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Abstract. Determining optimal pricing for multiple substitutable products across mixed
customer segments is a fundamental objective for businesses aiming to sustain competi-
tiveness. This paper focuses on the study of optimal pricing strategies for multiple sub-
stitutable products within a fixed time horizon, while accounting for the heterogeneity
of customer preferences across different segments. To model this heterogeneity, a mixed
logit model is utilized. Pricing optimization with the overlapping multiple segments is a
difficult nonconvex maximization problem. We develop a binary fractional programming
model that computes relaxation upper bound for the mixed logit pricing problem by dis-
aggregating and discretizing price vectors. We next develop an effective Lagrangian dual
formulation that uses simple Newton search to compute dual function. For randomly
generated problem instances, we observed that the proposed model achieves within one
percent of the optimal value for small sized problem, and it consistently generates tight
upper bound for bigger sized problems within 500 CPU seconds.
Keywords: Mixed logit pricing model, Multinomial logit demand function, Revenue
management, Fractional programming, Lagrangian dual

1. Introduction. Numerous online retailers with a presence in both virtual and phys-
ical stores spanning extensive geographical regions encounter challenges in determining
appropriate pricing strategies for their diverse product lines. In order to enhance revenue
and profitability, these companies heavily rely on conventional pricing software solutions.
However, in order to effectively leverage the variations in customer preferences, pricing
decisions must take account of the unique characteristics of customer utility. In recent
omnichannel retailing environment, increasing competition between online, offline, com-
petitor’s channels, product bundle pricing, and new order fulfillment option such as buy
online pick up in store necessitate accurate customer preference modeling [1-4]. The multi-
nomial logit (MNL) model has conventionally served as a valuable analytical tool for es-
timating customer choice preferences. Moreover, to adequately capture the heterogeneity
within customer groups across different segments or geographic zones, the multi-segment
mixed logit model has gained widespread adoption [5,6].

For unconstrained nested MNL model, the optimal revenue value is characterized as
a fixed point of a nonlinear equation. Thus, for a single segment pricing problem, if the
prices in that segment are independent to other segments, optimal revenue prices can
be computed using one-dimensional search algorithm [7]. For an MNL pricing problem
with linear constraints, it has been observed that the total revenue function as the sum
of price-weighted expected demand is not in general concave or quasi-concave function of
prices [8]. Instead of price, market shares can be used as decision variables and resulting
formulation can be solved as a traditional convex optimization problem. For an MNL
mixed logit problem, near optimal approximation solution is computed using modified
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attraction function when the attraction function is locally Lipschitz continuous [9]. In
the market share variable reformulation, if the no purchase probabilities for each segment
are fixed as constraints, the Lagrangian dual of the resulting formulation becomes simple
convex minimization problem. Using this idea, a branch-and-bound approximation algo-
rithm in the hypercube is developed [11]. For a multi-segment MNL model, when most of
the price vectors are segment-dependent with a few segment-independent price variables
present, a mixed integer programming model is developed to address pricing optimization
in the case of discrete prices, where some prices are segment-independent. Their model
considers scenarios where a retailer operates both online and brick-and-mortar stores
across multiple zones, and customers in different zones possess a mixture of zone-specific
and price-specific attributes [12].
Due to the inherent non-convex nature of the mixed logit pricing problem, obtaining

a global optimal solution necessitates the utilization of approximate or exact algorithms,
which rely on computing a tightly bounded upper limit for the optimal value of the prob-
lem. In this paper, we develop a binary fractional programming model that computes
relaxation upper bound for the mixed logit pricing problem by disaggregating and dis-
cretizing price vectors. We next develop an effective Lagrangian dual formulation that
is separable with respect to segments and its dual function is efficiently computed by a
Newton line search.
In Section 2, we describe a mixed logit pricing problem formulated as a general non-

linear programming problem. Section 3 describes a disaggregated relaxation model, its
Lagrangian dual formulation, and solution algorithms. Computational experiences of the
nonlinear mixed logit pricing problem, its approximation, and the proposed model are
provided in Section 4. Finally, Section 5 concludes the paper.

2. Problem Statement and Preliminaries. There are L = {1, . . . , c} segments of
customers and the probability of a customer belonging to segment l is given as Γl; thus,∑

l∈L Γl = 1. Let N = {1, . . . , n} denote a set of products, and we assume that a cus-
tomer may purchase any products offered, but her choice probability is dependent on
particular segment she belongs. An attractiveness of product i in segment l is denoted
by a strictly decreasing twice differentiable function f l

j(xj). In MNL demand function,

f l
j(xj) = ealj−bjxj , where alj is price-independent component and bj represents price-
sensitive components. Attraction functions used in other demand models are: in linear
attraction demand model, the attraction function is given as fi(xi) = αi−βixi, αi, βi > 0,

while in multiplicative competitive interaction (MCI) demand model, fi(xi) = αix
−βi

i ,
αi > 0 and βi > 1.
Let ai denote the unit profit of product i and let qil(x) denote the probability that

customer in segment l purchases product i given price vector x = (x1, . . . , xn). Mixed
logit profit maximization problem is formulated as the following nonlinear programming
problem.

(P) max
∑
i∈N

∑
l∈L

Γlaixiqil(x) (1)

s.t.
∑
i∈N

∑
l∈L

AmiΓlqil(x) ≤ um m ∈ M , {1, . . . , s} (2)

li ≤ xi ≤ ui i ∈ N. (3)

The demand probability qil(x) of product i and no purchase probability q0l(x) in segment
l is

qil(x) =
f l
i (xi)

1 +
∑

j∈N f l
j(xj)

, q0l(x) =
1

1 +
∑

j∈N f l
j(xj)

. (4)
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The objective function (1) denotes total expected profit when the prices are x = (x1, . . . ,
xn).

Note that demand of product i in segment l depends on the entire price vector x. Con-
straints (2) capture retailer’s operational constraints and constraints (3) denote the lower
and upper bounds for the prices. The modeling of constraints pertaining to the demand
function and price vectors encompasses discrete pricing, volume or sales goal constraints,
as well as a price monotonicity constraint that mandates a specified percentage difference
in price between a particular product and a substitutable similar product. Additionally,
price bound constraints are employed to define the allowable percentage difference relative
to historic price or competitor’s price.

3. Main Results. The objective function in problem (P) is not a concave, or pseudo-
concave function of prices and with linear constraints it has many local maxima. It is
demonstrated with two-product, three linear constraints, the level set of the profit func-
tion (1) is not a convex set [8,9]. For unconstrained case considered in [11], for certain
values of no purchase probability, the convex subproblems are frequently infeasible or
unbounded, so there needs to be a robust solution approach to problem (P).

In this section, we develop a relaxation of (P) and its Lagrangian dual formulation.
Note that Lagrangian dual function is usually a convex function even though the primal
objective function is not a concave function. To obtain a relaxation bound to (P), the
price vector xi is replaced with the segment dependent price xil. Using xil, the objective
function and constraints of (P) are reformulated as

(RP) max
∑
i∈N

ai
∑
l∈L

Γlxilqil(xil)

s.t.
∑
i∈N

Ami

∑
l∈L

Γlqil(xil) ≤ um m ∈ M

li ≤ xil ≤ ui, i ∈ N.

From a feasible solution x̄ of (P), setting x̄il = x̄i, i ∈ N , l ∈ L, (x̄il) are a feasible
solution to (RP). Also, we restrict xil ∈ Iil where Iil is a finite set containing possible
values of price xil. Restriction of price values to a discrete set Iil is the result of common
observation in ticket price determination process in retailers. Usually the ticket prices are
discrete, often end with magic number endings (such as $.99), and there are historic lower
and upper bounds to sticker prices. So we can represent each price xil as

xil =
∑
k∈Iil

pilkzilk∑
k∈Iil

zilk = 1 i ∈ N, l ∈ L

zilk ∈ {0, 1} i ∈ N, l ∈ L, k ∈ Iil.

Let qilk = aiΓlpilkf
l
i (pilk), αmilk = AmiΓlf

l
i (pilk), rjlk = f l

j(pjlk), and we can reformulate
(RP) as the following binary fractional programming problem.

(RDP) max

∑
l∈L

∑
i∈N

∑
k∈Iil qilkzilk

1 +
∑

j∈N
∑

k∈Ijl rjlkzjlk
(5)

s.t.

∑
l

∑
i

∑
k αmilkzilk

1 +
∑

j

∑
k rjlkzjlk

≤ um m ∈ M (6)∑
k∈Iil

zilk = 1 i ∈ N, l ∈ L (7)

zilk ∈ {0, 1} i ∈ N, l ∈ L, k ∈ Iil. (8)
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Formulation (RDP) can be further reformulated as a linear integer programming mod-
el by the standard Charnes and Cooper variable substitution. In this paper, we try to
solve directly the binary fractional programming formulation (RDP). For problem (RDP),
define dual function ϕ(λ, z) as

ϕ(λ, z) = max
z∈Z

{∑
l∈L

∑
i∈N

∑
k∈Iil qilkzik −

∑
l∈L

∑
i∈N

∑
k∈Iil

∑
m∈M λmαmilkzik

1 +
∑

j∈N
∑

k∈Ijl rjlkzjk

}

=
∑
l∈L

ϕl(λ, z), where ϕl(λ, z) = max
z∈Z

{∑
i∈N

∑
k∈Iil

(
qilk −

∑
m∈M λmαmilk

)
zilk

1 +
∑

j∈N
∑

k∈Ijl rjlkzjlk

}
.

and Z =
{∑

k∈Iil zilk = 1, ∀i, zilk ∈ {0, 1},∀i, l, k
}
. Note that dual function ϕ(λ, z) and

set Z are separable with respect to segment l. Then the Lagrangian dual formulation of
problem (RDP) is the following minimization problem.

(LD) min
λ≥0

∑
l∈L

ϕl(λ, z) (9)

Dual function ϕl(λ, z) is computed using the following algorithm for the fractional pro-
gramming problem. To simplify the presentation, we consider following linear fractional
programming problem.

(LFP) max

∑m
i=1

∑n
j=1 cijzij

1 +
∑m

s=1

∑n
t=1 dstzst

(10)

s.t.
n∑

j=1

zij = 1 i = 1, . . . ,m (11)

zij ∈ {0, 1} i = 1, . . . ,m, j = 1, . . . , n. (12)

In the denominator of Equation (10), parameter dst corresponds to some attraction
function value rjlk in (RDP) and it is strictly positive. For solving (LFP), we can apply
Dinkelbach method. Define

F (α) =
m∑
i=1

n∑
j=1

(cij − αdij)zij − α.

Then, the optimal value of LFP is obtained by solving the following one-dimensional
problem with respect to α

min
α

{α|F (α) ≤ 0} (13)

Note that for a given value of α, computation of F (α) with constraints (11), (12) is
computed as

F (α) =
m∑
i=1

max
j

{cij − αdij} − α. (14)

We use Newton search algorithm to find the optimal α in (13). Note that since F (α) is
a sum of pointwise maximum of affine functions, F (α) is a convex decreasing function of α
and zilk in (RDP) automatically satisfy constraints (7), (8). For the minimization problem
(LD), we can apply any convex function minimization algorithm. For our computation,
we apply a deflected subgradient minimization algorithm [13].

4. Computational Results. Results for the (RDP) formulations are given in Tables
1 and 2. In this section, we compare the objective bound and approximation errors for
the formulation (P), its local approximations and (RDP). For the nonlinear programming
models, we use AMPL LOQO commercial solver on a PC with 32 GB memory. LOQO
solver uses a primal-dual interior point algorithm for sequential quadratic programming.
For relaxation of the Lagrangian dual problem, we develop a custom Python code. In the
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Newton line search algorithm, we observed that the optimal value of α in (13) is obtained
within 10 iterations of Newton search with tolerance set at 10−7.

To introduce a local approximation to problem (P), we introduce the following notation.
Details of the approximation proof can be found in [8]. When the attraction function is
locally Lipschitz at point x0, define segment weight parameter γl as

γl =
Γlq0l(x0)∑
l∈L Γlq0l(x0)

(15)

where q0l(x0) is no purchase probability of segment l in Equation (4). Using γl instead of
Γl, the attraction function and demand functions in the neighborhood B(x0, ϵ) of x0 are
approximated as

f̄i(xi) =
∑
l∈L

γlf
l
i (xi), q̄il(x) =

f̄i(xi)

1 +
∑

j∈N f̄j(xj)
=

∑
l∈L γlf

l
i (xi)

1 +
∑

j∈N
∑

l∈Lγlf
l
j(xj)

.

We denote (P′) as the formulation (P) using demand function q̄il(x0) and
(
P̄
)
and(

P̄′) as the problem (P) and (P′) without ball constraints x ∈ B(x0, ϵ). Thus, in
(
P̄
)

and
(
P̄′), price vectors x can be outside the ball B(x0, ϵ). In Table 1, we compare the

objective bound between (P), (P′),
(
P̄
)
and

(
P̄′). Reference point x0 in (15) is suggested

to satisfy qil(x0) = q̄il(x0) = 1
n+1

. In Table 1, Ratio 1, Ratio 2, and Ratio 3 denote

percentage differences |z(P′) − z(P)|/z(P),
∣∣z (P̄)− z(P)

∣∣/ z(P), ∣∣z (P̄′)− z(P′)
∣∣/ z(P′),

respectively, where z(P) denotes the objective value of formulation (P). From Ratio 1, we
observe that near reference point x0, the objective value difference is within 2.4% of (P).
When we remove the ball constraints, Ratio 2 shows that the objective value differences
are ranging between 0.66% to 12.7%. Ratio 3 shows that the objective value differences
between (P′) and

(
P̄′) are ranging from 0.44% to 9.54%.

Table 1. Comparison of nonlinear formulations

Products Segments Constraints
Iterations Ratio 1 Ratio 2 Ratio 3

(P) (P′)
(
P̄
) (

P̄′) (%) (%) (%)

32 8 128 50 50 25 26 0.34 0.54 0.44

32 8 128 21 21 14 14 0.51 0.66 0.66

32 8 128 50 50 23 22 0.20 1.22 1.25

32 8 128 50 50 23 23 0.14 1.17 1.40

32 8 128 50 50 22 22 0.49 0.97 0.81

64 8 128 27 28 18 19 2.93 12.61 9.54

64 8 128 20 22 15 16 0.07 3.78 3.80

64 8 128 21 22 15 15 0.23 2.92 2.99

64 8 128 20 20 16 16 0.05 3.15 3.18

64 8 128 19 19 15 16 0.15 1.82 1.85

Table 2 shows the CPU times of LOQO optimizer and (RDP), and objective value
ratio between (RDP) and (P). For LOQO, iteration limit is set 50 and time limit is set
at 1,000 seconds. For (RDP), discrete value set Iil is assumed as 40 points in the interval
[x0j ± 0.2x0j] for each j ∈ N . For problems 1-10 in Table 2, CPU times of LOQO are
within 570 seconds and CPU times of (RDP) are all within 57 seconds. Also, the (RDP)/
(P) ratio shows that for these 10 problems, (RDP) overestimates the objective value of
(P) within 7.8%. For the first 5 problems, (RDP)/(P) ratio is within 1%. Therefore, for
small sized problem (RDP) provides tight bound to (P).
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Table 2. Optimal value ratios and CPU times of RDP formulation

Products Segments Constraints CPU time (s) (RDP)/(P) CPU time (s)
1 32 8 128 75 100.23 27
2 32 8 128 65 100.65 26
3 32 8 128 67 100.95 24
4 32 8 128 63 100.29 27
5 32 8 128 74 100.52 25
6 64 8 128 564 107.78 54
7 64 8 128 323 102.34 55
8 64 8 128 269 102.00 54
9 64 8 128 232 101.98 57
10 64 8 128 282 101.29 55
11 128 8 256 1044 109.45∗ 217
12 128 8 256 1042 107.07∗ 216
13 128 8 256 1046 108.30∗ 216
14 128 8 256 1049 109.56* 217
15 128 8 256 1047 107.92∗ 217
16 256 8 128 1601 111.30∗ 220
17 256 16 128 3906 116.73∗ 439
18 256 16 128 4201 123.69∗ 440
19 256 16 128 4134 113.32∗ 441
20 256 16 128 3845 116.21∗ 441

For problems 11-20, the final objective value from LOQO computations is the best
objective value obtained during time and iteration limit. CPU times from (RDP) are
within 450 seconds for all 20 problems. Since LOQO optimal values for problems 11-
20 are best bound until time limit, the percentage of (RDP)/(P) increases. We suspect
that if the problems instances 11-20 are solved optimally, the ratio (RDP)/(P) shows
consistent upper bounds as instances 1-10. In the case of problems 11-20, the values in
the column denoted as (RDP)/(P) marked with an asterisk (∗) represent the estimated
ratio of (RDP)/(P). Here, (P) values correspond to the final objective values obtained
from the LOQO optimizer at the conclusion of the iteration limit.
Note that (RDP) achieves tight bound to (P) with fast CPU times. Also, for each

product, 40 discrete price points are practically realistic bounds for price determination
for retailers. Therefore, (RDP) can provide retailers valuable tool to determine optimal
pricing guidelines in mixed logit environment.

5. Conclusions. In this paper, we developed a Lagrangian dual formulation and fast
solution algorithm for a relaxation of the finite mixed logit profit maximization problem.
The proposed relaxation is obtained by disaggregating and discretizing the price vari-
ables into segment-dependent discrete values and the resulting relaxation problem is a
binary fractional programming problem. We solved the Lagrangian dual problem using
a deflected subgradient minimization algorithm. In computational results, we compared
nonlinear programming formulation with its approximation near particular points as well
as in general price vectors. We also compared the objective values of the (RDP) with the
nonlinear programming bound. As noted in the paper, solving the nonlinear formulation
of mixed logit profit maximization problem is a hard challenge. We observed solver fail-
ure due to memory exhaustion in commercial solver AMPL LOQO in several occasions.
For large scale problem instances, our relaxation bound and its solution are a valuable
tool to compute optimal price vectors. Even though recent progress in the unconstrained
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maximization of the mixed logit problem, when linear constraints are added to the formu-
lation, its Lagrangian subproblem contains difficult subproblems. For constrained mixed
logit problem, further research for the exact algorithms is required.
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