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Abstract. In the dynamic landscape of modern technological systems, efficient queuing
models play a pivotal role, especially in sectors such as telecommunications and data man-
agement. This study introduces a novel alternating server model with a state-dependent
alternating priority policy. Specifically, we consider a Markovian queueing model with
two queues, where the priority of service is determined by the length of each queue. A
threshold is assigned to one of the queues, granting it priority when its length exceeds the
threshold, while the other queue holds priority otherwise. Moreover, we derive a set of
balance equations and present the joint queue length distribution in the form of a prob-
ability generating function, significantly advancing our understanding of queuing system
dynamics. Delving into practical applications, our model proves particularly relevant in
data centers, communication systems, and logistics networks. By precisely calculating
performance measures such as mean queue length and waiting time, our study provides
actionable insights for system optimization, directly influencing operational efficiency
and user experience.
Keywords: Alternating server, Polling system, Congestion control, Markovian queue-
ing model, Priority, Threshold policy, State-dependent service, Stochastic model, Queue
length, Steady-state distribution

1. Introduction. Polling systems employ a single server to process input streams from
multiple sources based on a predefined set of rules. These systems have various real-world
applications, including data centers [1], communication systems [2], and logistics systems
[3]. In this context, we focus on an alternating server with two queues, drawing parallels
to vehicles passing through an intersection [4] (see Figure 1), governed by right-of-way
priority administered by traffic signals or other traffic control devices. If an intersection
is regarded as a server, the time for a car to completely exit the intersection represents
the service time.

Polling systems, studied extensively over time, include analyses of various service poli-
cies [5]. Takács [6] examined an M/G/1 model with two queues and an exhaustive policy
in which a server continues its service until the number of customers in the attending
queue reduces to zero; subsequently, the server moves to another queue. When a queue is
being served, it can be considered to have priority over other queues. Eisenberg [7] con-
sidered a similar system but assumed the number of queues to be M (≥ 2). Sykes [8] and
Boxma and Groenendijk [9] additionally considered switching time in Takács’ analysis [6],
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Figure 1. Two input streams at the intersection

which represents the time taken to move from one queue to another, assuming a general
distribution.
In another study, Eisenberg [10] considered an M/G/1 model with two queues and

an alternating service discipline, where a server serves only one customer in the current
queue before moving to another. If a queue is empty, the server continues its service until
a new customer arrives. Boon and Winands [11] analyzed a K-limited polling system
with two queues in which the server switches to another queue after serving K customers.
When there are fewer than K customers, the server continues serving until the queue size
reaches zero. Ozawa [12] extended the K-limited polling system by considering mixed
disciplines. Winands et al. [13] incorporated the setup time into Ozawa’s model [12].
Recently, Avrachenkov et al. [14] and Perel and Yechiali [15] introduced new switch-

ing policies based on the queue length for a finite M/M/1 queuing model. The server
then switches the size of the other unserved queue implying that each queue has its own
threshold value. We investigate a different model from those of Avrachenkov et al. [14]
and Perel and Yechiali [15]; the queue sizes are assumed to be infinite and only one queue
has a threshold, and the allocation of priority to a particular queue is determined based
on whether the queue size exceeds the threshold.
Polling systems have been applied to evaluating the performance of various systems, in-

cluding transportation, road management, and production systems. In particular, polling
systems have been widely used in the field of telecommunication systems [16,17]. Various
studies continue to emerge on the development and evaluation of efficient operational
strategies for tele- or data-communication systems using the latest technology [18-20].
Our study makes significant contributions by providing an analytical solution for a

simple yet significantM/M/1 model. Notably, polling systems are known to be challenging
for obtaining exact solutions. Our study differs from previous studies in that we provide an
exact solution that has not been well studied. Previous studies have focused on modeling
complicated systems using approximate solutions rather than exact solutions to real-
world problems. The remainder of this paper is organized as follows. Section 2 outlines
the necessary notations, and Section 3 presents the analytical solution. Finally, Section 4
presents the conclusion of our study.

2. Problem Statement and Preliminaries. In this section, we introduce the assump-
tions and define the mathematical notations for the system analysis. As depicted in Figure
2, our model involves two separate queues to accommodate Type-1 and Type-2 customers.
Each queue has an infinite capacity. The arrival of Type-1 and Type-2 customers follows
independent Poisson processes with rates λ1 and λ2, respectively. Type-1 (or Type-2) cus-
tomers are queued in Queue I (or Queue II). The customers in each queue are served on
a first-come first-service basis, and the service priority of each queue is determined by the
length of Queue I. Specifically, we set a threshold L for Queue I. The server is initially idle
and starts serving an arriving customer regardless of the type. If the length of Queue I
is less than threshold L, then service priority is given to Queue II. However, if the length
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Figure 2. Example of an alternating server with two queues

of Queue I reaches the threshold L, service priority is given to Queue I until Queue I
becomes empty. As soon as Queue I becomes empty, service priority is assigned to Queue
II. This process is repeated. If one of the buffers is empty, customers from the order buffer
are served, regardless of their type. The service time of all customers regardless of type is
independent and identically distributed by the exponential distribution with rate µ. The
switching time for the server to change the queue is assumed to be zero.

The mathematical notations are defined as follows. LetN1(t) andN2(t) be the lengths of
Queues I and II at time t, respectively. Furthermore, we introduce the following notation:

ξ(t) =

{
0, if the server is idle at time t,
1, if the server is busy at time t.

R(t) =

{
1, if the service priority is given to Queue I at time t,
2, if the service priority is given to Queue II at time t.

To derive the joint queue length distribution of Queues I and II, we begin by defining the
following:

p(m,n) = lim
t→∞

Pr{N1(t) = m,N2(t) = n, ξ(t) = 1, R(t) = 1},

q(m,n) = lim
t→∞

Pr{N1(t) = m,N2(t) = n, ξ(t) = 1, R(t) = 2},

m ≥ 0, n ≥ 0,

p0 = lim
t→∞

Pr{ξ(t) = 0}.

(λ1+λ2) < µ is assumed for the stability of the system. Considering that a stable system
has limiting probabilities, the following balance equations can be established:

(µ+ λ1 + λ2)p(m,n)

= λ1p(m− 1, n) + λ2p(m,n− 1) + µp(m+ 1, n), m ≥ L+ 1, n ≥ 0. (1)

(µ+ λ1 + λ2)p(L, n)

= λ1p(L− 1, n) + λ2p(L, n− 1) + µp(L+ 1, n) + λ1q(L− 1, n), m = L, n ≥ 0. (2)

(µ+ λ1 + λ2)q(m,n)

= λ1q(m− 1, n) + λ2q(m,n− 1) + µq(m,n+ 1), 1 ≤ m < L, n ≥ 1. (3)

(µ+ λ1 + λ2)q(m, 0)

= λ1q(m− 1, 0) + µq(m, 1) + µq(m+ 1, 0)1{m̸=L−1}, 1 ≤ m < L, n = 0. (4)

(µ+ λ1 + λ2)q(0, n)

= λ2q(0, n− 1) + µq(0, n+ 1) + µp(1, n), m = 0, n ≥ 1. (5)

(µ+ λ1 + λ2)q(0, 0)

= (λ1 + λ2)p0 + µq(0, 1) + µq(1, 0) + µp(1, 0), m = 0, n = 0. (6)

(λ1 + λ2)p0 = µq(0, 0). (7)
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Figure 3. State space and its corresponding balance equations

The state space and corresponding balance equations for each state are illustrated in
Figure 3. The indicator function 1{condition} is equal to 1 if ‘condition’ is true, or 0 if it is
false. The normalization condition yields

∞∑
m=1

∞∑
n=0

p(m,n) +
∞∑

m=0

∞∑
n=0

q(m,n) + p0 = 1, (8)

where p(0, n) = 0, p(m,−1) = 0 and q(m,−1) = 0.

3. Main Results. In this section, the set of balance equations in Section 2 is solved using
probability-generating functions. We define the following probability-generating function
for the queue length:

Gn(z) =
∞∑

m=1

p(m,n)zm, |z| ≤ 1,

G(z, w) =
∞∑

m=1

Gn(z)w
n,

H(w) =
∞∑

m=1

p(1, n)wn,

Fm(w) =
∞∑

m=1

q(m,n)wn, |w| ≤ 1, 0 ≤ m < L.

From Equations (1) and (2), we obtain

(µ+ λ1 + λ2)Gn(z) = λ1zG(z) + λ2Gn−1(z) +
µ

z
G(z)− µp(1, n) + λ1z

Lq(L− 1, n). (9)

By multiplying wn and summing over n in Equation (9), we obtain

(µ+ λ1 + λ2)G(z, w) = λ1zG(z, w) + λ2wG(z, w) +
µ

z
G(z, w)− µH(w) + λ1z

LFL−1(w).

That is, {
λ1z − (µ+ λ1 + λ2) + λ2w +

µ

z

}
G(z, w) = µH(w)− λ1z

LFL−1(w).

The aforementioned equation can be rewritten into the following equation:

1

z
{z − z∗(w)}{z − z̃(w)}G(z, w) = µH(w)− λ1z

LFL−1(w), (10)
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where

z∗(w) =
1

2λ1

{
µ+ λ1 + λ2 − λ2w −

√
(µ+ λ1 + λ2 − λ2w)2 − 4λ1µ

}
,

z̃(w) =
1

2λ1

{
µ+ λ1 + λ2 − λ2w +

√
(µ+ λ1 + λ2 − λ2w)2 − 4λ1µ

}
.

In Equation (10), putting z = z∗(w), we obtain

H(w) =
λ1

µ
z∗(w)

LFL−1(w). (11)

By substituting H(w) into Equation (10), we obtain

G(z, w) =
λ1z

z̃(w)− z
FL−1(w)

n−1∑
k=0

z∗(w)
n−1−kzk. (12)

From Equations (3) and (4), we obtain

(µ+ λ1 + λ2)Fm(w) = λ1Fm−1(w) + λ2wFm(w) +
µ

w
Fm(w)−

µ

w
q(m, 0)

+µq(m+ 1, 0)1{m̸=L−1}, 1 ≤ m < L.

That is,

1

w

{
λ2w

2 − (µ+ λ1 + λ2)w + µ
}
Fm(w)

= −λ1Fm−1(w) +
µ

w
q(m, 0)− µq(m+ 1, 0)1{m̸=L−1}.

We can rewrite the aforementioned equation into the following equation:

1

w
(w − w∗)(w − w̃)Fm(w) = −λ1Fm−1(w) +

µ

w
q(m, 0)− µq(m+ 1, 0)1{m̸=L−1}, (13)

where w∗ = 1
2λ2

{
µ+ λ1 + λ2 −

√
(µ+ λ1 + λ2)2 − 4λ2µ

}
and w̃ = 1

2λ2

{
µ + λ1 + λ2

+
√

(µ+ λ1 + λ2)2 − 4λ2µ
}
.

In addition, using Equations (5) and (6), we obtain the following equation using Equa-
tion (7)

1

w

{
λ2w

2 − (µ+ λ1 + λ2)w + µ
}
F0(w)

=
µ

w
q(0, 0)− µH(w)− µq(1, 0)− (λ1 + λ2)p0

= (λ1 + λ2)p0

(
1

w
− 1

)
− µH(w)− µq(1, 0), (14)

1

w
(w − w∗)(w − w̃)F0(w)

= (λ1 + λ2)p0

(
1

w
− 1

)
− µH(w)− µq(1, 0)

= (λ1 + λ2)p0

(
1

w
− 1

)
− λ1z∗(w)

LFL−1(w)− µq(1, 0), (15)

1

w
(w − w∗)(w − w̃)F1(w) = −λ1F0(w) +

µ

w
q(1, 0)− µq(2, 0), (16)

1

w
(w − w∗)(w − w̃)F2(w) = −λ1F1(w) +

µ

w
q(2, 0)− µq(3, 0), (17)

...
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1

w
(w − w∗)(w − w̃)FL−2(w) = −λ1FL−3(w) +

µ

w
q(L− 2, 0)− µq(L− 1, 0), (18)

1

w
(w − w∗)(w − w̃)FL−1(w) = −λ1FL−2(w) +

µ

w
q(L− 1, 0). (19)

By substituting F0(w) from Equation (15) into Equation (16), F1(w) can be obtained
by FL−1(w). Based on Equation (19) derived from Equation (17), we obtain FL−1(w).
Finally, for all 0 ≤ m ≤ L − 1, Fm(w) is obtained by p0, q(1, 0), q(2, 0), . . . , q(L − 1, 0).
However, assuming w = w∗ in the equations from (15) to (19), q(m, 0) is obtained by
p0 and Fm(w∗), 1 ≤ m ≤ L − 1, and p0 is obtained by the normalization condition (8).
Therefore, we obtain Fm(w) for all m, 0 ≤ m ≤ L − 1. Finally, the joint probability
generating function G(z, w) is obtained by substituting FL−1(w) into Equation (12).

4. Conclusions. Using the joint probability-generating function G(z, w), we can ob-
tain various performance measures, including the mean queue length and waiting time.
This yields an exact solution to an M/M/1 polling model with two queues and a state-
dependent alternating-priority policy.
As a follow-up to this study, further research could involve:

• Analyzing a more general model by extending the service time from an exponen-
tial distribution to a general distribution. This would involve analyzing an M/G/1
queuing model with a more realistic service distribution.

• Considering the relevant cost factors associated with system operation to determine
an optimal threshold level.
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