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Abstract. In latest years, the necessity for several sources of situational information
from the traffic environment has increased due to the growth of Intelligent Transport
System (ITS) solutions, such as autonomous vehicles and enhanced driver support sys-
tems. Identifying Road Surface Type (RST) within this environmental information is
essential and applicable throughout the ITS sector. The classification method must func-
tion successfully across various cars, driving behaviors, and situations in which a vehicle
might operate. In this study, we use inertial sensors, such as accelerometers, gyroscopes,
and magnetometers, which are reliable, non-polluting, and low-cost solutions appropriate
for large-scale deployment, to develop a deep learning model that classifies road surface
characteristics effectively. These sensor data were employed in three basic deep learning
models, including our proposed RST-PyramidNet model: CNN-based, LSTM-based, and
GRU-based models. A public benchmark dataset named Passive Vehicular Sensors (PVS)
dataset based on the 5-fold cross-validation methodology is used to assess the effectiveness
of these models. The experimental findings indicate that the proposed RST-PyramidNet
surpasses previous benchmark deep learning models with an accuracy of 97.68% and an
F1-score of 97.35%.
Keywords: Road surface type, Deep learning, Classification model, Inertial sensor,
Pyramidal residual network

1. Introduction. Inappropriate road surfaces could lead to dangerous and unpleasant
travel and costly litigation and injury claims [1]. In these criteria, there are accidents
directly impacted by the terrible state of the roadway, but drivers’ conduct also causes
problems in response to the poor condition of the roadway. Across the globe, the data
about incidents that occurred due to poor road surface quality varies from low percentages
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(high-income nations) to incredibly high figures representing low- and medium-income
nations. Sustaining an appropriate level of effectiveness for the whole road infrastructure
by implementing efficient road pavement management and repair programs is, thus, one
of the most significant problems for Intelligent Transport Systems (ITS) throughout the
globe [2, 3].
Conventional methods depend primarily on human perception, a global standard for all

road inspection and professional practices [3, 4]. Nevertheless, the method is susceptible to
subjectivity, time-consuming, and dangerous for drivers on the road. Modern techniques
and high-performance approaches employ video and image analysis [5, 6, 7] to detect
and categorize pavement surface distress more accurately [8, 9]; unfortunately, its present
installation cost is considerable. For instance, the most prevalent tracking technique
is automated technology such as ground penetrating radar, laser road imaging systems,
and high-performance sensors paired with high-resolution cameras. Furthermore, the high
costs connected with such technology are a vital barrier for road authorities, particularly
small towns that could need more funding or specialized abilities to perform regular
inspections.
Vibration-based techniques might be a viable compromise between the high-cost moni-

toring procedure based on video or image interpretation and the necessity for frequent road
network surveillance [10]. To avoid cost consumption, inertial sensor-based approaches
(e.g., accelerometers) were used to produce a low-cost, dependable solution capable of real-
time, flexible pavement inspection [11, 12]. The inertial sensor-based systems can monitor
road surface irregularities through automobile vibrations, and the data are collected using
vehicle-mounted accelerometers [8, 13]. In addition, the literature study revealed that the
primary limitation of vibration-based techniques is the need for more ability to derive
(from collected data) data regarding the kind of road surface concern. Furthermore, it
was emphasized that this strategy could not evaluate road-surface damage in locations
other than the vehicle wheel paths, with the result that the magnitude of pavement failure
across the entire section of the road cannot be determined [14].
Over the past few years, there has been a lot of research focused on using inertial

sensors to identify different types of road surfaces. Souza’s study [15] utilized a flexible
suction holder to secure a smartphone with sensors in a car, close to the dashboard. The
data collected from the accelerometer (sampled at 100 Hz) and the GPS (for estimated
velocity) were incorporated into a model (known as GPS). The most successful results in
the report were obtained by combining the Longest Common Subsequence (LCSS) model
with the Complexity Invariant Distance (CID). Overall, the model was able to accurately
classify road surfaces as either asphalt/flexible pavement (98.28%), cobblestone streets
(84.4%), or unpaved roads (78.64%), with an accuracy rate of 87.72%. In other studies,
such as [16] and [17], accelerometer data from the suspension system and GPS speed were
also used. To take account of the effects of the vehicle’s suspension, the researchers applied
the Quarter Car (QC) computational formula in the pre-processing stage and used the
Fast Fourier Transform (FFT) to extract frequency domain features. The researchers were
able to train a Support Vector Machine (SVM) to classify road surfaces as either asphalt
(17.6%), concrete (99.6%), grass (74.9%), or gravel (85.3%) with an average accuracy of
69.4%.
Recent advancements in the classification of types of roads have resulted in the devel-

opment of Deep Learning (DL) algorithms to increase identification results [18, 19]. In
Varona et al.’s research [20], sensor data collected from accelerometers were fed into a
Convolutional Neural Network (CNN) and a Long Short-Term Memory (LSTM) neural
network to distinguish between four distinct categories of roads (concrete panels, cob-
blestones, asphalt, and dirt road). Like the study of Menegazzo and Wangenheim [21],
they developed and tested three models for road surface type classification considering
three stages – data collection, pre-processing and processing. This study also employed
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accelerometer data to train and evaluate DL models (CNN, LSTM, and Gated Recurrent
Unit (GRU)). Training accuracy for the CNN-based model was an average of 93.04%,
with a score of 98.60% for asphalt, 86.09% for cobblestone, and 90.78% for dirt. More-
over, current findings [22, 23] demonstrated an affordable and dependable system capable
of real-time road pavement distress monitoring. Road surface categories were classified
using various Machine Learning (ML) techniques (decision tree, k-nearest neighbor, and
SVM).

Several studies have attempted to classify road surface categories using ML techniques.
However, the interpretability of the classifiers was found to be hindered by the use of
manually extracted features. In the same study of Souza [15], inertial sensors were used to
determine road surface types, and the LCSS model was combined with CID to achieve an
accuracy rate of 87.72%. Despite the successful results, the interpretation of the classifier
was still limited by the use of manually extracted features. Similarly, in Basavaraju et
al.’s study [24], ML models were trained to classify road surfaces using features extracted
from accelerometer data and GPS speed. However, the classifier’s interpretability was
still compromised by the use of manually extracted features [25].

These findings highlight the need for alternative feature extraction methods and more
advanced ML techniques to improve the interpretability of road surface classifiers. DL
approaches, such as CNNs, may be promising for this purpose as they can automatically
learn informative features from raw sensor data. By leveraging such methods, we can
expect to achieve better classification results with improved interpretability, leading to
more accurate and reliable road surface detection in real-world applications. Therefore,
this study investigated road surface identification using inertial sensors and DL techniques
that automatically generate distinguishing features. Models based on CNN, LSTM, and
GRU are three fundamental deep-learning models designed to identify road surface vari-
ations automatically. Furthermore, a deep pyramidal residual model was established to
categorize road surface classes effectively.

The remainder of the article is structured as follows. Section 2 describes the proposed
RST-PyramidNet model in depth. Section 3 contains the findings of our experiments.
Section 4 concludes this work with a discussion of demanding future research.

2. Architecture of Sensor-Based RST Recognition. The sensor-based RST classi-
fication framework, which is operated in this work, comprises four primary procedures:
data acquisition, data pre-processing, data generation, and model training with evalua-
tion, as shown in Figure 1.

2.1. Passive vehicular sensors dataset. We assessed our research using the Passive
Vehicular Sensors (PVS) dataset [21], which is a benchmark that is accessible to the

Figure 1. RST classification framework based on inertial sensors used in
this work
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public. Sensors were installed throughout the car to collect data, including a camera
positioned on the vehicle’s roof that recorded the external environment at a frequency of
30 frames per second. The in-dash GPS receiver sampled data at 1 Hz from an internal
location. To account for information from multiple sources that could potentially affect the
car’s dependency attribute, six MPU-9250 units were strategically placed throughout the
automobile. Three MPU-9250 were installed at each end of the front axle (right and left):
one component was connected to the control arm, below and near the suspension; another
component was located above and near the suspension, connected to the body immediately
above the tire; and a third component was installed on the center console, inside of the
cabin. In order to ensure that the MPU-9250’s sample reference frame corresponds to the
car’s position and orientation, a controlled positioning method was utilized to install the
components. To avoid signal saturation, the accelerometer and gyroscope were set to a
full scale of 8 g and 1000 deg/s, respectively, and both were sampled at a frequency of
100 Hz.
The PVS dataset compiled information from various settings to provide a wide range of

test cases for the model. The sensor mentioned above network was deployed across three
vehicles (vehicular property), three drivers (driving property), and three situations (envi-
ronmental property), wherein each situation provides three different surface types, among
unpaved (dirt roads) and paved road segments (0-91.98 km/h) (asphalt or cobblestone
roads).

2.2. Data pre-processing. The raw sensor data collected from the vehicle during the
data collection process contained measurement noise and other unexpected noises, likely
due to the sensor movements in the automobile. Noisy signals can cause data distortion,
making it less reliable. As a result, it was critical to limit the impact of noise on signal
processing so that useful information could be retrieved from the signal. Mean, low-
pass, and wavelet filtering are some of the most frequently used techniques for filtration.
Using a 3rd-order Butterworth filter, we de-noised all three dimensions of accelerometers,
gyroscopes, and magnetometers using the 20 Hz cutoff frequency. At this pace, 99.9% of
vehicle movements are captured, making it superior for recording motion.
It was necessary to alter the sensor data once it had been cleansed of unwanted

noise. Each data point was transformed using a Min-Max normalization approach, which
projects its values into the range [0, 1]. Having a way to balance the impacts of different
dimensions might be beneficial for the learning processes. Normalized data from all sen-
sors are split into equal-sized sections for model training using fixed-size sliding windows
in the data segmentation stage of the process. To construct sensory data streams with a
length, we employed a sliding window with a duration of 10 seconds in this study. The
10-second window is utilized for user identification because it is long enough to record
crucial features of a thing’s activities, such as numerous repeats of basic motions. Then,
2-second fixed-width sliding windows were applied with 50% overlap to the pre-processed
sensor data.

2.3. DL models recognition. After pre-processing the data, DL-based classification
methods are utilized. This process involves constructing computational models with mul-
tiple processing layers to identify the data’s representations at different levels of abstrac-
tion. As a result, layered representations are produced, expressed in terms of other layers,
allowing for the creation of complex ideas from simpler ones. We developed deep neural
networks based on LSTM, GRU, and CNN as fundamental models for DL. We employed
the Adam optimizer in conjunction with the Categorical Cross Entropy loss function to
construct all models.
This study proposed a one-dimensional pyramidal network named RST-PyramidNet,

illustrated in Figure 2, for effectively classifying road surface categories using signal data
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Figure 2. RST-PyramidNet architecture used in this work

from inertial sensors. The RST-PyramidNet is developed based on Han et al.’s deep
pyramidal network [26].

The RST-PyramidNet is an improvement over the residual unit model based on the
residual network. The main idea behind the pyramidal network is to gradually expand
the feature map dimensions rather than abruptly increasing them at each residual unit
through downsampling. Most deep CNN architectures enhance feature map dimensions
significantly when the feature map scale decreases and increases feature map dimensions
only when they approach a downsampling level. To address this issue, the network aims
to progressively expand the feature map dimensions instead of increasing them at a single
residual unit and evenly distribute the increasing feature map load. This approach results
in a gradual increase in the number of channels as a function of layer depth, similar to a
pyramid shape that gradually expands from top to bottom. In our research, the proposed
RST-PyramidNet adopted the additive PyramidNet model, geometrically expanding the
feature map dimension. The process of increasing the dimensionality of a feature map
can be stated as follows:

Dk =

 64 if k = 1∣∣∣Dk−1 +
α

N

∣∣∣ if 2 ≤ k ≤ N + 1

In the proposed network, the step factor for increasing dimensions, denoted by α, is set
to 48. Here, N denotes the total number of residual units.

The network architecture also includes a combination of simple and residual networks,
utilizing zero-padded identity-mapping shortcut connections when expanding the fea-
ture map dimension. ResNet investigated several types of shortcuts, including identity-
mapping shortcuts. The identity-mapping shortcut is highly effective and has a lower risk
of overfitting than other shortcuts due to the lack of parameters, resulting in improved
generalization performance. Additionally, it can strictly pass through the gradient based
on the unique mapping, providing more excellent stability during training. However, in
our RST-PyramidNet, identity mapping alone cannot be used as a shortcut because the
feature map dimension varies between residual units. Therefore, the zero-padded shortcut
does not increase the risk of overfitting since there are no new parameters, and it exhibits
better generalization performance than other shortcuts. As a result, the proposed zero-
padded identity-mapping shortcut, as shown in Figure 3, can have a combined effect on
the residual and plain networks, leading to significant improvement.
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Figure 3. Structure of a stack block used in the proposed RST-PyramidNet

3. Experimental Results and Discussion. In this section, we explain the experimen-
tal setup and present the experimental findings required to accurately assess the proposed
RST-PyramidNet model for classifying road types utilizing IMU sensor signal data.
This study conducted each experiment on the Google Colab Pro platform using a

Tesla V100. Python 3.6.9, TensorFlow 2.2.0, Keras 2.3.1, Scikit-Learn, Numpy 1.18.5,
and Pandas 1.0.5 libraries were utilized in addition to the Python programming language.
Two experiments were conducted using sensor data from different locations to investigate
the efficacy of DL methods.

• Case I involves using signal data collected from sensors positioned both above and
below the left suspension of the vehicle.

• Case II involves using signal data collected from sensors positioned both above and
below the right suspension on the right side of the vehicle.

Experiments were conducted to investigate the effectiveness of DL models based on
signal data from IMU sensors. CNN, GRU, LSTM, and the proposed RST-PyramidNet
all optimized their hyperparameters using the Bayesian technique. The experiments were
assessed for their identification performance using various metrics such as accuracy, pre-
cision, recall, and F1-score.
Table 1 shows the accuracy and F1-score measures acquired from the different DL

networks trained on the PVS dataset in Case I.

Table 1. Identification effectiveness of DL models conducted in Case I

Model
Recognition performance

Accuracy Loss F1-score
CNN 94.39% (±0.97%) 0.34 (±0.03) 93.68% (±1.06%)
LSTM 96.48% (±0.44%) 0.17 (±0.03) 95.98% (±0.50%)
BiLSTM 96.18% (±0.23%) 0.20 (±0.03) 95.65% (±0.28%)
GRU 96.62% (±0.27%) 0.20 (±0.04) 96.15% (±0.31%)
BiGRU 96.34% (±0.56%) 0.18 (±0.04) 95.83% (±0.66%)

RST-PyramidNet 97.54% (±0.49%) 0.11 (±0.01) 97.21% (±0.55%)

Table 1 demonstrates that the RST-PyramidNet network proposed in this study outper-
forms all other network models with an accuracy of 97.54% and an F1-score of 97.21%.
This indicates that the RST-PyramidNet has better interpretability than the baseline
deep learning models.
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The outcomes of Case II, which used signal data from sensors positioned above and
below the right suspension of the car, are presented in Table 2. The table shows that
the proposed RST-PyramidNet network outperforms all other network models with an
accuracy of 97.68% and an F1-score of 97.35%. The performance of the RST-PyramidNet
is superior to that of the baseline deep learning models.

Table 2. Identification effectiveness of DL models conducted in Case II

Model
Recognition performance

Accuracy Loss F1-score
CNN 94.62% (±0.43%) 0.36 (±0.04) 93.91% (±0.46%)
LSTM 96.66% (±0.36%) 0.16 (±0.02) 96.21% (±0.40%)
BiLSTM 95.42% (±0.73%) 0.26 (±0.03) 94.75% (±0.83%)
GRU 96.39% (±0.56%) 0.20 (±0.04) 95.92% (±0.64%)
BiGRU 95.81% (±0.31%) 0.26 (±0.03) 95.22% (±0.37%)

RST-PyramidNet 97.68% (±0.33%) 0.11 (±0.02) 97.35% (±0.37%)

4. Conclusion and Future Works. In this study, we established classification models
based on DL methodologies to handle signal data from inertial sensors. Considering its
conservative approach, these sensors are harmless, non-polluting, and competitive, rep-
resenting an appealing option for large-scale applications. These sensor data were then
pre-processed and segmented in particular studies to assess the identification capabilities
of DL networks. These experiments were conducted using CNN, LSTM, and GRU as
baseline models for deep learning models. We proposed an RST-PyramidNet network to
solve sensor-based RST employing sensor data from inertial sensors to enhance the clas-
sifier’s performance. We have assessed the effectiveness of the RST-PyramidNet model
using several indicators and an available PVS dataset. The findings show that the sug-
gested deep pyramidal residual network surpasses the other baseline network by using the
autonomously spatial-temporal feature extraction from raw sensor data with an average
accuracy of 97.61% and F1-score of 97.28% for both scenarios.

In future studies, we aim to enhance the classification of road types by exploring several
avenues. One such avenue includes optimizing the hyperparameters of the proposed mod-
els and conducting experiments with hybrid deep learning networks, such as LSTM-CNN,
GRU, and ConvLSTM. Additionally, we plan to investigate other features that can be
applied to analytical domains such as time, frequency, and time-frequency domains.
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