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ABSTRACT. This paper aims to assess how a single-board computer such as BPI M3 can
handle a parallel program and enhance its performance. BPI M3 can perform a face recog-
nition program written with OpenMP, enhancing its response time. The program encom-
passes several functions, such as computing the covariance matriz, calculating Eigenface,
and calculating the weight. The program performs Face recognition on several different
image sizes, namely 92 x 112, 296 x 360, 394 x 480, and 493 x 600. While the accu-
racy of facial recognition remains the same, parallel programming improves the program
response time. As a result, we found the best speedup is 2.35 on eight cores of BPI M3.
This result is fair due to overheads and small of parallel fractions in the program.
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1. Introduction. As long as a program has low time complexity and input size, serial
programming is adequate. However, if one or both are high, then serial programming
will lead to slow response times. Therefore, parallel programming is needed to speed up
the computation [1, 2, 3]. With parallel programming, programmers need to understand
the complexity and cases associated with data and task dependencies [4, 5, 6]. A multi-
processor contains more than one such CPU (Central Processing Unit) and allows them
to work in parallel. There are two or more CPUs integrated into a single computer sys-
tem. So basically, it has two or more CPUs on the system physically. Simultaneously the
processor performs different program parts, thus speeding up the computation process.
As the number of transistors doubled every 18 months [7], computer architects decided
to duplicate more CPUs and integrate the CPUs with a cache memory hierarchy into a
chip. This new approach is known as multicore [8]. Each core is a complete architecture
capable of running processes or threads. Multicore is sometimes called CMP, Chip-level
Multiprocessing [9, 10, 11].

The discovery of multicore CPUs was not without purpose. The design and implemen-
tation of multicore CPUs are intended to improve performance while reducing electricity
consumption [12]. To achieve the goal of improving performance while also increasing
electrical energy consumption efficiency, multicore CPUs must be utilized with optimized
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program code [13]. The appropriate form of source code optimization is through multi-
threading [14, 15]. Therefore, rewriting sequential program source code into multithreaded
code is the motivation for this research.

In this research, a face recognition program using the Eigenface algorithm is used as a
case study. The selection of the Eigenface program, besides being a realistic benchmark,
also presents challenges in achieving high performance.

From the perspective of using single-board computers, the utilization of low-power
single-board computers in research has recently emerged as a trend. For example, they
have been employed in the implementation of IoT in [16], in the deployment of low-cost
network control systems in [17], healthcare application [18], and in person tracking in [19].
Enriching the body of knowledge regarding the use of low-power single-board computers,
as well as testing them with a wider range of applications, needs to be done.

In recent years, there have been extensive studies on facial recognition, and various
related fields have contributed to increasing accuracy in areas such as images and video |20,
21, 22]. The study in [20] provided performance evaluation results in terms of accuracy, but
did not attempt to improve processing time. The study in [21] also presented performance
results in terms of face recognition accuracy, but on chimpanzee faces, and did not improve
processing time either. The study in [22] presented performance improvements using a
heterogeneous system (CPU-GPU computation). While massively parallel processors can
provide faster performance compared to CPUs, the use of hundreds to thousands of GPU
cores does not provide linear speedup according to Amdahl’s law equation. For example,
the study only resulted in a speedup of 32 despite using the AMD Radeon GPU with
at least a thousand cores. Communication between the CPU and GPU for each kernel
launch will add processing time. Furthermore, the use of both CPU and GPU consumes
more electrical resources, making it unsuitable for implementation on portable devices.

The bigger the input data, the longer the computation, thus attracting our attention to
conduct this research. Adreeva has developed a face recognition program with an Eigen-
face algorithm [23]. The program development uses the C++ language in serial mode.
Although the program helps to recognize faces, the program requires an improvement for
better CPU utilization. Lindner et al. [24] have also tested various single-board computers,
one of which is the Banana Pi M3. The authors evaluated the Face recognition program
on the BPI M3, but the program is a serial program instead of a parallel program.

We emphasize the novel contributions of this paper as follows.

1) We have developed a multithreaded program for Eigenface to increase the speed of
both the training and inference processes. To the best of our knowledge, none of the
authors have applied multithreaded techniques in the Eigenface program for the single
board computer before.

2) In order to point out the benefit of the multithreaded method, we present detailed
performance evaluations of the multithreaded Eigenface program. To the best of our
knowledge, none of the authors have reported the multithreaded Eigenface program’s
performance in a paper before.

3) We propose a new approach to analyzing the performance using Amdahl’s law. The
new approach involves using single-threaded parallel processing time instead of serial
processing time.

In this paper, there are five sections. The first section is the introduction, and Section 2
discusses the problem to address. Section 3 describes the experimental setup. We present
and discuss the results in Section 4. Finally, Section 5 contains conclusions.

2. Problem Statement and Preliminaries. In a computer program there may be
several parts that must be executed serially and maybe several parts that can be executed
in parallel. The serial portion of the program is called the serial fraction while the parallel
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portion is called the parallel fraction. The sum of both serial fractions and parallel fractions
is defined in Equation (1), where s is the serial fractions and f is the parallel fraction.

s=1-f (1)

Parallel programming can improve the performance of computer programs. However,
parallel programming may not apply to all parts of the program. Parallel programming
only applies to parallel fractions. According to Amdahl’s law [25], a speedup variable, a
quantitative metric for improving program performance as a result of parallel program-
ming, is directly proportional to the magnitude of the parallel fraction. Equation (2)
defines the speedup metric as a function of the parallel fraction magnitude, where P is

the number of processors.
1

— (2)

According to the discussion mentioned above, the solution of parallel programming is to
parallelize all parallel fractions. However, since there is no free lunch, parallelizing every
parallel fraction is not always beneficial. Parallelizing a parallel fraction makes sense if the
benefits outweigh the costs. Therefore, the research problem is which part of the Eigenface
program is beneficial to parallelize.

Overhead is the cost incurred by parallel work. This overhead is due to the processors
performing extra work, thereby increasing the total working time. The extra works include
scheduling, context switching, synchronization, and communication. Idle time due to load
imbalance is also considered overhead because it increases the total working time. Because
the processor does no extra work on serial programs, there is no overhead. Therefore, the
complete works of the parallel program are more than the complete works of the serial
program, which is expressed by Equation (3). The definition of overhead is embedded
in the Tp of the equation, where Tg is whole serial program’s execution time, P is the
number of processors, and T'p is the execution time of the parallel program.

TS < P x Tp (3)
T} is the parallel program’s execution on P = 1 processor. In 77, only parallel runtime

systems (parallelization APIs) contribute to overhead. Idle, synchronization and commu-
nication should not exist. Here, the additional works in 7} is defined in Equation (4).

Ts < T (4)

As we add the number of processors, idle, synchronization, and communication con-
tribute to overhead and execution time inflation, as Equation (5) defines.

Ty < PxTp (5)

Although T is not very accurate for estimating speedup, estimation by 77 is still more
accurate than Ts. It is because 17 has taken account of overhead.

S(f,P) <

3. Method. We propose a multithreading method to accelerate the Eigenface program
in order to maximize the utilization of the multicore CPUs found on the Banana Pi
M3. In a multithreaded process, multiple execution threads share work. In the case of a
multithreaded Eigenface program, the work is a parallel iterative computation executed
by multiple threads in parallel.

Compared to the most recent stage of development of Eigenface [22], which implements
parallel Eigenface in the SIMD (Single Instruction Multiple Data) model, our implemen-
tation of parallel Eigenface follows a task parallelism approach. In the task parallelism
model, multiple threads create tasks, add them to the task pool, and execute them simul-
taneously. This approach offers the advantage of better performance portability, meaning
that it can scale with different numbers of CPUs on various machines.
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To find the profitable parallel fraction of the program, in the experiment, we do profiling
of the serial version of the program first. Generally, those few algorithm parts have the
most significant time complexity. Specifically, in the iterative case, it shows a nested loop
structure. For the case of the Eigenface program used in this research, we applied profiling
to the eight C functions below the C main function. The eight functions are listed in Table
1. The C main function consumes execution time for memory allocation task for some
data structures.

TABLE 1. The eight tasks (C functions) to which profiling is performed

Z
o

Task

Task output

Remarks

0 1 O UL = W N

read_training_data
mean_image

substract mean image

transpose_matrix
covariance_matrix
Jacobi Eigenvalue
Eigenface
Weight

A (image vectors)

A
A=A—-A
AT
S=AxAT
VofS
U=V xA
W=Ux AT

Serial, IO Bound
Low complexity
Low complexity
Low complexity
High complexity
Low complexity
High complexity
High complexity

After the experiment produces a serial program execution profile, we parallelize the
program with OpenMP directives and APIs. The OpenMP directives and APIs annotate
the serial program source. An OpenMP compiler translates the annotated source to the
multithreaded code.

In this experiment, we parallelize only three tasks with the highest computational
complexity: the covariance matrix, Eigenface, and weight. We use 1, 2, 4, and 8 threads.
To account for overhead in scalability analysis using Amdahl’s law, this paper compares
scalability based on Ts/Tp, T1/Tp, and estimations.

3.1. Experimental setting. In this work, we rewrite the Eigenface program on a single-
board computer called Banana Pi M3. Banana Pi is a low-cost and credit card-sized
single-board computer manufactured by the Shenzhen SINOVOIP Co., Ltd. Its spin-off
Guangdong BiPai Technology Co., Ltd., NetBSD, Android, Ubuntu, Debian, and Arch
Linux can run on Banana Pi. It uses the Allwinner SoC with a 1.8GHz octa-core. As a
reference, the Banana Pi M3 specifications can be referred to in [26].

The drawback of this SBC, related to the facial recognition program case, is the storage
media bottleneck. This problem causes the time to retrieve image data to be very slow.

3.2. Face dataset. The face dataset used in this work originated from AT&T [27], which
formerly originated from Olivetti Research Laboratory [28]. There are 400 pictures for 40
people, with ten images per person. All images have slight variations in expression, poses,
and varying degrees of intensity. Among the ten images for each person, nine are used
for training, and one is used for inference tests. An example of an image from this face
database can be seen in Figure 1.

4. Results and Discussion.

4.1. The Eigenface number for face recognition. In this experiment, the program
was run in serial with different parameter Eigenface from one to many numbers of people’s
faces, namely 40. Then the value of 28 is obtained for the Eigenface variable with a
maximum level of recognition rate. The difference in the level of accuracy of each Eigenface
value can be seen in Figure 2. The next experiment with the Eigenface value is 28.
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FIiGURE 1. AT&T face database subset
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F1GURE 2. The number of Eigenfaces and recognition rate. The best num-
ber of Eigenface is 28 where the recognition rate is 100%.

4.2. Serial program execution profile. In this experiment, the program ran sequen-
tially and measured the execution time of various parts of the program, such as reading
the facial image training data, calculating the mean image, subtracting the mean image,
transposing, calculating the covariance matrix, calculating the eigenvalue, calculating the
Eigenfaces, and calculating the weights. The experiment was conducted ten times, and
the average execution time is presented as the execution profile in Figure 3.

Four tasks of the Eigenface algorithm have a high execution time: reading training
data, covariance matrix, calculating Eigenfaces and calculating the weight. The images
are being read in the read training data section, so this process takes much time. At the
same time, the other three parts involve a heavy computational process which will be
optimized in the following experiment.

4.3. Program enhancement by multithreading. Figure 4 shows the experimental
results. The results show that the larger the image size, the longer the execution time. In
addition, the more threads used, the shorter the execution time. The shortest execution
time of the same image size is the best. Hence, multithreading programming applied to
three tasks of the Eigenface algorithm exhibits improvement.
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FIGURE 4. Execution time of three serial and enhanced tasks. The larger
of image size, the longer the execution time. The more the threads, the
shorter the execution time.

Fractional speedup analysis in Figure 5 describes how effective and efficient the parallel
task is. The three enhanced tasks have good speedup values using eight threads. Improve-
ment for the covariance matrix reaches 7.53 times fold for the 394 x 480 image size. This
result is the most efficient since the CPU utilization score is 7.53 out of 8. That means
an efficiency of 80%. Improvement for calculating Eigenface reaches 7.4 times fold for the
296 x 360 image size. Furthermore, an improvement over the calculating weights task of
the algorithm reached 6.5 times on 296 x 360 image size.

4.4. Critical path and overall speedup analysis. In this section, we analyze the
critical path and overall speedup. This overall speedup analysis involves all fractions,
namely serial fractions and parallel fractions. The dominant serial fractions are the main
function and the task of reading image data from storage media. The parallel fraction
consists of three sub-fractions, namely the task of calculating the covariance matrix,
the task of calculating the Eigenface, and calculating projections to eigenspace. In this
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FIGURE 6. (color online) Serial and parallel fractions contributions to the
critical path. Parallelization on three tasks reduced their contribution to
the critical path.

case, the serial fraction and its three parallel sub-fractions establish the longest execution
path, called the critical path. The composition and portion of each of these fractions are
presented in Figure 6. The results were obtained from the execution of eight threads.
The results show that total serial fractions contribute most to the critical path (7(8)).
Specifically, reading the dataset contributes between 41% to 57%, while the main function
contributes between 23% to 36% of the total T'(8).

In cases where the serial fraction contributes the most to the critical path, the overall
speedup of parallel programs is bound to be as low as 2.35 times, as presented in Figure
7, even though there are eight total threads. This is equivalent to 30% efficiency.

In the case Eigenface program on Banana Pi M3, the cause of the high serial fraction
is the operation of accessing image media with very low 10 bandwidth. This problem can
be overcome by replacing micro-SD with faster storage media. There is a main function
which also contributes to the critical path; perhaps it can be overcome by extracting more
parallelism from that function.
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F1GURE 7. Overall speedup of the multithreaded Eigenface program. The
more the threads, the higher the speedup.

5. Conclusions. This study proposes a multithreading programming method to improve
the performance of the Eigenface program. Multithreading is applied to the three functions
of the program that have long execution times. The performance of the three parallelized
functions demonstrates a significant improvement compared to the serial versions. Specif-
ically, the highest speedup achieved for the three functions, namely covariance matrix,
Eigenface, and weight, on eight-core Banana Pi M3, are 7.53, 7.4, and 6.5, respectively.

The overall speedup is limited by the significant amount of serial fractions in the Eigen-
face program. The estimated speedup based on Amdahl’s law, using both T} and T, shows
that the highest speedup achieved is around 2.35 times.

The constituent functions of the serial fraction that contribute the most to 7'(8) are
reading datasets ranging from 41% to 57% and the main function ranging from 23% to
36%. This indicates that there is still room for improvement to overcome the problem of
limited storage media bandwidth.
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