
ICIC Express Letters ICIC International c⃝2024 ISSN 1881-803X
Volume 18, Number 4, April 2024 pp. 367–373

ONLINE DATA-DRIVEN CONTROL USING AN ECHO
STATE NETWORK

Yuji Isokane1, Shoichi Murakami2, Yuji Wakasa3,∗ and Ryosuke Adachi3

1Nippon Telegraph and Telephone West Corporation
4-15-82 Higashinoda-machi, Miyakojima-ku, Osaka 534-0024, Japan

yuuji.isokane.tv@west.ntt.co.jp

2Toshiba Infrastructure Systems & Solutions Corporation
72-34 Horikawa-cho, Saiwai-ku, Kawasaki, Kanagawa 212-8585, Japan

shoichi1.murakami@toshiba.co.jp

3Graduate School of Sciences and Technology for Innovation
Yamaguchi University

2-16-1 Tokiwadai, Ube, Yamaguchi 755-8611, Japan
r-adachi@yamaguchi-u.ac.jp

∗Corresponding author: wakasa@yamaguchi-u.ac.jp

Received June 2023; accepted September 2023

Abstract. In contrast to model-based control, data-driven control does not require a
modeling process. Due to its simplicity, it has been attracting attention in recent years,
and the related research is conducted to expand its range of application and improve
its performance. This paper presents a controller architecture composed of only an echo
state network which is a kind of neural network in the framework of reservoir computing
and proposes an online data-driven controller tuning method. The feature of the proposed
method is to realize fast and online controller tuning for systems with nonlinear elements.
The effectiveness of the proposed method was verified by comparing it with a conventional
method through simulations and an actual experiment.
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1. Introduction. While classical model-based control has developed as a reliable method
in the control field, data-driven control, which does not require models, has recently
attracted attention due to its simplicity [1]. Virtual reference feedback tuning (VRFT)
[4] is a data-driven controller tuning method for tuning controller parameters such as
proportional-integral-derivative (PID) gains. VRFT has become popular and is known to
be useful because it is based on only a set of input and output data and does not require
a plant model and any iterative experiments. Taking advantage of these features, various
extensions of VRFT and its similar methods have been attempted, such as robust PID
control [2] and look-up-table-based control [3].

Although VRFT has been developed basically for linear systems, it is extended to
systems with nonlinearities by introducing a controller composed of a long short-term
memory (LSTM) which is a kind of recurrent neural network (RNN) [5]. The LSTM-based
VRFT method proposed in [5] is effective for systems with various nonlinear elements such
as a dead zone and hysteresis. However, it has the disadvantage that it tends to take much
time to adjust the controller parameters.

On the other hand, since VRFT and its similar method, fictitious reference iterative
tuning (FRIT), are usually carried out offline, they cannot respond to changes in plant
characteristics due to operational situations. To overcome this drawback, online FRIT
has been proposed by combining with the recursive least-squares (RLS) [6]. However, the
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proposed online FRIT [6] is intended for linear controllers such as a PID controller, and
therefore, is not suitable for systems with nonlinear elements.
In this paper, we first present controller architecture based on an echo state network

(ESN) [7], which is a kind of RNN and can approximate dynamic nonlinear systems
in a relatively short computation time. Then, we propose an online controller tuning
method by applying the RLS algorithm in the framework of VRFT, unlike FRIT of [6].
Consequently, the proposed online data-driven control method can respond to changes of
systems with nonlinear elements. As similar works to the presented method, the ESN-
based fuzzy learning control [8] and the online control with two kinds of ESNs for training
and control [9] have been recently proposed. It should be noted that, however, these
methods have more complicated control architecture and are therefore more difficult to
be implemented than the presented method. The effectiveness of the proposed method is
confirmed by comparing it with the previous method [6] through some simulations and
an actual experiment of a system with hysteresis.
The rest of this paper is organized as follows. Section 2 proposes the architecture and

algorithm of the online ESN-based VRFT, and Sections 3 and 4 show some numerical and
experimental results, respectively. Finally, we conclude the paper in Section 5.

2. Online ESN-Based VRFT. We consider the closed-loop system configuration as
shown in Figure 1. The plant consists of a single-input and single-output discrete-time
linear system G(z) and a nonlinearity N , and the controller C(z,θ) is tuned with respect
to the controller parameter θ such as PID gains of a PID controller. The signals u(k),
y(k), r(k), and e(k) denote the control input, the control output, the reference signal,
and the control error, respectively.
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Figure 1. System configuration

In a typical offline VRFT, we first obtain a set of initial input and output data denoted
by u0(k) and y0(k) from an initial closed-loop experiment, and next find θ∗ by minimizing
the performance index J0(θ) =

∑n
k=1(u0(k) − C(z,θ)ē(k))2, where ē(k) = r̄(k) − y0(k)

and r̄(k) is a virtual reference signal satisfying y0(k) = M(z)r̄(k) with the reference model
M(z). As a result, an appropriate controller parameter θ∗ is obtained for any reference
signal r(k). See more details in [4].
The differences between the proposed method and the typical VRFT are to utilize an

ESN as a controller and to tune the controller parameter online as shown in the following
subsections.

2.1. Architecture of ESN-based controller. The ESN is a special RNN in which only
the weights in the output layer are updated while the weights in the other layers, i.e., the
input and hidden layers, are randomly given and fixed. This structure enables the hidden
layers to work as a reservoir of nonlinear characteristics and the learning time of the ESN
to be much shorter than the other RNNs [7].
As a controller to be tuned online, we employ the ESN represented by the following

equations:

xi(k + 1) = ϕi

(
N∑
j=1

Aijxj(k) + be(k)

)
, (1)
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u(k) =
N∑
j=1

cjxj(k) + de(k), (2)

where

ϕi(ζ) =

{
ζ for i = 1, . . . , Np

tanh(ζ) for i = Np + 1, . . . , N,
(3)

A =


1 0 · · · 0
0
... Ā
0

 . (4)

The architecture of the ESN is shown in Figure 2. Here, A ∈ RN×N and b ∈ R are
the weights of the hidden layer and the input layer, respectively, and xi(k) ∈ R (i =
1, 2, . . . , N) are the state variables of the i-th unit of the ESN at time k. In addition,
ϕi : R → R represents an activation function, and Np determines the ratios of linear and
nonlinear activation functions. Since the output of the ESN is linear with respect to the
weights w := [c1, . . . , cN , d]

T , they can be updated by the least-squares method, which
allows for a short learning time [7]. For the stability of the ESN, the matrix A is usually
set so that its spectral radius ρ(A) is less than 1. However, because we aim at designing
a tracking control system, we set A with the structure shown in (4) and ρ

(
Ā
)
< 1.

Figure 2. ESN architecture

2.2. Online data-driven controller tuning algorithm. According to the same man-
ner as in [6], we modify the performance index J0(θ) in the offline VRFT and derive the
following performance index such that the RLS method can be applied:

Jk(ŵ) =
k∑

i=1

λk−i
(
u(i)− ŵTξ(i)

)2
, (5)

where ŵ(k) is a tentative parameter of the ESN controller, λ > 0 is a forgetting factor,
and

ξ(k) = [x1(k), x2(k), . . . , xN(k), s(k)]
T , (6)

s(k) = M(z)−1y(k)− y(k). (7)

The RLS calculation for minimizing the performance index (5) is described as follows:

h(k) =
P (k − 1)ξ(k)

λ+ ξ(k)TP (k − 1)ξ(k)
, (8)

P (k) =
P (k − 1)− h(k)

(
ξ(k)TP (k − 1)

)
λ

, (9)

ŵ(k) = ŵ(k − 1) + h(k)
(
u(k)− ξ(k)T ŵ(k − 1)

)
, (10)

P (0) = γ̂I, (11)



370 Y. ISOKANE, S. MURAKAMI, Y. WAKASA AND R. ADACHI

where γ̂ is a parameter for an initial correlation matrix P (0). According to the RLS
algorithm, the parameter ŵ(k) is updated at each sampling time. However, in the early
stages of the algorithm or when the plant changes abruptly, the large change of this
parameter may result in deterioration of the control performance, or even instability of
the closed-loop system in the worst case. Therefore, in order to suppress the change of
the controller parameter, we update w(k) to be implemented by using the following low
pass filter:

w(k) = (1− α)w(k − 1) + αŵ(k − 1), (12)

where 0 < α < 1 is a parameter of the filter. The proposed online data-driven controller
tuning algorithm is summarized in Algorithm 1, and the block diagram of the algorithm
is shown in Figure 3. As can be seen from the closed-loop structure in Figure 3, the ESN
can potentially compensate for the nonlinearity of the plant in the VRFT framework and
can respond to plant variation by updating its own weights at each time.

Algorithm 1: Online VRFT-ESN

Step 1. Initialization
Set the initial weights ŵ(0) = w(0) in the output layer randomly and set M(z), γ,
λ, and α.

Repeat Steps 2-4 for k = 1, 2, . . ..
Step 2. Signal calculation
Calculate ξ(k) according to (6) and (7).

Step 3. RLS algorithm
Obtain ŵ(k) by computing (8)-(10).

Step 4. Implementation
Update w(k) according to (12) and implement it in the ESN-based controller.
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Figure 3. Block diagram of the online VRFT-ESN

3. Simulation. The proposed online data-driven control method denoted by VRFT-ESN
is applied to plants with nonlinearities and changes while comparing with the conventional
method denoted by FRIT-PID proposed in [6]. Let the linear part G(z) be a discretized
system of G(s) = 1/(Ts + 1) with sampling time of 10 ms and the time constant T be
changed as follows:

G(s) =


1/(s+ 1) for 0-58 s

1/(0.5s+ 1) for 58-118 s

1/(0.3s+ 1) for 118-180 s.

(13)

As a nonlinearity N , we consider a dead zone, hysteresis which is presented in [10], and
a square root as shown below:
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v(k) = D(u(k)) =


u(k) + 0.7 if u(k) < −0.7

0 if − 0.7 ≤ u(k) ≤ 0.7

u(k)− 0.7 if u(k) > 0.7,

(14)

v(k) = H(v(k − 1), u(k)) =
−v(k − 1)− 4

1 + e0.01−u(k)
+

v(k − 1) + 5

1 + e−0.01−u(k)
− 5, (15)

v(k) = S(u(k)) =

{
−1.5

√
−u(k) if u(k) < 0

1.5
√

u(k) if u(k) ≥ 0
(16)

where v(k) is the output of the nonlinearities. We set the reference signal r(k) and the
reference model M(z) as a square wave and a discretized system of M(s) = (0.1s +
1)/(0.5s + 1), respectively. We also set N = 50, Np = 25, λ = 0.999, and α = 0.1.
Moreover, for a fair comparison, we set θ(0) = [1, 0, 0]T and w(0) = [0, 0, . . . , 0, 1]T so
that the initial outputs of the two systems are the same. The simulations were run in
Python 3.7.0 on a 3.60GHz Core i7-9700K CPU with 32GB of memory.

Table 1 shows the root mean squared errors (RMSEs) between the target output and
the resulting outputs of the plants with the nonlinearities. We see from the table that in
all cases, the RMSEs of VRFT-ESN are smaller than those of FRIT-PID, and therefore,
the control outputs of VRFT-ESN follow the target outputs with higher accuracy than
those of FRIT-PID.

Table 1. RMSE of VRFT-ESN and FRIT-PID

VRFT-ESN FRIT-PID

Dead zone 0.0192 0.1092
Square root 0.0123 0.0152
Hysteresis 0.0119 0.0143

As an example of the output transition, the case with the dead zone is shown in Figure 4.
To see the tracking performance in more detail, Figure 5 shows the RMSEs every 2 seconds
before the reference signal switches. It can be seen from Figures 4 and 5 that the control
outputs deviate from the target output when the load is applied, but then that of VRFT-
ESN follows the target output more quickly than that of FRIT-PID. This means that the
proposed method, i.e., VRFT-ESN, works effectively for changes as well as nonlinearities
in plants.

Figure 4. Control outputs in the case of the dead zone nonlinearity

4. Experiment. To validate the effectiveness of the proposed method through an actual
system with a nonlinearity, we use the shape memory alloy (SMA) actuator system shown
in Figure 6. It is known that SMA actuators exhibit inherent hysteresis characteristics.
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Figure 5. RMSE transition

Figure 6. SMA actuator system

The input is the voltage of 0 to 5 V given to the SMA actuator, while the output is the
rotation angle of the pulley caused by the expansion and contraction of the SMA actuator.
As in the simulation, we apply the proposed method, i.e., VRFT-ESN and the con-

ventional method [6], i.e., FRIT-PID, to this system. We set the reference signal r(k)
and the reference model M(z) as a trapezoidal wave and a discretized system of M(s) =
(1.5s + 1)/(1.6s + 1) with sampling time of 60 ms, respectively. We also set N = 100,
Np = 50, λ = 0.9995, and α = 0.00005. Moreover, for a fair comparison, we set
θ(0) = [25, 0, 0]T and w(0) = [0, 0, . . . , 0, 25]T so that the initial outputs of the two
systems are the same. To evaluate the adaptability to plant changes, the SMA actuator
is loaded with a weight after 350 seconds.
The resulting control output is shown in Figure 7. When the load weight was applied at

the time of 350 seconds, the control outputs of the two methods deviated from the target
output once, but then followed the target output, which indicates that they control the

Figure 7. Resulting control output
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plant change adaptively. It can also be seen from the figure that the control output of
VRFT-ESN follows the target output more accurately than that of FRIT-PID [6]. The
RMSEs between the control output and the target output were 0.0035 for VRFT-ESN and
0.0108 for FRIT-PID. This experimental result confirms the effectiveness of the proposed
method.

5. Conclusion. In this paper, we have proposed an online data-driven control method
using an ESN controller, and have verified its effectiveness through simulation and exper-
imental results. We have confirmed that the proposed method is effective for plants with
nonlinearities and can cope with changes in plant characteristics such as sudden loading.
As future work, we seek a sophisticated way for the parameter selection and apply the
proposed method to real-world control systems.
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