (HAR) in recent decades
[1]. HAR focuses on developing methods and techniques to identify and categorize hu-
man actions using sensor information without human intervention. HAR aims to enable
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machines to understand and interpret human actions and movements in real-world envi-
ronments. The three primary ways of recognizing human activities are vision, non-vision
(sensor), and hybrid integration [2]. Vision-based methods commonly use video and depth
cameras, and wearable camera technology has recently emerged as a promising option
3, 4, 5, 6, 7]. Sensor-based approaches can be categorized as wearable, ambient, or hy-
brid, depending on the position of the sensors [8, 9, 10]. Each approach has pros and cons,
and in this study, we are constrained to wearable sensors.

Exercise activity recognition (EAR), one topic study of the HAR, refers to the recogni-
tion of physical activity performed intentionally to improve or maintain physical fitness,
health, and overall well-being. This encompasses multiple application domains, including
calisthenics, weight training, yoga, and sports [11, 12]. Inertial measurement units (IMUs)
are the most prevalent data source in the published EAR research [13, 14, 15]. EAR com-
monly classifies numerous discrete labels based on sensor data streams. Typically, these
identification techniques employ a manual feature extraction pipeline and a classification
method such as k-Nearest Neighbors, Random Forest, Decision Trees, or Hidden Markov
Model. EAR has two key applications: automatic logging of exercises to reduce manual
data entry by trainers, and providing real-time access to unbiased records for coaches and
doctors [16]. This study is restricted to physical activities, specifically physical exercises,
which can be defined as any activity that improves or maintains an individual’s health
and fitness.

Initially, the categorization of sensor data for EAR consisted of three steps: data gath-
ering, pre-processing, and classification. The pre-processing workflow comprises two com-
ponents: segmentation to produce data instances from receiving sensor streaming data
and feature extraction. Windowing is the most used form of segmentation, in which a
fixed temporal window is utilized to divide the sensor stream of data into data instances
[17]. Subsequently, each data instance is turned into features using a predefined set of
time-domain, frequency-domain, and spatial feature extraction methods. Nevertheless,
manual construction and the selection of features is laborious, yet these approaches have
obtained great effectiveness with sparse information for customized EAR applications.

Current deep learning (DL) methods have merged feature extraction and classifica-
tion processes, where the learning of features is constrained by iterative optimization
[18, 19, 20]. As with earlier techniques, windowing is utilized to obtain data instances; al-
ternatively, feature transformation techniques are also implemented. These feature trans-
formation approaches comprise the transformation of time-series data in the frequency
domain [21]. While DL approaches (convolutional neural network (CNN) and long short-
term memory (LSTM)) are state-of-the-art in HAR investigations [22], these are rarely
addressed in EAR [23]. For example, the researchers [13] utilize recurrent structures to
recognize the shoulder rehabilitation process from wrist-worn IMU data streams with an
accuracy of 88.9%; their dataset is not available to the public. Furthermore, their ap-
proaches cannot be reassigned to other exercise contexts due to a complete lack of sensors
that recognize motion patterns from body parts other than the wrist. In direct opposi-
tion, the publicly available MEx dataset [23] earlier revealed single detection capability on
physiotherapy exercise identification employing four sensors; two accelerometers placed on
the wrist and thigh, a pressure mat, and a depth camera with F1-score of 63.35%, 90.15%,
74.08%, and 87.20%, respectively. These findings indicate that more than a single sensor
is required to identify various exercises accurately. In this perspective, we emphasize the
necessity for multi-modal learning methodologies to boost efficiency in classification tech-
niques. This necessitates fusion structures and techniques, such as attention, to merge
heterogeneous multi-modal sensor data.

In this study, we focus on further EAR research by providing innovative DL methods
and emphasizing the importance of designing EAR solutions that are unobtrusive and
straightforward to implement in the actual world. We propose a novel hybrid deep learning
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approach called CNN-LSTM for EAR. This model combines a deep CNN and LSTM
neural network for effectively identifying fitness movements. The experimental findings
indicate that the proposed combination model achieved significant results with accuracy
and F1-score measures.

The remainder of the article is structured as follows. Section 2 describes the CNN-
LSTM model utilized in this study in depth. Section 3 demonstrates our experimental
outcomes using a publicly available benchmark dataset. In addition, this section compares
the proposed and baseline deep learning models’ performance. Section 4 summarizes this
work and outlines potential future activities.

2. The Proposed Sensor-Based EAR Framework. In this study, a sensor-based
workflow for EAR is employed, which consists of five primary stages: obtaining data,
preparing data, segmenting data, developing a model, and refining the model, as depicted

in Figure 1.
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FIGURE 1. The EAR workflow based on wearable sensors used in this work

2.1. Multi-modal exercise dataset. This study utilized the publicly available Multi-
modal Exercise dataset (abbreviated MEx dataset) for EAR [23]. The necessity to recog-
nize and evaluate the quality of exercise performance in participants with musculoskeletal
disorders (MSD) encouraged the compilation of this dataset. The MEx dataset chose sev-
en activities commonly prescribed for MSD individuals by physiotherapists and gathered
information with four sensors, as indicated in Table 1: a pressure mat, a depth camera,
and two accelerometers. The dataset incorporates three data types, numerical time se-
ries, video, and pressure sensor data, offering fascinating research problems for EAR and
exercise quality evaluation.

TABLE 1. Details of sensors operated for gathering exercise activities in the
MEx dataset

Sensor Product Details
Obbrec Astra Frame rate = 15 fps
Depth Camera Sensor Depth Camera Frame resolution = 320 x 240
P S Sensing Tex Frame rate = 75 fps
FESSULE Densot Pressure Mat Frame resolution = 32 x 16
Axivity AX2 3-Axis Sample rate = 100 Hz

Accelerometer Logging Accelerometer Accelerometer range = £8 g
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In the dataset, two accelerometers will be attached to the wrist and thigh of each
of the 30 participants; the pressure mat will be utilized as an exercise mat on which
the recipient will execute activities; and the depth camera will be positioned above the
participant, capturing an aerial perspective. Throughout the remainder of this work, the
accelerometer on the thigh, the wrist, the pressure mat, and the depth camera will be
designated as ACT, ACW, PM, and DC, respectively.

2.2. Data pre-processing. Raw sensor data were adjusted in data pre-processing: noise
reduction and data normalization. In our investigation, we used averaged smoothing filters
over all three dimensions of the accelerometer sensor to remove noise from the data. Next,
the sensor data are standardized, which supports resolving the model learning difficulty
by determinating all data values into a close range. As a consequence, gradient descents
could converge more rapidly. The normalized data were then separated employing 5-second
fixed-width sliding windows with a 50% overlap.

2.3. The proposed CNN-LSTM model. CNN is particularly successful in extracting
and learning the characteristics of one-dimensional sequence data, such as univariate time
series data, when necessary [24]. In addition, it is feasible to deploy the CNN model in
the hybrid arrangement in conjunction with an LSTM backend. CNN analyzes the input
subsequences, which are then transmitted sequentially to the LSTM model for further
comprehension.

The hybrid proposed model is known as the CNN-LSTM model (shown in Figure 2),
and its design extracts characteristics from input data using CNN layers, while the LSTM
element enables sequence forecasting. The CNN-LSTM model can interpret subsequences
produced from the main sequence in the format of blocks by first extracting the significant
characteristics from each block, followed by LSTM interpretation of those characteristics.
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F1GURE 2. Architecture of CNN-LSTM model

This study utilizes a CNN layer to identify local features in time series data once pre-
processing has been completed. The one-dimensional CNN is an effective tool for time
series analysis as its convolution kernel operates in a single direction, making it possible
to extract previously undiscovered data features in the time domain. The LSTM model
is then used to receive the extracted features from the encoder (CNN) and incorporate
them as input. Throughout the training process, the different gates of the LSTM network
and the training data are continually adjusted so that the LSTM model can identify the
relationships between the input and output sequence.
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The proposed method employs an encoder-decoder model. Unlike other deep learning
models such as LSTM and CNN, the CNN-LSTM model does not directly produce a
vector series. Instead, it comprises two parts: an encoder that reads and encodes the
input sequence and a decoder that reads the encoded input sequence and predicts the
output sequence one step at a time. A straightforward but efficient CNN architecture
is used for the encoder, consisting of two convolutional layers and a max-pooling layer.
The input sequence is read by the first convolutional layer and projected onto feature
maps, which are then processed by the second layer to amplify significant features. The
kernel size for reading input sequences is two-time steps, with 64 feature maps in the
convolutional layer. The max-pooling layer selects the top 1/4 signal values to simplify
the feature maps.

The flattened feature maps generated by the pooling layer are input for the decoder
model, consisting of an LSTM hidden layer with 100 units. This layer decoded the input
sequence and output a vector for each unit that captures its features. The input sequence
representation is duplicated for each time step in the output sequence and provided to the
LSTM decoder to generate the output sequence. A fully connected layer is applied before
the final output layer to interpret each time step in the output sequence. This approach
ensures that each step in the output sequence receives the same layers, allowing the LSTM
decoder to determine the context needed for each step and interpret them independently
while still using the same weights. Hyperparameters such as filter number, kernel size,
pool size, and dropout ratio were determined by Bayesian optimization. All details of
CNN-LSTM hyperparameters are listed in Table 2.

TABLE 2. Hyperparameters details of the proposed CNN-LSTM network
in this work

Stage Hyperparameters Values
Kernel Size 3
Convolution-1 Stride 1
Filters 64
Kernel Size 3
Convolution-2 Stride 1
Architecture Filters 64
Dropout-1 0.5
Maxpooling 2
LSTM Neuron 100
Dropout-2 0.5
Dense 100
Loss Function Cross-entropy
o Optimizer Adam
Training Batch Size 64
Number of Epoches 200

2.4. Performance measurement indicators. The proposed deep learning model is
evaluated using a 5-fold cross-validation procedure that calculates four quality assessment
indicators: accuracy, precision, recall, and F1l-score. The equations for the four measures
are as follows in mathematics:

Tp+1Tn

Tp+Tn + Fyv+ Fp

Tp
Precision = ——— 2
Tp + Fp @)

(1)

Accuracy =
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Tp+ TN
Recall = ——— 3
ced Tr + Fy ( )
Floscore — 2 x Precision x Recall (4)

Precision + Recall

Typically, HAR is measured by the following four indicators of effectiveness. The
identification is a true positive (Tp) for the group under consideration, but for all other
groups, it is a true negative (Ty). It is possible for sensor data that belongs to one group
to be incorrectly identified as pertaining to another, resulting in a false positive (Fp).
Conversely, a false negative (Fj) identification can occur if input from an activity sensor
that belongs to a different group is incorrectly labeled as pertaining to the same group.

3. Experiments and Results. Including the proposed multi-resolution CNN;, this part
evaluates three foundational deep learning models (CNN, LSTM, and CNN-LSTM) by
describing the experimental setup and demonstrating the findings.

3.1. Experimental environment. To carry out the experiments in this research, the
Google Colab Pro platform and a Tesla-V100 were utilized. The Python application used
in the study was created by implementing various libraries, including Python 3.6.9, Ten-
sorFlow 2.2.0, Keras 2.3.1, Scikit-learn, NumPy 1.18.5, and Pandas 1.0.5. The dataset
was manipulated using NumPy libraries for matrix operations, Pandas libraries for CSV
file manipulation, and Scikit-learn for class-wise sampling across the training, testing, and
validation datasets.

3.2. Experimental results. Table 3 demonstrates the recognition interpretation out-
comes of DL models operating accelerometer data for thigh position. This experiment
indicates that the proposed CNN-LSTM model achieved the most satisfactory effective-
ness with the highest Fl-score of 97.20%.

TABLE 3. Recognition interpretation outcomes of DL models using ac-
celerometer data from thigh position

Recognition performance
Model Accuracy Loss F1-score
CNN 94.79% (£1.205%) 0.25 (£0.039) 94.72% (£1.262%)
LSTM 60.92% (£3.862%) 0.98 (£0.161) 59.75% (£3.688%)
CNN-LSTM 97.23% (£0.524%) 0.13 (£0.025) 97.20% (40.534%)

As shown in Figure 3, the obtained findings demonstrate that the proposed CNN-LSTM
network can execute efficient classification exercise activities with significant F'1-scores of
more than 90%.

Table 4 shows the outcomes of applying accelerometer data for wrist position in DL
models designed for recognition. The outcomes of this study demonstrate that the pro-
posed CNN-LSTM model performed at a superior level, with an Fl-score of 91.69%.

TABLE 4. Recognition interpretation outcomes of DL models using ac-
celerometer data from wrist position

Recognition performance
Model Accuracy Loss F1-score
CNN 80.69% (£3.099%) 1.000 (4£0.238) 80.49% (£3.134%)
LSTM 43.42% (£10.982%) 1.230 (£0.235) 41.34% (£11.640%)
CNN-LSTM  91.72% (£1.515%) 0.324 (+0.040) 91.69% (£1.524%)
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The CNN-LSTM trained with accelerometer data from the wrist position can categorize
exercise activities with a lower F1l-score than the CNN-LSTM trained with accelerometer
data from the thigh position, as considering a confusion matrix in Figure 4.

4. Conclusion and Future Works. This work investigated multi-modal EAR utilizing
accelerometer data, a vital element for automating digital interventions that give appropri-
ate guidance and assistance. To automate EAR, we proposed CNN-LSTM, a novel hybrid
CNN and LSTM neural network that conducts EAR using sensor input from two body
sites (thigh and wrist). The suggested network considerably surpasses multiple bench-
marks and efficiently learns modality combinations suited to identify various activities
with the most outstanding accuracy of 97.23% and Fl-score of 97.20%.

For the activity recognition future studies of multi-modal exercise, we aim to propose
applying different DL networks, such as ResNeXt, InceptionTime, and Temporal Trans-
former. In addition, a data augmentation is an engaging approach for enhancing models
using unbalanced datasets. The issue can be resolved using this strategy.
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