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Abstract. NormL1 regulation is the penalty used in the least absolute shrinkage and
selection operator for linear models and linear mixed models. In today’s big data era, a
small area estimation (SAE) method requires the constraint of dimension of auxiliary
information matrix. Prediction and area-specific effect variance are two major problems
in the SAE. To ease the problems, an SAE model with the NormL1 (SAEL1) penalty is
proposed. Simulations in the present paper illustrate general results about the performance
of the proposed model and the accuracy of the proposed algorithms. Some results show
that the SAEL1 is a viable alternative method for the shrinkage and selection of the
fixed and area-specific effect coefficients. The SAEL1 provides better predictive value and
ability of SAEL1 to shrink and select the fixed and area-specific effect coefficients that
outperform.
Keywords: Big data, Coordinate descent, False rate, Multi-start technique, Shrinkage

1. Introduction. Small area estimation (SAE) techniques utilize auxiliary variables to
deliver a direct estimation. Two basic model types of the SAE are area-level and unit-
level models based on the auxiliary information availability. In the current era of big
data, database size and technology are experiencing rapid development. This offers high
dimensional auxiliary variables in the SAE approach [1]. The problem in estimating pa-
rameters with a large number of variables is a strong correlation between two or more
variables which can increase the mean squared error (MSE) [2]. Parsimony is an estima-
tion problem since a model with fewer explanatory variables is easier to interpret [3]. The
best model in high dimensional linear mixed effects models (LMMs) can be obtained not
only by shrinking the estimation parameter, but also going to zero and selecting the fixed
effect parameter at once. NormL1 regulation is the first penalty used in the least absolute
shrinkage and selection operator (LASSO) introduced for linear models and some contri-
butions have been extended to linear mixed models [4-8]. The SAE methods in use today
require the constraint of dimension of auxiliary information matrix, i.e., p < n. The re-
laxation of dimensions of a dataset means a big challenge in the SAE as it simultaneously
needs to evaluate the prediction accuracy and computational efficiency to settle issues on
convergence of the estimator.
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Small area refers to a group or geographical area with insufficient sample size to deliver
a direct estimation of the parameters. The area-level model of SAE is more widely applied
as it does not require unit- or individual-level information that may be confidential [9].
The area-level model of SAE according to the LMMs was proposed by Fay-Herriot (FH).
With regard to the LMMs, variance in the FH model sub-populations can be explained
through the fixed and area-specific effects which correspond to variance in the auxiliary
and area-specific of sub-populations, respectively. Area-specific effects cannot be explained
by the auxiliary variables and are assumed to be independent and identically normally
distributed. The area-specific effects might increase the estimation variability; thus, a test
for the presence of the area-specific effects was suggested [9,10]. The mixed distribution
is also proposed to verify the area-specific effect inclusion in the model [11]. The speed
of convergence in the SAE parameter estimate is also associated with the complexity of
area effect vector [12]. In a situation of the large-scale data with observation that could be
small area, sometimes, the number of small areas is relatively small compared to the total
survey areas. The sparsity on area-specific effects can be imposed through setting zero
for i-th large area while maintaining the nonzero value for i-th small area. It makes the
normality assumption of area-specific effects can be violated. Therefore, reliable estimates
can be obtained through an efficient selection of the true small areas (true nonzero random
effects).
Area-specific effects play an important role in attaining reliable parameter estimates in

the SAE; hence, their exclusion and inclusion in the model should be carefully examined
to reach an optimum rate of convergence and accurate prediction. Shrinkage technique
is indispensable in the SAE to obtain the SAE with reasonable inferential statistics [12].
An adaptive model for the SAE with automatic random effect selection (SARS) using a
hard-ridge penalty for the SAE has been carried out [13]. However, the large-scale data
challenges an estimation method that not only does select the area-specific effects, but
also shrinks the value of area-specific coefficients at once to obtain the parsimony. To meet
today’s challenges, NormL1 is proposed as penalty [14]. The SAEL1 for area-specific effect
selection empirically delivers the minimum MSE under each condition of auxiliary variable
correlation, area effect variance components, and percentages of small area.
Prediction and area-specific effect variance are two major problems in the SAE. For such

problems and big data challenges, a NormL1 penalty SAE model is proposed, which not
only does shrink the parameter estimate, but also selects the fixed and the area-specific
effects. The remaining parts of the present paper consist of the detailed methodology in
Section 2, results and discussions of simulation in Section 3, and some concluding remarks
and possible future study in Section 4.

2. Methods. To resolve the problems previously mentioned, we present the details of
NormL1 penalty SAE methodology as follows.

2.1. Small area estimation with random effects selection. Fay-Herriot (FH) model
based on linear mixed model with m number of small areas can be presented as

y = Xα+ u+ e (1)

where y is m× 1 vector of the parameters of inferential interest and the direct estimator
ŷ assume available. The auxiliary information X = (X1, X2, . . . , Xm)

T is a known m× p
matrix, e is a vector of independent sampling errors with mean vector 0 and variance
matrix R = diag

(
σ2
ei

)
, σ2

ei representing the sampling variance of the direct estimators of
the certain area, i = 1, 2, . . . ,m. Therefore, α is the p×1 vector of regression parameters,
u is the m × 1 vector of independent area-specific effects with zero mean and variance
matrix

∑
u = σ2

uIm. Empirical best linear unbiased prediction (EBLUP) is used in re-
sponse variables predicting since σ2

u estimated with maximum likelihood/ML or restricted
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maximum likelihood/REML method. Thus, the parameter regression, area-specific esti-
mate and the response prediction formula can be expressed as

α̂ =
(
XT

i V̂
−1Xi

)−2

XT
i V̂

−1y (2)

û = σ̂2
uV̂

−1 (y −Xα̂) and γ̂iu =
σ̂2
u

σ̂2
u + σ2

ei

(3)

The EBLUP estimate values depend on the weighted factor γiu which corresponds to vari-
ance of the area-specific effects σ2

u and sampling error variance R [15]. The observed best
predictor cannot be obtained if the shrinkage factor is not correctly identified. Regarding
the sample size in survey areas, the area-specific effects term can be insignificant in the
SAE model. However, eradicating the area-specific effects from the model may not be
the best choice in terms of prediction accuracy; hence, it needs to obtain the small area
estimates under such a high-dimensional dataset.

Set U of small areas with ui ∼ N (0, σ2
u) for i ∈ U and ui = 0 for i ∈ UC . Given that σ2

u

and σ2
ei are unknown, then SARS model employs a penalized regression in optimizing the

function of the least squares difference for estimating the FH parameter [13]. The SARS
model assumes the sampling error variance R = diag

{
σ2
ei/ni

}
where ni is the sample’s

size. The SARS model uses multiple penalties as combination of L0 and L2 referred to as
hard-ridge penalty. In the SAE approach, assuming p > n and the area-specific effects u
are sparse, the hard-ridge penalty for selecting the fixed and area-specific effects is stated
as

P02 (β,u;λ0β, λ0u, ηβ, ηu) =
ηβ
2
∥β∥2 + λ0β

2

2 (1 + ηβ)
∥β∥0 +

ηu
2
∥u∥2 + λ0u

2

2 (1 + ηu)
∥u∥0 (4)

in which λ0β, λ0u is tuning parameter for hard penalty to optimize the SARS prediction
information criteria (λ0u, λ0β ≥ 0) and ηβ, ηu tuning parameter for ridge penalty to select
the fixed and area-specific effects. If σ2

ei are unknown, then R = diag{1/ni}, so the
objective function of the SARS model with the area-specific effects selection is

argmin f (β,u;λ0β, λ0u, ηβ, ηu) , (y −Xα− u)Tdiag {ni} (y −Xα− u)

+P02 (β,u;λ0β, λ0u, ηβ, ηu) (5)

The SARS solves the issue of multiple tuning parameters through an iterative selection-
estimation (SE) algorithm [13]. The selection step employs quantile thresholds to screen
small area iteratively and the estimation step estimate u based on the true non-zero
small area effects obtained from the previous step. The SARS optimization problem is
challenging due to the non-convex and non-smooth feature of the hard-ridge penalty.
Then, an iterative technique can be employed to solve the SARS problems.

2.2. Small area estimation through area effects selection using LASSO method.
L1 or NormL1 is the penalty used in the least absolute shrinkage and selection operator
(LASSO) for linear models. LASSO is a convex penalty that can be an alternative to
shrink area-specific effects of the SAE; thus, the SAE model with the random area effect
selection with LASSO penalty was proposed [14]. Based on the area-level model in Equa-
tion (1) and objective function of SARS model in (5), the proposed model’s objective
function can be formulated as

argmin f (u;λu), (y −Xα− u)T diag {ni} (y −Xα− u) + λu ∥u∥ (6)

where λu is tuning parameter for LASSO penalty and λu ≥ 0. Regarding computation,
the SAE with LASSO penalty for area-specific effects selection utilizes coordinate gradient
descent optimization approach so that area-specific effects estimator can be formulated
as

û = (y −Xα)−
(
W TW

)−1
sign(u)λu, W = diag {ni} (7)
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Based on Formula (7), we need the stopping criterion to obtain the optimum area-
specific effects estimation. The SARS predictive information criteria (PIC) was proposed
to overcome the less measurement criteria for other model prediction information related
to the number of fixed and area-specific effects involved in the models [16,17]. Based on
the penalty function and the predictive information criterion function above, the following
is the SARS-PIC for area-specific effects of the area-level model with the LASSO to shrink
parameter estimate and select the area-specific effects:

W ∥y −Xα− u∥2 + P1 (u;λu) ; P1 (u;λu) = σ2
e

[
J(u) + J(u) log

{
em

J(u)

}]
(8)

in which J(u) is the number of area-specific effect rows which have coefficient values of
parameters that are not equal to zero and it indicates the true small area or area with
insufficient sample size.

2.3. Penalized small area estimation using LASSO method. Regardless of the
number of the predictor p, model is already involved in a high-dimensional issue. An
interesting question that has not been addressed in the SAE is how to obtain the small
area estimates under such a high-dimensional dataset. Based on the FH model with a
larger dimensionality of the predictors compared to the sample size and the area-specific
effects u are sparse, the resulting objective function is then as follows:

argmin f(β,u;λβ, λu) , (y −Xα− u)Tdiag{ni}(y −Xα− u) + λβ ∥β∥+ λu ∥u∥ (9)

Using the coordinate gradient descent approach, the area-specific effect estimate is
expressed in Formula (7) and the fixed effect estimate is expressed as

β̂ =
[
(WX)′(WX)

]−1(
(WX)′W (y − u)− sign(β)λβ

)
(10)

Formula (10) states that the penalty function in the proposed model is additive, so the
predictive information criteria (PIC) for the LASSO-penalized SAE model are expressed
as

W ∥y −Xα− u∥2 + Pβ (β;λβ) + Pu (u;λu) ;

Pβ (β;λβ) = σ2
e

[
J(β) + J(β) log

{
ep

J(β)

}]
; (11)

Pu (u;λu) = σ2
e

[
J(u) + J(u) log

{
en

J(u)

}]
in which J(β) and J(u) are the number of fixed effect columns and the number of rows
of area-specific effect that have with nonzero parameter coefficient, respectively.

3. Simulation Study. The study prepared to evaluate the performance of the proposed
model and the characteristics of parameters estimate, we present the data simulation set
and simulation result as follows.

3.1. Data simulation setup. The present paper performs simulations to illustrate gen-
eral results about the performance of the proposed model estimator and the accuracy of
the proposed algorithms. The simulation is structured with the modern data structures,
which sets the number of observation or small area to 100 and the number of auxiliary
variables to 200. The customized data are set with some different area-specific effect vari-
ance components, sparsity levels and correlation between auxiliary variables. Under the
SAE model assumption, the auxiliary informationX is independently drawn from a multi-
variate normal distribution with mean vector 0 and variance matrix ρ and the correlation
structure of ρ =

{
r|i−j|}. The values of r are 0.2, 0.5 and 0.8, each of which represents

the condition of the small correlated, moderately correlated and highly correlated data,
respectively. The area-specific effects variance components

(
σ2
u

)
in the simulation are set
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to be 0.3 and 2 since those values represent small and big values of the variance with
σ2
e = 1. Simulation is taken to emphasize that the model can be applied in large p set-

up, even though vector u is sparse. The simulation data conduct the percentages of true
nonzero fixed effects coefficients by 1% and the percentages of true small area number are
1%, 10%, 50% and 90% to all analysis areas. And, it sets the sample size of each area as
[1, 1000].

Under a sparsity assumption on β, the initial points of β affect computational perfor-
mance. The multi-start technique (MT) obtains initial points of β which has two phases:
generation and improvement phase. The first phase is to generate random β initial vectors
consisting of selecting 3% of columnsX and predictors randomly than producing ordinary
least square (OLS) β estimator. After H replication, there is random multiple initial β̂,

β̂ ∈ Rp×H . The criterion to find the true nonzero elements for β in the improvement phase
is revised. Instead of repeating the algorithm until there is no difference between old and
new solutions, the probability of nonzero elements is used to update the random multiple

initial β̂. P
(
β̂j

)
= 1 is obtained if every initial β̂ in j-th rows is nonzero, otherwise

P
(
β̂j

)
= 0. Hence, the desired reduced information matrix XJβ is managed by selecting

the column j of X if P
(
β̂j

)
= 1 so that the desired reduced information matrix XJβ

and initial vector β̂ via OLS can be obtained.
Sparsity of area-specific effects is deeply associated with the sample size of each area.

In fact, the rate of small areas is sometimes 1% or less. Furthermore, finding efficient
initial points is crucial for enhancing the efficiency and effectiveness of computation; thus,
an area-specific feature selection (AFS) method is revised to generate the efficient initial
vector of u. Given an error tolerance ε > 0, the maximum of sample weightsM and sample
weights of each areas ni are taken. The initial points of ui is obtained if τi ≥ ε where
τi =

M
ni∗T . Coordinate descent is considered to evaluate the performance of the proposed

method and the algorithms accuracy, the missing rate (MR) which is the probability of
undetected true nonzero elements and false alarm rates (FR) which is the probability of
spuriously detected true zero elements are measured. MSE is employed to evaluate the
performance of parameter estimate in the proposed model. The accurate prediction is
achieved whenever the measurement above is smaller than the estimated model.

3.2. Simulation results. The modified simulation is run for 100 times, and then the
SARS model and SAEL1 model (proposed) are compared. The MR and the FR of fixed
effects and area-specific effects are computed. These results are reported in Figure 1 and
Figure 2. The left-graph and the right-graph of Figure 1 are the MR plot of fixed effects
and area-specific effects, respectively. Figure 1 shows that the MR values of SAEL1 model
are close to zero. It indicates that the SAEL1 model performs almost none of nonzero fixed
and area-specific effects are missing. Figure 1 also describes that the MR of the fixed effects
in the SARS model are lower than 0.5. However, the MR of area-specific effects in the
SARS model gets higher along with the increase in the proportion of true zero area-specific
effects.

Figure 2 represents the FR of the fixed and area-specific effects. The plots show that
SAEL1 model performs best in the shrinkage and selection of the fixed effect coefficients.
However, the SAEL1 model does poorly shrink and select the area-specific effect coeffi-
cients since the values increase. The increasing pattern is in the direction of the correlation
and the proportion of zero values with a slope of almost 45 degrees. While, the FR of the
SARS model has higher values than the SAEL1’s model.

In general, the comparison between the MR of the fixed and area-specific effects from
the SARS model shows significant differences with the SAEL1 model. Otherwise, the FR
of the fixed and area-specific effects from the SARS and the SAEL1 model has different
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Figure 1. The MR of the SARS and SAEL1 model by correlation, true
nonzero percentage of area-specific effects and its variance

Figure 2. The FR of SARS and SAEL1 model by correlation, true nonzero
percentage of area-specific effects and its variance

Table 1. Average MSE of the SARS and the SAEL1 models by auxiliary
variables correlation, area-specific effect variance and true nonzero percent-
age

Models ρ

σ2
u = 0.3 σ2

u = 2

qu qu
0.1 0.5 0.9 0.1 0.5 0.9

SARS
0.2

0.1061 0.1191 0.1453 0.2064 0.3913 0.5032

SAEL1 0.0112 0.0124 0.0167 0.0128 0.0382 0.0935

SARS
0.5

0.0624 0.1072 0.1170 0.2135 0.1304 0.8963

SAEL1 0.0104 0.0323 0.0365 0.0140 0.0534 0.0972

SARS
0.8

0.1232 0.1304 0.1381 0.4868 2.0396 2.9328

SAEL1 0.0108 0.0455 0.0663 0.0144 0.0401 0.0762

conditions. The FR of the fixed effects from the SAEL1 model remains close to zero;
while, for the FR of area-specific effects, the value is large and close to 1. In other words,
the shrinkage and selection parameter using NormL1 outperform on the fixed effects, but
perform poorly in the shrinkage and selection of the area-specific effect coefficients.
In this simulation, the performance of parameter estimate in the model evaluation is

examined using average of the MSE and the results are presented in Table 1. Table 1
shows that the parameter estimate of SAEL1 outperforms the SARS model since it has
smaller value of the average MSE in each condition of auxiliary variables correlation,
area-specific effects variance and true nonzero percentage. As seen in Table 1, the average
MSE of SARS model increases along with the increase of auxiliary variables correlation
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and true nonzero percentage either for homogeneous or heterogenous of area-specific ef-
fects coefficients. Particularly, the average MSE of SAEL1 model for small area-specific
variances decreases along with an increase in the true nonzero percentage. Those values
increase along with the increasing true nonzero percentage in the dataset which has higher
area-specific variances. However, each true nonzero percentage the MSE values either of
the SARS or SAEL1 model, is convergent.

The study aims to provide an introduction of the NormL1 method to solve the SAE.
The application is illustrated using the simulated and estimate responses (Figure 3 and
Figure 4).

Figure 3. The predicted responses of SARS and SAEL1 model with σ2
u =

0.3 by auxiliary variable correlation and true nonzero percentage of area-
specific effects

Figure 3 is the plot of the estimate responses of the SARS and SAEL1 models based
on auxiliary variable correlation and true nonzero percentage with area-specific effect
coefficients variance, σ2

u = 0.3. Figure 4 is the plot with area-specific effect coefficients
variance, σ2

u = 2. Figure 3 confirms that the response predictions of the SARS model
are more varied compared to the predicted values of the SAEL1 model. In general, the
variation in the response prediction increases along with the true nonzero area-specific
random effects’ percentage. Thus, we conclude that the variation in the predicted value
of the SAE model with penalty increases with the percentage of small areas of all the
group or region in the study.

Figure 4 also describes more or less the same as Figure 3, but the variation is sharper
at a high true nonzero percentage. This implies that the predicted responses of the SARS
and SAEL1 models are insufficiently convergent in the dataset with higher area-specific
effect variance.

4. Conclusions. This work proposes a method to shrink and select the fixed and area-
specific effect for SAE with NormL1 (SAEL1). It also presents the evidences that the
SAEL1 is a viable alternative method to shrink and select the fixed and area-specific effect
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Figure 4. The predicted responses of SARS and SAEL1 model with σ2
u =

2 by auxiliary variable correlation and true nonzero percentage of area-
specific effects

coefficients. The SAEL1 delivers better predictive value. The ability to shrink and select
the fixed and area-specific effect coefficients of the SAEL1 model better than the SARS
model, but the error in detecting the spurious zero of area-specific effects is high. Those
encouraging results reported here suggest that a further study is needed to investigate
some possibilities to utilize another penalty such as elastic net.
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