
ICIC Express Letters ICIC International c⃝2024 ISSN 1881-803X
Volume 18, Number 3, March 2024 pp. 293–301

A PROPOSED JAVA WEB FRAMEWORK TO SUPPORT SOFTWARE
PRODUCT LINE ENGINEERING

Maya Retno Ayu Setyautami∗, Daya Adianto, Ade Azurat
and Eko Kuswardono Budiardjo

Faculty of Computer Science
Universitas Indonesia

Kampus UI, Depok, Jawa Barat 16424, Indonesia
{dayaadianto; ade; eko }@cs.ui.ac.id

∗Corresponding author: mayaretno@ui.ac.id

Received April 2023; accepted July 2023

Abstract. Software product line engineering (SPLE) offers a valuable approach for
reusing software components and efficiently developing diverse products within a specific
domain. In the context of web development, SPLE can significantly enhance variability
management and promote systematic reusability. This study proposes a framework for
web application development based on SPLE principles. The web framework is designed
based on variability modules for Java (VMJ), an architectural pattern supporting delta-
oriented programming in Java. Core functionalities are implemented within the core Java
module, while variabilities are accommodated in the delta Java module. The development
process is facilitated by a low-code tool, enabling the creation of Java web services for the
web application’s backend. To demonstrate the practicality of the proposed approach, a
case study involving the development of an adaptive information system for charity orga-
nizations is presented. The VMJ web framework proves its efficacy by generating a fully
functional web application tailored to the specific requirements of charity organizations.
In conclusion, this research contributes to the advancement of SPLE methodologies based
on delta-oriented programming (DOP) by introducing a Java web framework. The frame-
work offers enhanced variability management capabilities and facilitates efficient web ap-
plication development.
Keywords: Code generator, Model transformation, Software product line engineering,
Variability modules, Web framework

1. Introduction. Web applications are a standard form of media communication in
many domains. A generic web application for a similar domain can be developed based
on a typical business process. Customization for specific requirements is usually managed
using a clone-and-own approach. An existing product is cloned into a new repository
to develop another product variant. A modification is created in the new repository if a
product requires specific feature changes. Although the repositories use the same initial
source code, modifications are scattered across them. Therefore, requirements changes are
difficult to trace, and variability cannot be managed systematically.

Software product line engineering (SPLE) is an approach for developing various appli-
cations based on commonality and variability [1, 2]. Common features are implemented
as reusable components, while variants are designed to support mass customization. The
main motivations for using SPLE are reduced development costs, enhanced quality, and
reduced time to market [2]. Various products are designed together as a software product
line (SPL), and a product variant is generated based on the requirements of a specific
customer.

DOI: 10.24507/icicel.18.03.293

293



294 M. R. A. SETYAUTAMI, D. ADIANTO, A. AZURAT AND E. K. BUDIARDJO

The main motivations of SPLE are shared along with the low-code application platform
(LCAP) that gains momentum in recent years. LCAP is a platform that lets developers
rapidly develop and deploy custom applications by reducing the amount of coding work [3].
It employs similar approaches found in SPLE, such as model-driven engineering (MDE)
and domain modeling, to produce applications [4]. This research aims to apply SPLE
and low-code approaches to developing web applications. Various web applications in the
same domain can be designed as a web-based SPL. First, commonality and variability of a
web-based SPL are analyzed in domain engineering. Then, a variant of a web-based SPL
can be generated based on selected features. Applying SPLE drives systematic reusability
in web development, and the low-code approach supports automated code generation.
Combining SPLE and low-code could produce higher-quality web applications in less
time and at a lower cost.
In this research, we design a VMJ web framework based on variability modules for

Java (VMJ). VMJ is an architectural pattern that uses Java module systems and design
patterns [5]. The development process in the VMJ web framework follows the principles
of SPLE, starting with domain analysis and modeling a web-based SPL using a feature
model and the UML diagram. Other frameworks for building a web-based SPL use var-
ious modeling approaches, such as the common variability language (CVL) [6], a feature
model [7, 8, 9], and a combination of UML and feature model [9, 10].
Mostly web frameworks for SPLE provide tools to support model transformations or

product configuration, without generating running applications. The process of generating
a web application is only explained by [6, 7, 9, 10]. In this work, the VMJ web framework
is also integrated with FeatureIDE [11, 12]. FeatureIDE is an Eclipse-based Integrated
Development Environment (IDE) that supports feature-oriented software development.
Based on the feature selection in FeatureIDE, a back-end of web applications is generated
as Java web services, which are produced from the VMJ web source code. The web
front-end is a JavaScript application generated from interaction flow modeling language
(IFML). The contribution in this paper is the VMJ web framework, so our explanation is
more focused on the domain implementation using VMJ web.
The remainder of this paper is organized as follows. In Section 2, we explain variability

modules for Java (VMJ), as a theoretical foundation in this research. Section 3 presents
the structure of the VMJ web framework to develop a web-based SPL. The applicability
of the VMJ web framework is shown in Section 4 using a case study. In Section 5, we
evaluate the development process of the VMJ web framework. Section 6 explains the
related work, and Section 7 offers conclusions and recommendations for future work.

2. Variability Modules for Java. Variability modules for Java (VMJ) is designed
based on variability modules (VM). VM concept extends the capability of DOP to realize
a multi-product line (MPL) [13]. An MPL consists of several product lines that share
dependencies [14]. VMJ uses the Java module system and design patterns to implement
an SPL [5]. The decorator pattern is used to model variations, and the factory pattern
is used to create appropriate object variants. A product line in VMJ is represented as a
Java project consisting of Java modules.
The decorator pattern is applied in a delta module that modifies a core module. A

delta module decorates a core module by specifying the modification behavior. A product
module configures objects based on the selected features. A product module can access
functionality in the selected features by defining Java module dependency. Objects in the
core and the delta modules are created using the factory pattern. The factory pattern
also manages the delta application order if more than one delta modules implement a
feature.
Based on the VMJ architectural pattern, a Java module in VMJ is categorized as

follows.



ICIC EXPRESS LETTERS, VOL.18, NO.3, 2024 295

• The core module is defined as a Java module that consists of packages with common
capabilities in an SPL. A core module can be reused by delta modules or product
modules. Following the decorator pattern, a core VMJ module consists of interfaces,
abstract component classes, concrete component classes, and an abstract decorator
class.

• The delta module is defined as a Java module that modifies a core module. A delta
module consists of a concrete decorator class that changes the concrete component
class in the core module.

• The product module is also defined as a Java module that has a dependency on
core modules and delta modules. The dependency is defined based on the required
features in the product variant.

Each VMJ module has a module declaration, file (module-info.java), specifying its
name and dependencies. Dependencies are managed using export and import mechanisms
in Java module systems. The export term is used to declare which packages are visible to
other modules, while the import term is used to declare other required modules. Packages
in the core module must be exported in the module declaration to be reused in other
modules. Then, a delta module imports related core modules to reuse or modify the
implementation in the core module.

The factory design pattern supports a product specification in the product generation
process. A class in the core module can be modified by one or more delta modules using
the decorator pattern. As a result, the same class can be reused in different delta modules.
A fully qualified name (FQN) is used to distinguish the same class in different variants.
The factory pattern is used to create an object based on its FQN. Therefore, we can
choose a specific variant from selected features during the product generation.

3. VMJ Web Framework. The VMJ web framework aims to support web-based SPL
development based on DOP [15] and VMJ architectural pattern [5]. As defined in VMJ,
the VMJ web framework uses Java module systems and design patterns. The architecture
of the VMJ web framework is separated into several layers to distinguish the development
concerns. Figure 1 shows the structure of the VMJ web framework. The framework con-
tains three layers, presentation, domain, and persistence. The VMJ web libraries are also
developed to support web development in those layers.

• The presentation layer handles HTTP requests from clients and returns the response
in JSON format. Two libraries in this layer, VMJRouting and VMJAuth, are devel-
oped using Java modules to support the functionalities in the presentation layer.
The VMJRouting library consists of the VMJServer to manage server initiation and
activation, VMJExchange to receive and manage data from the HTTP protocol, and
Route and Router to handle endpoint configuration. Authentication and authoriza-
tion in the VMJ web framework are managed by the VMJAuth library. Therefore,
developers can grant or restrict access to each service individually.

• The domain layer contains an implementation of business logic and domain model.
The development of the domain layer conforms to the VMJ structure, such as core,
delta, and product modules. The core and delta modules are separated into model
and resource layers. The core module implements the commonality, and the delta
module modifies the core module to implement the variability. The product modules
are generated based on selected features.

• The persistence layer utilizes HibernateORM to manage database connectivity and
operations. VMJHibernate Integrator library is developed to bridge database ac-
cess from the VMJ web framework. HibernateORM maps VMJ web classes into
relational databases and manages CRUD (create, read, update, and delete) opera-
tions. The generated database schema is adjusted based on the feature’s selection.
Therefore, CRUD operations are only available for selected features.



296 M. R. A. SETYAUTAMI, D. ADIANTO, A. AZURAT AND E. K. BUDIARDJO

Figure 1. The structure of the VMJ web framework

As shown in Figure 1, the domain layer is a part of SPLE implementation. The other
layers can be seen as supporting libraries for web development. The workflow of the VMJ
web framework is started when a client sends HTTP requests using URLs or available end-
points. The URL represents a method in the domain (resource) layer. The VMJRouting

library processes the request and calls the related method in the resource layer. Then,
the resource layer calls repository in the persistence layer if the method needs database
operations. Repository uses HibernateORM library and then, HibernateORM connects to
the database and asks for the required data.
A tool support for web-based product line development with VMJ web framework is de-

signed in FeatureIDE. FeatureIDE is an integrated framework to support feature-oriented
development of software product lines [12]. It is designed based on Eclipse IDE as an
Eclipse plugin. It has several composers that manage the domain implementation and
product generation process. We can choose the composer based on the domain implemen-
tation preference, such as AHEAD, Munge, AspectJ, FeatureHouse, and FeatureC++. In
this research, we add a new composer to FeatureIDE to support domain implementation
with VMJ web, namely VMJ web composer.
The development of VMJ web composer in FeatureIDE aims to integrate the feature

model and the domain implementation. First, we design the feature diagram, a graphical
notation to specify a feature model, in FeatureIDE. The feature diagram represents com-
monality and variability in the product line. In the VMJ web framework, a commonality
is implemented in a core module, and variability is implemented in delta modules. The
mapping between features in the feature diagram and their implementation in the Java
modules is defined in a JSON file.
The product generation is performed based on feature selection, which is defined in

a configuration file in FeatureIDE. A configuration file consists of selected features from
the feature diagram. We can have many product variants in the product line, and each
variant is defined as a configuration file. To generate a specific product, we can select a
configuration as a current configuration. Then, related modules are composed, and a valid
product module is automatically generated. The product can be compiled and run using
the VMJ web composer in FeatureIDE.



ICIC EXPRESS LETTERS, VOL.18, NO.3, 2024 297

4. Running Example. In this section, we use an adaptive charity organization system
called AMANAH as a running example to show the implementation of a back-end of web
applications using the VMJ web framework. A snippet of the AMANAH feature diagram
is shown in Figure 2. The feature diagram represents commonality and variability in char-
ity organization systems. As shown in the diagram, Program and Income are mandatory
features. Other features, such as Expense, ArusKasReport and Confirmation, are optional.
In VMJ web, the common features are implemented in the core Java module, and the
variabilities are implemented in the delta Java modules using the decorator pattern.

Figure 2. AMANAH feature diagram

For example, in FinancialReport feature in Figure 2, three Java modules are developed
in the domain (model) layer : a core module FinancialReport, delta modules Income and
Expense. Following the decorator pattern, the core module consists of interface, abstract
component class, concrete component class, and abstract decorator class. The delta module
consists of the concrete decorator class. The UML-VMJ generator [16] generates classes
in the model layer of VMJ web, which consists of fields and getter setter methods.

The resource layer in the VMJ web framework should be completed by developers. This
layer contains an implementation of business logic in web applications. Listing 1 shows
a code snippet of method saveFinancialReport() in the FinancialReport core module.
The resource layer utilizes RepositoryUtil in VMJHibernateIntegrator library to access
the persistence layer (database). A method call requiring database access is shown in
Line 10 that will save financial report data into the database. The available endpoints
(routing) are also configured manually in the resource layer. The endpoint URL is defined

Listing 1. VMJ web resource layer



298 M. R. A. SETYAUTAMI, D. ADIANTO, A. AZURAT AND E. K. BUDIARDJO

by adding the @Route annotation in the method declarations (see Line 6 in Listing 1). As
a result, methods with the @Route annotation can be accessed using HTTP request.
In the VMJ web framework, the product variants can be generated automatically.

The product module is generated based on feature selection in FeatureIDE. For exam-
ple, BisaKita product requires features Program, Income, Expense, ArusKasReport and
Donation. The required modules are compiled into JAR files and the JAR files can be
deployed as a running application.
The generated (Java) back-end is combined with generated (JavaScript) front-end to

produce a running web application. JavaScript application in the front-end is generated
from the IFML diagram [17]. An example of generated website for product BisaKita

can be accessed in https://bisakita.amanah.cs.ui.ac.id. The available features for
BisaKita, such as Program, Income, Expense, Donation, and ArusKasReport, are shown
at the menu bar.

5. Evaluation. For evaluation purpose, we design a scenario for requirements changes in
the AMANAH case study. A new organization, namely HeroFoundation, requires a new
feature in AMANAH, annual financial reports. This feature provides an automatic finan-
cial report for one year. Figure 3 shows the modification of AMANAH feature diagram
(a new feature is denoted by a red rectangle).

Figure 3. A new feature in AMANAH feature diagram

The VMJ web framework is compared to another Java web framework (Spring Boot)1 to
evaluate the development and requirements changes process. We choose Spring Boot. We
implement the AMANAH case study, and the requirements changes scenario in Spring
Boot. We compare how to implement a new feature in VMJ web and Spring Boot to
analyze the preplanning effort for generating a new product variant. Ideally, preplanning
in SPLE aims to minimize the effort to change existing implementation [18].
The comparison of implementing a new feature in WinVMJ and Spring Boot is summa-

rized in Table 1. We categorize the process into four stages: preparation, implementation,
modification, and product generation. At the preparation stage, a new module is created
in WinVMJ. In Spring Boot, we have to create a new project, clone an existing project,
and create a new package. At the implementation stage, the WinVMJ and Spring Boot
process is similar, creating a new class. At the modification stage, WinVMJ uses the
decorator pattern that preserves behavior in the existing classes. In Spring Boot, changes
are made to existing classes, as in the standard clone and own approach. At the prod-
uct generation stage, all required classes are generated in WinVMJ, as defined in SPLE.
However, a new main class must be manually developed in Spring Boot.
Based on the process in Table 1, WinVMJ requires three new classes to develop a new

product HeroFoundation with a new feature AnnualReports : class Year.java, decora-
tor class, and (generated) product main class. In Spring Boot, assume there are nine
existing classes to implement the Financial Report feature. To develop a new product,
HeroFoundation, these nine classes are cloned to the new project, and then two new

1Based on https://hotframeworks.com/languages/java, Spring Boot is the most popular Java web
framework.



ICIC EXPRESS LETTERS, VOL.18, NO.3, 2024 299

Table 1. Comparison of requirements changes in VMJ web and Spring Boot

Process VMJ web Spring Boot

Preparation

1. Create a new Java (delta)
module for annual reports
amanah.automaticreport.

annual

1. Create a new Spring Boot project
HeroFoundation

2. Clone existing AMANAH project
to the new Spring Boot project (Hero-
Foundation)
3. Create a new package for annual
reports

Implementation
2. Create a new class Year.
java in the model layer of
the new module

4. Create a new class Year.java in
the model layer of the new package

Modification

3. Create a new decorator
class and add a new method
to group the automatic re-
port by year in the resource
layer of the module

5. Modify existing class Automatic-

Report.java by adding a method
that implements annual reports

Product
Generation

4. Generate a new Java
(product) module amanah.

product.herofoundation

6. Create a new main class HeroFoun-
dation.java

classes (class Year.java and product main class) are added. Eleven new classes are cre-
ated in total. Therefore, the preplanning effort to develop a product variant with a new
feature in WinVMJ is lower than the effort in Spring Boot.

6. Related Work. In our previous work, a web-based SPL framework based on DOP is
defined on top of the ABS language in [8]. The ABS microservices framework supports
the development of microservice product line applications [8]. It produced a back-end of
web applications using generated Java code from ABS language. In this work, the VMJ
web framework is also designed based on DOP but it uses Java programming language in
the development. Using standard Java in the VMJ web framework makes development
easier as it removes the need to learn a new programming language.

Web frameworks based on SPLE have been studied by [6, 7, 9, 10]. They use standard
programming languages, e.g., Java, HTML, and JavaScript, that are not designed to
implement commonality and variability in SPLE. At the implementation level, variability
is managed in an ad-hoc manner. Therefore, the relationship between variants of features
and their implementation is difficult to define. In this research, we use DOP to implement
a web-based SPL in the solution space. DOP has good support for feature traceability,
an ability to trace a feature from the problem domain to implementation in the solution
domain [18].

7. Conclusion and Future Work. This paper proposes a framework for web-based
SPL development called VMJ web. The VMJ web framework is designed based on VMJ,
an architectural pattern to implement SPLE in Java. The development process in the
VMJ web framework follows delta-oriented software product lines in VMJ. The core and
delta modules are defined in Java (modules) using the decorator and factory patterns.
Systematic reuse is achieved in product generation by defining required dependencies to
the existing core and delta modules. The VMJ web framework is also integrated with the
FeatureIDE tool to support automatic product generation.

The practical application of the VMJ web framework is demonstrated in this paper using
a case study, a charity organization system. The steps to develop a web-based SPL include



300 M. R. A. SETYAUTAMI, D. ADIANTO, A. AZURAT AND E. K. BUDIARDJO

domain analysis, model transformation, and domain implementation with the VMJ web
framework. A specific product from a web-based SPL can be generated based on feature
selection. Although we present a small case study, it is representative of SPL problems
in web applications. The VMJ web framework can be used in any problem domain of
web applications. In this research, we evaluate the VMJ web framework qualitatively by
defining a scenario. We compare the preplanning effort of requirements changes in VMJ
web and another Java web framework (Spring Boot).
In this research, tool support (VMJ web composer) is developed in FeatureIDE [12].

The FeatureIDE, which is designed on top of Eclipse IDE, integrates a feature model
and implementation in VMJ web source code. In future work, we plan to integrate other
low-code tools, such as UI generator and UML generator, into Eclipse IDE. Therefore, the
whole development process can be conducted in an integrated development environment.

Acknowledgment. The authors would like to thank Hanif A. Prayoga, Falah P. Waluyo,
Samuel T. Febrian, and C. Samuel for contribution to the VMJ web framework. This
research is funded by Directorate of Research and Development, Universitas Indonesia
under Hibah PUTI 2023 (Grant No. NKB-019/UN2.RST/HKP.05.00/2023).

REFERENCES

[1] P. Clements and L. M. Northrop, Software Product Lines: Practices and Patterns, Addison-Wesley,
Boston, MA, 2002.

[2] K. Pohl, G. Bockle and F. van der Linden, Software Product Line Engineering: Foundations, Prin-
ciples, and Techniques, Springer-Verlag, Berlin, 2005.

[3] O. Matvitskyy, K. Ijima, M. West, K. Davis, A. Jain and P. Vincent, Magic quadrant for enterprise
low-code application platforms, Gartner, https://www.gartner.com/doc/reprints?id=1-2F7NELJY
&ct=231004, 2023.

[4] D. Di Ruscio, D. Kolovos, J. de Lara, A. Pierantonio, M. Tisi and M. Wimmer, Low-code develop-
ment and model-driven engineering: Two sides of the same coin?, Software and Systems Modeling,
vol.21, no.2, pp.437-446, 2022.

[5] M. R. A. Setyautami and R. Hähnle, An architectural pattern to realize multi software product lines
in Java, The 15th International Working Conference on Variability Modelling of Software-Intensive
Systems (VaMoS’21), New York, NY, USA, 2021.

[6] J. M. Horcas, A. Cortiñas, L. Fuentes and M. R. Luaces, Integrating the common variability language
with multilanguage annotations for web engineering, Proc. of the 22nd International Systems and
Software Product Line Conference – Volume 1 (SPLC’18), pp.196-207, 2018.

[7] V. Vranic and R. Taborsky, Features as transformations: A generative approach to software devel-
opment, Comput. Sci. Inf. Syst., vol.13, no.3, pp.759-778, 2016.

[8] M. A. Naily, M. R. A. Setyautami, R. Muschevici and A. Azurat, A framework for modelling variable
microservices as software product lines, in Software Engineering and Formal Methods. SEFM 2017.
Lecture Notes in Computer Science, A. Cerone and M. Roveri (eds.), Cham, Springer, 2018.

[9] J. M. Horcas, A. Cortiñas, L. Fuentes and M. R. Luaces, Combining multiple granularity variability
in a software product line approach for web engineering, Inf. Softw. Technol., vol.148, 106910, 2022.

[10] G. H. Alferez and V. Pelechano, Context-aware autonomous web services in software product lines,
2011 15th International Software Product Line Conference, pp.100-109, 2011.

[11] T. Thüm, C. Kästner, F. Benduhn, J. Meinicke, G. Saake and T. Leich, FeatureIDE: An extensible
framework for feature-oriented software development, Science of Computer Programming, vol.79,
pp.70-85, 2014.

[12] J. Meinicke, T. Thüm, R. Schröter, F. Benduhn, T. Leich and G. Saake, Mastering Software Vari-
ability with FeatureIDE, Springer International Publishing, Cham, 2017.

[13] F. Damiani, R. Hähnle, E. Kamburjan, M. Lienhardt and L. Paolini, Variability modules for Java-
like languages, Proc. of the 25th ACM International Systems and Software Product Line Conference
– Volume A (SPLC’21), pp.1-12, 2021.

[14] G. Holl, P. Grnbacher and R. Rabiser, A systematic review and an expert survey on capabilities
supporting multi product lines, Information and Software Technology, vol.54, no.8, pp.828-852, 2012.

[15] I. Schaefer, L. Bettini, V. Bono, F. Damiani and N. Tanzarella, Delta-oriented programming of
software product lines, in Software Product Lines: Going Beyond, J. Bosch and J. Lee (eds.), Berlin,
Heidelberg, Springer Berlin Heidelberg, 2010.



ICIC EXPRESS LETTERS, VOL.18, NO.3, 2024 301

[16] F. P. Waluyo, M. Setyautami and A. Azurat, UML transformation to Java-based software product
lines, Jurnal Ilmu Komputer dan Informasi (Journal of Computer Science and Information), vol.15,
no.2, 2022.

[17] H. S. Fadhlillah, D. Adianto, A. Azurat and S. I. Sakinah, Generating adaptable user interface in
SPLE: Using delta-oriented programming and interaction flow modeling language, Proc. of the 22nd
International Systems and Software Product Line Conference – Volume 2 (SPLC’18), pp.52-55, 2018.

[18] S. Apel, D. Batory, C. Kästner and G. Saake, Feature-Oriented Software Product Lines, Springer-
Verlag, Berlin, 2013.


