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Abstract. In the context of controlling hybrid energy storage systems (HESSs), deal-
ing with model mismatch arising from parameter inaccuracy has emerged as a major
challenge. This paper presents a novel approach to addressing this challenge through the
use of a robust model predictive control (RMPC) strategy based on fading-weight cost
function. Specifically, the fading-weight cost function has been proposed to place more
emphasis on the short-term predictive control capability of the controller. This attribute
is especially relevant for cases of model mismatch. The proposed approach also integrates
a moving horizon estimation (MHE) mechanism to enhance the controller’s ability to
suppress disturbances. The MHE algorithm achieves this goal by continuously estimat-
ing and updating the upper bound of the disturbance based on the state of the system at
each moment. Simulation results confirm the effectiveness and superiority of the proposed
RMPC strategy for HESS control.
Keywords: Hybrid energy storage system, Robust model predictive control, Fading-
weight cost function, Moving horizon estimation, Model mismatch

1. Introduction. In recent years, there has been a significant focus on energy storage
technology both domestically and internationally [1, 2, 3]. While batteries continue to be
the primary energy storage carrier for existing devices due to their high energy density,
they are limited by their storage mechanism. This results in low power density, few cycles,
and unsuitability for high-power charging and discharging, as well as frequent charging
and discharging occasions. Supercapacitors (SCs), on the other hand, have fast response
speed, low energy density, strong power output capacity, and long cycle life. Hybrid energy
storage systems (HESSs), which combine both batteries and SCs, can leverage the high
power density of SCs and high energy density of batteries. This enhances the efficiency
of the entire system and extends battery service life. Consequently, HESS solutions have
gained wider acceptance and commendable applications across various fields such as multi-
area interconnected power systems [4], electric vehicles [5], and photovoltaic systems [6].

The integration of two distinct energy storage device characteristics renders the con-
trol design complex. Addressing multi-constraint control problems and achieving multi-
objective optimization in such scenarios, require advanced control algorithms based on
models. Model predictive control (MPC) is an algorithm of this nature that has gained
widespread use in the control of HESSs due to its advantages. It is important to note that
for achieving optimal prediction performance, accurate modeling of HESSs is necessary.
A mismatch between the prediction model and the controlled system could significantly
decrease the MPC’s performance.
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Some scholars have directed their efforts towards enhancing the precision of system
models. In particular, voltage sensors were integrated into the battery and SC as studied
in [7]. A more sophisticated battery model was employed with the aim of enhancing the
accuracy of the system model. The MPC strategy was developed based on a linear state-
space model, which regulated the operation of an HESS under constraints. The approach
facilitates power distribution, and extends the battery life. Despite the improvement in the
model’s accuracy achieved by the above approach, the default system parameter retains
static accuracy, and hence, exhibits certain limitations. In this context, a novel MPC
strategy was introduced in [8], which is founded on a linear parameter-varying (LPV)
model that accommodates variations in battery parameters across its state of charge. The
proposed LPV prediction model outperforms prevailing linear time-invariant prediction
models in terms of prediction accuracy, albeit at the expense of increased computational
burden.
Furthermore, there is a growing body of literature that emphasizes the importance of

improving controller robustness to minimize the impact of model mismatch on system
behavior. For instance, in [9], researchers proposed a robust model predictive control
(RMPC) strategy for the control of an HESS that can account for various operational
constraints and model uncertainties. Notably, there is a significant gap in the research on
model mismatch problems from a controller perspective, which presents ample opportuni-
ties for further exploration. In this study, we propose a novel fading-weight cost function
for RMPC controller design and demonstrate its efficacy. To the best of our knowledge,
this work is the first to introduce the fading-weight cost function in state-space model
based RMPC strategy design. Besides, we propose a moving horizon estimation (MHE)
approach for estimating the upper-bound of the disturbance.
In summary, this study makes several significant contributions. First, it proposes a

fading-weight cost function and corresponding RMPC controller that prioritize short-
term predictive control performance and address the issue of model mismatch caused by
the time-varying parameters of the HESS. Second, the study introduces an MHE tech-
nique that estimates the upper bound of the disturbance based on real-time system state,
leading to improved disturbance suppression capabilities. These contributions have the
potential to enhancing the effectiveness and reliability of control strategies for HESSs. The
simulation results show that the proposed control strategy has good control performance
for the HESS, especially in the case of disturbance or model mismatch.
The remaining sections are organized as follows. In Section 2, the composition and mod-

eling process of an HESS are introduced. In Section 3, the controller design is presented
and the MHE method is described. The results of simulation are given in Section 4. A
summary is given for this paper in Section 5.

2. Modeling of the Hybrid Energy Storage System. In this section, we firstly
introduce the overall structure and working principle of the HESS. Then, its state-space
averaged model is derived.

2.1. Description of the HESS. The circuit diagram of the HESS we studied is shown in
Figure 1. It contains two bidirectional direct current-direct current (DC/DC) converters,
a lithium battery and an SC. Two DC/DC converters are in parallel at both ends of
the load, and each DC/DC converter is made up of two insulated gate bipolar transistors
(IGBTs), a capacitor Ci, an inductor Li, and a resistor RLi, where i = 1, 2. The capacitors
C1 and C2 are used to filter the high frequency portion produced by switching IGBTs,
i.e., acting as a low pass filter. The loss of the inductors L1 and L2 is expressed by their
connected resistors RL1 and RL2, respectively.
The commonly used internal resistance model is considered for the battery, which con-

sists of an ideal voltage source Eb and an equivalent resistance Rb in series. An ideal
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Figure 1. The hybrid energy storage system structure diagram

capacitor Csc and an equivalent resistor Rsc in series form the simple RC model used
for the SC. It is worth mentioning that the voltage drop of the SC under high current
discharge is much slower than that of others, so the dynamic characteristics of the SC
can be ignored. For this reason, the capacitor Csc is replaced with an ideal voltage source
Esc.

The IGBTs S1 and S2 in the DC/DC converter operate simultaneously, i.e., when one
is turned on, the other is turned off. The IGBTs S3 and S4 operate in the same way. The
duty cycles during which S1 and S3 are turned on are defined as D1 and D2, respectively.
The on-resistance values of S1, S2, S3, and S4 are Ron1, Ron2, Ron3, and Ron4, respectively.

2.2. Modeling of the HESS. As shown in Figure 1, five variables are marked in the
circuit, i.e., v1, v2, i1, i2 and vo, and their average value in a switching cycle is defined as
v̄1, v̄2, ī1, ī2 and v̄o. Below, we will derive the state-space averaged model for the HESS.

Define the status variable as x =
[
v̄1 v̄2 ī1 ī2 v̄o

]T
and the control input vector as

u = [Eb Esc]
T . We can select any circuit variable of interest as the output, and this paper

defines the output variable as y =
[
ī1 v̄o

]T
. From this, the fifth-order state-space model

of the HESS is derived, as shown in Equation (1).

ẋ = Acx+Bcu (1a)

y = Ccx, (1b)

where
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Bc :=



1

RbC1

0

0
1

RscC2

0 0
0 0
0 0


, and Cc :=

[
0 0 1 0 0
0 0 0 0 1

]
.

After discretization, the discrete model is obtained as follows:

x(k + 1) = Ax(k) + Bu(k)
y(k) = Cx(k),

(2)

where A, B and C are the system matrices.

Remark 2.1. The specific details of obtaining the state-space averaged model (1) are
referred to [10].

3. Control Design. This section discusses the proposed fading-weight RMPC controller
and the MHE method. Specifically, the MHE method estimates the upper bound of the
disturbance based on real-time disturbance to the system, and is applied to the design of
the fading-weight RMPC controller. The proposed control strategy is shown in Figure 2.

Figure 2. The structure diagram of the proposed control strategy

3.1. Prediction model. Considering modeling errors, external disturbances and other
factors, the following prediction model is adopted for the state-space averaged model (2).

x(k + i+ 1|k) = Ax(k + i|k) +Bu(k + i|k) + d(k + i|k), (3)

where d ∈ Rq is the external disturbance. Moreover, control input is limited to |uj| ≤ ūj,
j = 1, 2, and the external disturbance satisfies the constraint ∥d∥2 ≤ δ, where scalar δ > 0
is to be estimated online.

3.2. Moving horizon estimation method. In order to determine the value of δ, an
MHE approach is employed in this paper, which can update the value of δ according to
the real-time system state. Specifically, we represent the disturbance as

d(k) = x(k)− x̃(k), (4)

where x(k) is the state of the system with external disturbance and x̃(k) is the state of
the system without external disturbance. Then, the disturbance constraint can be further
expressed as

(x(k)− x̃(k))T (x(k)− x̃(k)) ≤ δ. (5)
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We perform a minimization process, namely

min δ

s.t. δ > 0. (6)

In this way, we can obtain the minimum value of δ at time k, i.e., δ∗(k). Similarly, at
time k − 1, there is also a minimum value of δ, i.e., δ∗(k − 1). The value of δ is assigned
with δ∗(k) and used it in controller design, if the following condition is satisfied.

δ∗(k − 1) < δ∗(k). (7)

3.3. RMPC ingredients. We consider the following H∞-type fading-weight cost func-
tion.

J∞(k) =
∞∑
i=0

αiL(x(k + i|k), u(k + i|k), d(k + i|k)), (8)

with the fading weight αi and the state cost L := ∥x∥2Q + ∥u∥2R − µ∥d∥2, where α ∈ [0, 1]
is a scalar, Q > 0 and R > 0 are constant positive definite matrices, and µ > 0 is a
scalar. To obtain an upper bound on the cost function, introduce a quadratic function
V (x) := xTPx, where P is a positive definite matrix, such that the following inequality
holds for all i ≥ 0.

αi+1V (x(k + i+ 1|k))− αiV (x(k + i|k))
≤ −αi+1L(x(k + i|k), u(k + i|k), d(k + i|k)). (9)

Then, we need to derive the upper bound of the H∞-type fading-weight cost function (8)
as follows:

∞∑
i=0

αiL(x(k + i|k), u(k + i|k), d(k + i|k)) ≤ V (x(k|k)), (10)

where V (x(k|k)) is the desired upper bound. We minimize this upper bound by introduc-
ing a scalar γ,

min γ
s.t. V (x(k|k)) ≤ γ.

(11)

On the basis of the Schur complement and the definition of Λ := P−1γ, the constraint in
Inequality (11) is equivalent as follows:[

1 x(k|k)T

x(k|k) Λ

]
≥ 0. (12)

For future control inputs, the following linear feedback control law is employed.

u(k + i|k) = Kx(k + i|k), i ≥ 0. (13)

Substituting Equation (13) into inequality (9), one has

∥(A+BK)x(k + i|k) + d(k + i|k)∥2P − ∥x(k + i|k)∥2P
/
α

≤ −∥x(k + i|k)∥2(Q+KTRK) + µ∥d∥2. (14)

Based on Schur complement, a sufficient condition for Inequality (14) to hold can be
obtained as follows:

−Λ/α ∗ ∗ ∗ ∗
0 −ζI ∗ ∗ ∗

AΛ + BF γI −Λ ∗ ∗
QΛ 0 0 −γQ ∗
RF 0 0 0 −γR

 ≤ 0, (15)
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where F := KΛ, ζ := µγ. Inequality (14) can be further written as follows:

∥(A+BK)x(k + i|k) + d(k + i|k)∥2P − ∥x(k + i|k)∥2P
≤ −∥x(k + i|k)∥2(Q+KTRK) + µ∥d∥2 + 1− α

α
∥x(k + i|k)∥2P . (16)

It is required that

−∥x(k + i|k)∥2(Q+KTRK) + µ∥d∥2 + 1− α

α
∥x(k + i|k)∥2P < 0. (17)

According to Schur complement, the sufficient condition of the above inequality can be
obtained as follows,  −γQ

√
1− α

α
γI

∗ −Λ

 < 0. (18)

The new variable ζ represents the level of disturbance attenuation in input-to-state stable
analysis. To ensure better control performance, a smaller value of µ is required. Since
both µ and γ are minimized, the optimization problem can be turned into

min ζ

s.t. γ ≤ γ0, (19)

where γ0 is an upper bound value of γ. The constraint (19) is used to ensure that the
value of γ does not increase.
Now it is time to consider the handling of input constraints. Applying the techniques

presented in [11], the input constraint can be satisfied by the following linear matrix
inequality. [

Z F
FT Λ

]
≥ 0, (20)

with Zjj ≤ ū2
j , where Z is a symmetric matrix.

Due to the existence of the disturbance, a robust positively invariant (RPI) set con-
straint [12] is supposed to be considered to ensure the recursive feasibility of online opti-
mization problem solving. Based on the S-procedure, the RPI set can be guaranteed by
the following sufficient conditions with a positive scalar λ.[

∥A+BK∥2P/γ − P/γ ∗
(P/γ)(A+BK) P/γ

]
− λ

[
−P/γ ∗

0 1/δI

]
≤ 0. (21)

Using the Schur complement, the above inequality is equivalent to (−1 + λ)Λ ∗ ∗
0 −λ/δI ∗

AΛ +BF I −Λ

 ≤ 0. (22)

To sum up, the optimization problem solved online is turned into

min
Λ,F,γ,ζ,λ

ζ

s.t. (12), (15), (18), (19), (20), (22). (23)

4. Simulations. In this section, the proposed novel fading-weight RMPC strategy is ap-
plied to the HESS to achieve accurate control of battery current and load voltage, so as to
demonstrate the effectiveness of the proposed strategy. The simulations are performed in
MATLAB using the YALMIP toolbox [13] and SDPT3-4.0 toolbox [14]. As an illustration
of the superiority of the proposed method, there will be a comparison with the H∞-type
RMPC [15], which makes use of a traditional cost function.
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Figure 3 shows the comparison of the proposed method with or without MHE method,
in which the fading weight is α = 0.95 and the disturbance added throughout is selected
as d(k) = sin(k/4 − 1)/6 · [1 1 1 1 1]T . Simulation results show that both of them are
able to keep the HESS stable under the disturbed conditions. However, for the same
disturbance, the proposed method has better disturbance suppression performance.
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Figure 3. Comparison of the battery current and load voltage control
performance between fading-weight RMPC with and without MHE method

To further demonstrate the superiority of the proposed fading-weight RMPC method,
the model mismatch is considered, specifically, RL2 changes from 0.114 Ω to 0.314 Ω.
As shown in Figure 4, the proposed method can still achieve accurate control of battery
current and load voltage under the condition of disturbance, where the fading weight is
α = 0.8 and the disturbance added throughout is selected as d(k) = sin(k/4 − 1)/10 ·
[1 1 1 1 1]T . A comparison with the H∞-type RMPC approach using the traditional
cost function is also given. As can be seen from Figure 4, in the case of model mismatch,
the H∞-type RMPC method has poor control performance on the battery current, with a
large overshoot at the initial phase, and the two methods have similar control performance
on the load voltage.

5. Conclusions. In this paper, we propose a novel RMPC strategy for HESSs based on a
fading-weight cost function. This approach is devised to enhance the control performance
of the RMPC controller when faced with the model mismatch problem. Furthermore, we
introduce a new technique for estimating the upper bound of the disturbance by means
of an MHE method that utilizes the real-time system state. This estimation method is
updated during operation to further improve the disturbance suppression capability for
the controller. The simulations demonstrate the excellent performance of the proposed
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Figure 4. Comparison of the battery current and load voltage control
performance between fading-weight RMPC and H∞-type RMPC method

method in terms of both disturbance suppression and model mismatch problem. There-
fore, the proposed method could be a promising approach for controlling HESS under
uncertainties. Our future work will be extending the relevant results to multiple inter-
connected HESSs.
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