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Abstract. Recently, Feature Selection (FS) methods have been extensively researched
using eXplainable Artificial Intelligence (XAI). Among these methods, SHapley Additive
exPlanations (SHAP) is a representative approach. SHAP evaluates the impact of feature
subset on predicted values based on game theory. Consequently, the feature importance
can vary when iterated, and change depending on the prediction model used. In this
paper, we propose a robust FS method based on order statistics. We determine feature
ranking through two approaches: Feature Importance (FI) derived from the model-specific
using different prediction models and model-agnostic using iterative experiments. Finally,
we construct feature subsets based on the sum of these rankings and criteria. Through
experiments, we validate the robustness and efficiency of our approach. By utilizing this
approach, we can identify suitable feature subsets without the need to explore various FS
methodologies, regardless of the prediction model and data dimension.
Keywords: Feature selection, Time-series forecasting, Order statistics, XAI, SHAP

1. Introduction. FS is considered an important factor in Time-Series Forecasting (TSF)
problems, but it comes with various constraints [1]. High-dimensional data provides op-
portunities to capture and reflect external volatility, patterns, and trends. However, as
the dimensionality increases, the required space for data processing grows exponential-
ly, leading to a gradual deterioration in data quality. This phenomenon is known as the
‘curse of dimensionality’ [2]. FS aims to reduce dimensionality by selecting a subset from
the original set of features based on noise, relevance, and redundancy in high-dimensional
data. It strives to identify and choose meaningful features to address the problem at hand.
By reducing the dimensionality and emphasizing important features, FS improves the effi-
ciency of data analysis and prediction tasks, enhancing the understanding and prediction
of the given problem.

FS is commonly divided into three types: filter method, wrapper method, and embed-
ded method and the procedure of FS is illustrated in Figure 1 [3]. FS is conducted through
five stages, and the performance varies depending on the decisions made at each stage.
In the first stage, the starting point of FS is identified, and the search direction is select-
ed from options such as forward, backward, or random. In the second stage, the search
strategy is determined, which can be randomized, exponential, or sequential. Depending
on the chosen strategy, it is possible to encounter NP-hard problems. The third stage
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Figure 1. Five-stage of FS procedure

involves determining the evolution criteria, which includes filter, wrapper, embedded,
and hybrid methods. Filter methods are independent of the learning algorithm and select
features based on statistical evidence such as Pearson’s correlation coefficient, ANOVA,
and Chi-square. These methods are efficient and computationally faster but may find it
challenging to identify subsets that have a significant impact on learning like prediction.
Wrapper methods act as surrogate models to evaluate the predictive power of subsets of
features. However, even variables that have a significant influence on the output may be
eliminated, and they often involve a high computational cost due to iterative processes.
Lastly, embedded methods perform feature selection during training, allowing for the
selection of subsets that have an impact on specific models. Consequently, the choice of
methodology depends on the type of model and desired prediction performance [2,3]. In
the fourth stage, stopping criteria are specified, taking into consideration of factors such
as overfitting and computational complexity. Finally, in the last stage, the validity of
the results is verified using techniques such as cross-validation and confusion matrices for
validation purposes.
Recently, there has been significant research in the FS aimed at achieving higher predic-

tion or classification accuracy while reducing data dimensionality. Hybrid approaches and
optimization methodologies have been extensively studied to achieve this goal. Thakkar
and Lohiya [4] propose a novel filter-based FS method that utilizes the difference between
the standard deviation and the mean and median values. Through this approach, they
derive a reduced subset of features that exhibit high discernibility and deviation. The
fusion of statistical measures allows for the incorporation of statistical significance. In
addition, various efforts have been made to improve performance, such as ensemble meth-
ods that combine multiple filter methodologies [5], hybrid approaches that integrate filter
and wrapper methods [6,7], and the application of metaheuristic algorithms [8,9].
On the other hand, there are also studies that focus on interpretability for model expla-

nation and feature selection [10]. These studies utilize XAI methodologies for FS, aiming
to provide explanations for all decisions made throughout the entire process of machine
learning, particularly in the process of feature selection [3]. Many studies have found SHAP
to be a suitable feature selection method, considering the limitations of other methods
such as permutation importance [11], which is inconsistent and unable to calculate nega-
tive influences, and Local Interpretable Model-agnostic Explanations (LIME) [12], which
is more suitable for single prediction explanations rather than providing global results.
Therefore, due to these drawbacks, researchers have widely utilized SHAP as a feature
selection method [10,13]. On the other hand, there are limitations to using SHAP for FS.
SHAP is a representative post-hoc method that determines the influence of features on the
results after the experiment without repetition [14]. Accordingly, it suffers from a critical
drawback: the Shapley values fluctuate [15] due to various factors such as the prediction
period and the model, making SHAP unreliable and unsuitable as an FS method.
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In this study, based on previous research, SHAP is utilized to calculate FI, and then
rankings are obtained using order statistics. Additionally, to address the limitations of
SHAP, the rankings are further enhanced by training and summing multiple rankings to
create a feature ranking criterion. The performance of FS is evaluated by comparing it
with previous FS methodologies to determine how much it improves prediction accuracy.

The contributions of this study are as follows: 1) We propose a novel framework and
prioritized criterion for utilizing SHAP as an explainable FS method; 2) We introduce
a dual perspective approach to feature ranking by considering both model-specific and
model-agnostic viewpoints. This comprehensive perspective enhances the robustness and
reliability of the feature ranking process; 3) We present a Correction Feature Rank (CFR)
for recalculating and rearranging redundant rankings, facilitating effective Feature Rank-
ing (FR) based on order statistics; 4) Through extensive experimentation, our proposed
method demonstrates improved predictive performance, even when the original data di-
mension is halved. It outperforms other existing feature selection methods, highlighting
its efficacy in enhancing prediction accuracy. In addition to improved performance, our
proposed method allows for the interpretation of feature importance.

The remainder of this paper is organized as follows. Section 2 presents a description
of the proposed method. Section 3 provides the results derived from our experiments
and compares them with the results of other FS methods. Finally, Section 4 presents the
conclusions along with future research ideas.

2. Proposed Method. This section describes our methodology. An overall framework
of the proposed method is shown in Figure 2.

Figure 2. Overall framework of the proposed method
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First, we conducted data pre-processing including handling missing data, ensuring con-
sistent time units, and performing normalization. Then, we approached the problem from
two perspectives. In the first perspective, we employed representative deep learning-based
time series prediction models such as Recurrent Neural Network (RNN), Long Short-Term
Memory (LSTM), and Gated Recurrent Unit (GRU) to perform predictions. We utilized
the post-hoc analysis to apply SHAP and calculated the FI values and rankings for each
model. In the second perspective, we utilized eXtreme Gradient Boosting (XGBoost) and
SHAP to randomize the samples of the data, allowing for repeated experiments. Through
these iterations, we obtained FI values and rankings for each iteration and combined
them to derive a CFR. Subsequently, we combined the rankings from the three deep
learning-based models and CFR using ranking summation.
Based on this ranking, we determined a feature subset with dimensions less than or

equal to half of the original data dimensions. This subset was then used as the input for
the GRU model to derive the final output.

2.1. FI. We calculate the FI based on the Shapley value. This value represents the av-
erage marginal contribution of a feature value based on results across all possible combi-
nations of features. When the feature dimension of N , the feature importance is depicted
as shown in Figure 3, and each row is independent. The equation for Shapley value that
the only additive method that satisfies the properties of local accuracy, Missingness, and
consistency is given by Equation (1), where f is the model, x is the available variables,
and x′ are the selected variables. The quantity fx(z

′)−fx(z
′ \ i) expresses, for every single

prediction, the deviation of Shapley values (ϕ) from their mean: the combination of the
i-th variable.

ϕi(f, x) =
∑
z′⊆x′

|z′|!(M − |z′| − 1)!

M !
[fx(z

′ \ i)] (1)

Figure 3. Description of FI and FR

2.2. FR. Based on the calculated FI values, we sort the feature in ascending order. We
define each order as the FR as shown in Figure 3. In this study, we obtained a total of
103 FRs, including model-specific FR (FRGRU ,FRLSTM ,FRRNN ) and model-agnostic FR
(FR1,FR2, . . . ,FR100).

2.3. CFR. For the model-agnostic FR, which refers to the FR obtained through multiple
samplings of the sample data using a single model and iterating through the process, both
the FI values and the resulting FR can vary across different iterations of the experiment.
To enhance the robustness of this ranking, we propose a three-step approach to derive
the CFR.
Firstly, we set the FR as the mode value among the FRs obtained from each iteration

of the experiment. Secondly, in cases where there are overlapping rankings, we recalculate
the rank based on the probability of the actual experiment and select the rank with the
smaller value. In Figure 4, it can be observed that in the example alongside the CFR
procedure, the FR of X1 and X8 are both equal to 1. Although they are determined as
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Figure 4. The procedure of CFR

the mode value, in the actual experiment, FR(X1) appeared 70 times as FR(X1) = 1 and
30 times as FR(X1) = 2. Therefore, the ranking probability value is re-calculated as 1.3.
On the other hand, FR(X8) had the highest occurrence as FR(X8) = 1, but it appeared
50 times as FR(X8) = 1, 40 times as FR(X8) = 3, and 10 times as FR(X8) = 5, resulting
in a higher variance with a ranking probability value of 2.2. In such a case, the ranking
is changed to FR(X1) being ranked 1 and FR(X8) being ranked 2. Lastly, we shift the
rank by the number filled in front and derived the final CFR.

2.4. Feature subset. Finally, we calculate the rank sum of FRGRU , FRLSTM , FRRNN ,
and CFR obtained from each experiment result to obtain the final FRSum . We determined
a feature subset with dimensions less than or equal to half of the original data dimensions
(= the median of rankings). This subset is used as the input for the GRU model to
perform predictions. To evaluate the performance of the proposed model and compare it
with other FS methods, we use Root Mean Squared Error (RMSE) and Mean Absolute
Percentage Error (MAPE) [16], and the equations are as follows:

RMSE =

√∑n
t=1 (ŷt − yt)

2

n
(2)

MAPE =
100%

n

n∑
t=1

∣∣∣∣yt − ŷt
yt

∣∣∣∣ (3)

3. Experiments. In this section, we present our experimental setup and data descrip-
tions. Additionally, we compare the proposed method with previous FS models.

3.1. Experimental setup. We conducted our experiments using two different datasets
with distinct characteristics as indicated in Table 1.

Table 1. Description of experiment datasets

Notation
# of
rows

# of
features

Collected duration Unit
Target
variable

Data offer

DT1 213 8 2003.03.31∼2020.10.31 Monthly
Container
throughput

Busan Port
Authority (BPA)

DT2 273 33 2017.01.08∼2022.03.20 Weekly
Mandarin
mean price

Jeju-Island

Our experiment was using Python with TensorFlow and PyTorch as the deep learning
framework. Each dataset is divided into a training set of 70% and a testing set of 30%.
The model is trained for a maximum of 1000 epochs with ADAM optimizer, 10−3 learning
rate. The number of iterations for the model-agnostic perspective is 100. We compared
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our prediction results with those of the existing FS method with Pearson Correlation
Coefficient [3], Mean Square Error with data image [5], Dynamic Time Warping [5],
Img2Vec with Cosine Similarity [5], and ensemble method [5] using the RMSE and MAPE
metrics [16] for validation.

3.2. Experimental results. The SHAP FI plot for DT1 is shown in Figure 5. It shows
that the Shapley value varies with each iteration, but the importance ranking does not
change significantly. This means that we can further reduce volatility by selecting ranking,
not importance value. The FRSum and feature subsets obtained for each dataset are
presented in Figure 6. DT1 was constructed using a subset comprising features ranked
up to 4 of a total of 8 features, while DT2 was constructed using a subset comprising
features ranked up to 16 out of a total of 33 features (less than or equal to half of the
original data feature dimensions).

Figure 5. SHAP importance plot (FI ) for DT1

Figure 6. Final feature subset based on FRSum

The prediction results using GRU model with the final feature subset as input are
presented in Table 2. Our proposed model shows a 40% improvement in performance
compared to the case that not used FS (original data). Despite our model reducing the
number of features by half compared to other FS methodologies, it achieved the best
predictive performance. For DT2, where the target value contains zeros and MAPE cal-
culation was not possible, it is evident that it achieved the best results based on RMSE.
The predicted results of the proposed method can also be observed in Figure 7 through a
comparison graph with the actual values.

4. Conclusions. We present a new framework and prioritized criterion for incorporating
SHAP as an FS method, leveraging its explainability. We establish feature rankings from
two perspectives: model-specific and model-agnostic and derive the ranking sum using
order statistics. Additionally, we propose CFR, a method for recalculating and rearrang-
ing redundant rankings, to enhance the effectiveness of feature ranking. Our proposed
method demonstrates enhanced predictive performance, despite reducing the original da-
ta dimension by half. It also exhibits favorable performance compared to other previous
FS methods, while providing insights into the influence of each selected feature. In our
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Table 2. Prediction results of each dataset

Dataset FS method # of features RMSE MAPE

DT1

All (Not used FS) 8 115221 6.339

Pearson Correlation Coefficient 7 115247 6.348

Mean Square Error 3 104886 6.04

Dynamic Time Warping 3 94758.6 5.074

Img2Vec+Cosine Similarity 7 133084 7.369

Ensemble method 3 137397 7.956

Proposed method* 4 76168.1 3.814

DT2

All (Not used FS) 33 1206.56 −
Pearson Correlation Coefficient 3 1338.39 −

Mean Square Error 8 1337.64 −
Dynamic Time Warping 8 1332.56 −

Img2Vec+Cosine Similarity 32 1212.54 −
Ensemble method 12 1319.46 −

Proposed method** 16 1173.21 −
*Proposed method’s features (DT1): Container throughput, Manufacturing Production
Index (MPI), Consumer Price Index (CPI), Export Price (EP)

**Proposed method’s features (DT2): Price mean, Price min, Trade total, Shipment,
Sweet-persimmon price, Redhyang price, Apple price, Orange price, woldong-satsuma
price, Houseonju price, Orange import amount, House-satsuma shipment, woldong-
satsuma shipment, Setoka shipment, Kara shipment, Beni-Madonna shipment

(a) DT1: Container throughput data (b) DT2: Mandarin price data

Figure 7. Prediction results with real data

future research, we will optimize the current feature selection criterion, which is currently
set based on the median of ranking, using the Wilcoxon rank sum test. Additionally, we
aim to enhance the robustness by applying our method to high-dimensional datasets in
various industries. Furthermore, we anticipate expanding the applicability by combining
it with TimeSHAP, which considers sequence information, and exploring its potential in
the context of classification problems.
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